Stat 100a, Introduction to Probability. Rick Paik Schoenberg

Outline for the day:

- 1. Midterm 1.
- 2. Expected number trick.
- 3. P(flop 2 pairs).
- 4. Bernoulli random variables.
- 5. Binomial random variables.
- 6. Geometric random variables.

1. Midterm 1.

2. Expected number trick.

The board consists of 5 cards. Find the expected number of clubs on the board.

Let $X_1 = 1$ if the 1st card is a club, and 0 otherwise.

Let $X_2 = 1$ if the 2nd card is a club, and 0 otherwise.

etc.

 $X = X_1 + X_2 + X_3 + X_4 + X_5.$

So $E(X) = E(X_1) + E(X_2) + E(X_3) + E(X_4) + E(X_5)$

 $= [\frac{1}{4}(1) + \frac{3}{4}(0)] \ge 5 = 1.25.$

Even though X_1, X_2, X_3, X_4 , and X_5 are not independent, nevertheless E(X₁ + X₂ + X₃ + X₄ + X₅) = E(X₁)+E(X₂)+E(X₃)+E(X₄)+E(X₅).

P(flop two pairs).

If you're sure to be all-in next hand, what is P(you will flop two pairs)?

This is a tricky one. Don't double-count $(4 \spadesuit 4 \spadesuit 9 \spadesuit 9 \spadesuit Q \spadesuit)$ and $(9 \spadesuit 9 \spadesuit 4 \spadesuit 4 \spadesuit Q \spadesuit)$.

There are choose(13,2) possibilities for the NUMBERS of the two pairs.

For each such choice (such as 4 & 9),

there are choose(4,2) choices for the suits of the lower pair,

and the same for the suits of the higher pair.

So, choose(13,2) * choose(4,2) * choose(4,2) different possibilities for the two pairs.

For each such choice, there are 44 [52 - 8 = 44] different possibilities for your fifth card, so that it's not a full house but simply two pairs. So,

P(flop two pairs) = C(13,2) * C(4,2) * C(4,2) * 44 / C(52,5)

~ 4.75%, or 1 in **21**.

P(flop two pairs).

Here is another way to do it. Find the mistake.

P(flop 2 pairs) = P(pocket pair and flop 2 pairs) + P(no pocket pair and flop 2 pairs)

= P(pocket pair) P(flop 2 pairs | pocket pair) + P(no pocket pair) P(flop 2 pairs | no pocket pair)

 $= P(\text{pocket pair aa}) * P(\text{bbc} \mid \text{aa}) + P(\text{ab})*P(\text{abc} \mid \text{ab})$

= 13 * C(4,2)/C(52,2) * 12 * C(4,2) * 44/C(50,3) + C(13,2) * 4 * 4/C(52,2) * 3 * 3 * 44/C(50,3)

= 2.85%.

What is the problem here?

P(flop two pairs).

Here is another way to do it. Find the mistake.

P(flop 2 pairs) = P(pocket pair and flop 2 pairs) + P(no pocket pair and flop 2 pairs)

= P(pocket pair) P(flop 2 pairs | pocket pair) + P(no pocket pair) P(flop 2 pairs | no pocket pair)

= P(pocket pair aa) * P(bbc | aa) + P(ab)*P(abc | ab)

= 13 * C(4,2)/C(52,2) * 12 * C(4,2) * 44/C(50,3) + C(13,2) * 4 * 4/C(52,2) ***3 * 3 * 44/**C(50,3)

= 2.85%.

What is the problem here?

P(flop 2 pairs | no pocket pair) \neq P(ab)*P(abc | ab). If you have ab, it could come acc or bcc on the flop. 13*C(4,2)/C(52,2) * 12*C(4,2)*44/C(50,3) + C(13,2)*4*4/C(52,2) * (3*3*44 + 6*11*C(4,2)) /C(50,3) = 4.75\%.

