Stat 100a: Introduction to Probability. <u>Outline for the day:</u>

- 1. Midterm2 back.
- 2. CLT again.
- 3. Confidence intervals.
- 4. Sample size calculation.
- 5. Random walks.
- 6. Reflection principle.
- 7. Ballot theorem.
- 8. Tournaments.

HW3 is due Wed.

1. Midterm 2 back.

Please be completely silent until I am done passing back the exams.

<u>2. Central Limit Theorem (CLT):</u> if $X_1, X_2, ..., X_n$ are iid with mean μ & SD σ , then $(\overline{X_n} - \mu) \div (\sigma/\sqrt{n}) \longrightarrow \text{Standard Normal. (mean 0, SD 1).}$ In other words, X_n has mean μ and a standard deviation of $\sigma \div \sqrt{n}$. Two interesting things about this: (i) As $n \rightarrow \infty$, $X_n \rightarrow normal$. Even if X_i are far from normal. e.g. *average* number of pairs per hand, out of n hands. X_i are 0-1 (Bernoulli). $\mu = p = P(pair) = 3/51 = 5.88\%$. $\sigma = \sqrt{(pq)} = \sqrt{(5.88\% \times 94.12\%)} = 23.525\%$. (ii) We can use this to find **a range** where $\overline{X_n}$ is likely to be. About 95% of the time, a std normal random variable is within -1.96 to +1.96. So 95% of the time, $(\overline{X_n} - \mu) \div (\sigma/\sqrt{n})$ is within -1.96 to +1.96. So 95% of the time, $(\overline{X_n} - \mu)$ is within -1.96 (σ/\sqrt{n}) to +1.96 (σ/\sqrt{n}) . So 95% of the time, $\overline{X_n}$ is within $\mu - 1.96 (\sigma/\sqrt{n})$ to $\mu + 1.96 (\sigma/\sqrt{n})$. That is, 95% of the time, $\overline{X_n}$ is in the interval μ +/- 1.96 (σ/\sqrt{n}). $= 5.88\% + 1.96(23.525\%)/\sqrt{n}$. For n = 1000, this is 5.88% + 1.458%. For n = 1,000,000 get 5.88% + -0.0461%.

Another CLT Example

<u>Central Limit Theorem (CLT)</u>: if $X_1, X_2, ..., X_n$ are iid with mean μ & SD σ , then $(\overline{X_n} - \mu) \div (\sigma/\sqrt{n}) \longrightarrow$ Standard Normal. (mean 0, SD 1). In other words, $\overline{X_n}$ is like a draw from a normal distribution with mean μ and standard deviation of $\sigma \div \sqrt{n}$.

That is, 95% of the time, $\overline{X_n}$ is in the interval $\mu + -1.96 (\sigma/\sqrt{n})$.

- Q. Suppose you average \$5 profit per hour, with a SD of \$60 per hour. If you play 1600 hours, let Y be your average profit over those 1600 hours. Find a range where Y is 95% likely to fall.
- A. We want $\mu + -1.96 (\sigma/\sqrt{n})$, where $\mu = \$5, \sigma = \60 , and n=1600. So the answer is

 $5 + - 1.96 \times 60 / \sqrt{1600}$

= \$5 +/- \$2.94, or the range [\$2.06, \$7.94].

3. Confidence Intervals (CIs) for μ , ch 7.5.

<u>Central Limit Theorem (CLT):</u> if $X_1, X_2, ..., X_n$ are iid with mean μ SD σ , then $(\overline{X_n} - \mu) \div (\sigma/\sqrt{n}) \longrightarrow$ Standard Normal. (mean 0, SD 1). So, 95% of the time, $\overline{X_n}$ is in the interval μ +/- 1.96 (σ/\sqrt{n}).

Typically you know X_n but not μ. Turning the blue statement above around a bit means that 95% of the time, μ is in the interval X_n +/- 1.96 (σ/√n).
This range X_n +/- 1.96 (σ/√n) is called a 95% confidence interval (CI) for μ.
[Usually you don't know σ and have to estimate it using the sample std deviation, s, of your data, and (X_n - μ) ÷ (s/√n) has a t_{n-1} distribution if the X_i are normal.
For n>30, t_{n-1} is so similar to normal though.]

1.96 (σ/\sqrt{n}) is called the *margin of error*.

The range $\overline{X_n}$ +/- 1.96 (σ/\sqrt{n}) is a 95% confidence interval for μ . 1.96 (σ/\sqrt{n}) (from fulltiltpoker.com:)

Results are inconclusive, even after 39,000 hands!

4. Sample size calculation. How many *more* hands are needed?

If Dwan keeps winning \$51/hand, then we want n so that the margin of error = \$51. 1.96 (σ/\sqrt{n}) = \$51 means 1.96 (\$10,000) / \sqrt{n} = \$51, so n = [(1.96)(\$10,000)/(\$51)]² ~ 148,000, so about 109,000 *more* hands.

* <u>*Reflection principle*</u>: The number of paths from $(0,X_0)$ to (n,y) that touch the x-axis = the number of paths from $(0,-X_0)$ to (n,y), for any n,y, and $X_0 > 0$.

- *<u>Ballot theorem</u>: In n = a+b hands, if player A won a hands and B won b hands, where a>b, and if the hands are aired in random order, P(A won more hands than B *throughout* the telecast) = (a-b)/n.
- [In an election, if candidate X gets x votes, and candidate Y gets y votes, where x > y, then the probability that X always leads Y throughout the counting is (x-y) / (x+y).]
- * For a simple random walk, $P(S_1 \neq 0, S_2 \neq 0, ..., S_n \neq 0) = P(S_n = 0)$, for any even n.

6. Reflection Principle. The number of paths from $(0,X_0)$ to (n,y) that touch the x-axis

= the number of paths from $(0, -X_0)$ to (n, y), for any n,y, and $X_0 > 0$.

For each path from $(0,X_0)$ to (n,y) that touches the x-axis, you can reflect the first part til it touches the x-axis, to find a path from $(0,-X_0)$ to (n,y), and vice versa.

Total number of paths from $(0, X_0)$ to (n, y) is easy to count: it's just C(n,a), where you go up *a* times and down *b* times

[i.e.
$$a-b = y - (-X_0) = y + X_0$$
. $a+b=n$, so $b = n-a$, $2a-n=y+X_0$, $a=(n+y+X_0)/2$].

7. Ballot theorem. In n = a+b hands, if player A won a hands and B won b hands,

where a>b, and if the hands are aired in random order,

then P(A won more hands than B *throughout* the telecast) = (a-b)/n.

Proof: We know that, after n = a+b hands, the total difference in hands won is a-b. Let x = a-b.

We want to count the number of paths from (1,1) to (n,x) that do not touch the x-axis.By the reflection principle, the number of paths from (1,1) to (n,x) that **do** touch the x-axis equals the total number of paths from (1,-1) to (n,x).

So the number of paths from (1,1) to (n,x) that **do not** touch the x-axis equals the number of paths from (1,1) to (n,x) minus the number of paths from (1,-1) to (n,x)

$$= C(n-1,a-1) - C(n-1,a)$$

$$= (n-1)! / [(a-1)! (n-a)!] - (n-1)! / [a! (n-a-1)!]$$

$$= \{n! / [a! (n-a)!]\} [(a/n) - (n-a)/n]$$

= C(n,a) (a-b)/n.

And each path is equally likely, and has probability 1/C(n,a).

So, P(going from (0,0) to (n,a) without touching the x-axis = (a-b)/n.

8. Tournaments.