Bernoulli Random Variables, ch. 5.1.

If X = 1 with probability p, and X = 0 otherwise, then X = Bernoulli(p). Probability mass function (pmf):

P(X = 1) = pP(X = 0) = q, where p+q = 100%.

If X is Bernoulli (p), then $\mu = E(X) = p$, and $\sigma = \sqrt{pq}$.

For example, suppose X = 1 if you have a pocket pair next hand; X = 0 if not.

p = 5.88%. So, q = 94.12%.

[Two ways to figure out p:

(a) Out of choose(52,2) combinations for your two cards, 13 * choose(4,2) are pairs.

13 * choose(4,2) / choose(52,2) = 5.88%.

(b) Imagine *ordering* your 2 cards. No matter what your 1st card is, there are 51 equally likely choices for your 2nd card, and 3 of them give you a pocket pair. 3/51 = 5.88%.] $\mu = E(X) = .0588$. $SD = \sigma = \sqrt{(.0588 * 0.9412)} = 0.235$.

Binomial Random Variables, ch. 5.2.

Suppose now X = # of times something with prob. p occurs, out of n independent trials Then X = Binomial (n.p).

e.g. the number of pocket pairs, out of 10 hands.

Now X could = 0, 1, 2, 3, ...,or n.

pmf: $P(X = k) = choose(n, k) * p^k q^{n-k}$.

e.g. say n=10, k=3: $P(X = 3) = choose(10,3) * p^3 q^7$.

Why? Could have 1 1 1 0 0 0 0 0 0, or 1 0 1 1 0 0 0 0 0, etc.

choose(10, 3) choices of places to put the 1's, and for each the prob. is $p^3 q^7$.

Key idea: $X = Y_1 + Y_2 + ... + Y_n$, where the Y_i are independent and *Bernoulli* (p).

If X is Bernoulli (p), then $\mu = p$, and $\sigma = \sqrt{(pq)}$. If X is Binomial (n,p), then $\mu = np$, and $\sigma = \sqrt{(npq)}$.

Binomial Random Variables, continued.

Suppose X = the number of pocket pairs you get in the next 100 hands. <u>What's P(X = 4)? What's E(X)? σ ?</u> X = Binomial (100, 5.88%). P(X = k) = choose(n, k) * p^k q^{n - k}. So, P(X = 4) = choose(100, 4) * 0.0588⁴ * 0.9412⁹⁶ = 13.9%, or 1 in **7.2.** E(X) = np = 100 * 0.0588 = **5.88**. $\sigma = \sqrt{(100 * 0.0588 * 0.9412)} =$ **2.35**.So, out of 100 hands, you'd *typically* get about 5.88 pocket pairs, +/- around 2.35.

6. Geometric random variables, ch 5.3.

Suppose now X = # of trials until the <u>first</u> occurrence.

(Again, each trial is independent, and each time the probability of an occurrence is p.)

Then X = Geometric (p).

e.g. the number of hands til you get your next pocket pair.

[Including the hand where you get the pocket pair. If you get it right away, then X = 1.] Now X could be 1, 2, 3, ..., up to ∞ .

pmf: $P(X = k) = p^1 q^{k-1}$. e.g. say k=5: $P(X = 5) = p^1 q^4$. Why? Must be 00001. Prob. = q * q * q * q * q * p.

If X is Geometric (p), then $\mu = 1/p$, and $\sigma = (\sqrt{q}) \div p$.

e.g. Suppose X = the number of hands til your next pocket pair. P(X = 12)? E(X)? σ ? X = Geometric (5.88%). $P(X = 12) = p^1 q^{11} = 0.0588 * 0.9412 \wedge 11 = 3.02\%$. E(X) = 1/p = 17.0. $\sigma = sqrt(0.9412) / 0.0588 = 16.5$.

So, you'd typically *expect* it to take 17 hands til your next pair, +/- around 16.5 hands.