Stat 100a: Introduction to Probability.

Outline for the day

- 1. CLT.
- 2. CIs.
- 3. Sample size calculations.
- 4. Random walks.
- 5. Reflection principle.
- 6. Ballot theorem.
- 7. Avoiding zero.
- 8. Chip proportions and induction.
- 9. Doubling up.
- 10. Examples.

hw3 is due Tue Jul28. The computer project is due on Sun Jul26 8:00pm. http://www.stat.ucla.edu/~frederic/100A/S20 . Mean on exam2 was 79%, SD was 30%. Read directions. Cheating?

1. Central Limit Theorem (CLT). ch 7.4.

Sample mean $X_n = \sum X_i / n$

iid: independent and identically distributed.

Suppose X_1, X_2 , etc. are iid with expected value μ and sd σ ,

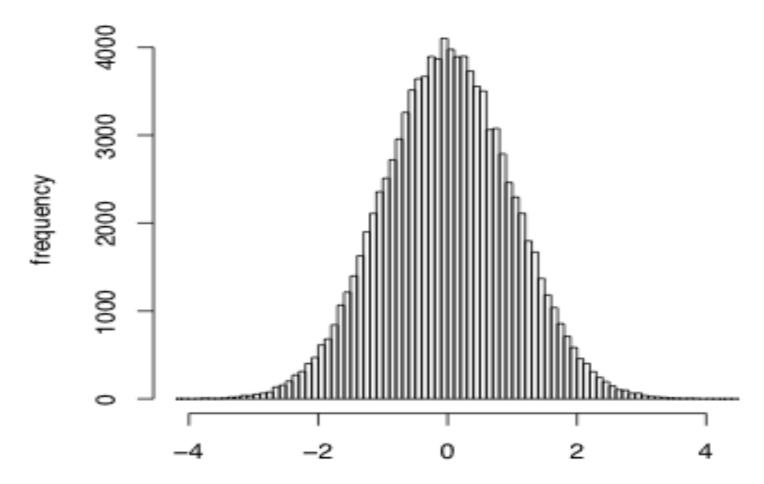
$$\overline{X_n} \xrightarrow{\text{LAW OF LARGE NUMBERS (LLN)}}:$$

$$\overline{X_n} \xrightarrow{\text{CENTRAL LIMIT THEOREM (CLT)}}:$$

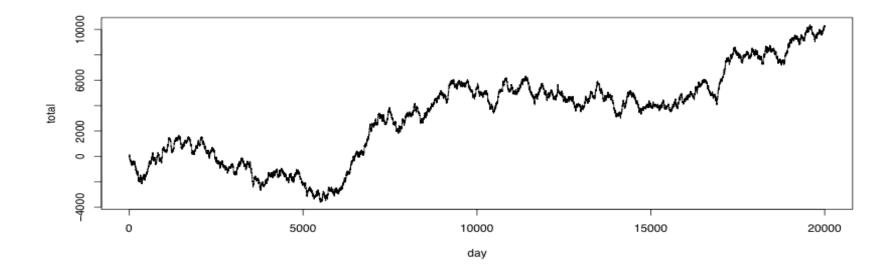
$$(\overline{X_n} - \mu) \div (\sigma/\sqrt{n}) \xrightarrow{\text{CENTRAL Normal}}:$$

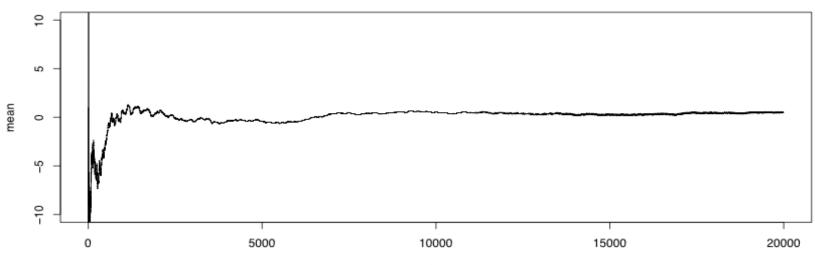
Useful for tracking results.

95% between -1.96 and 1.96

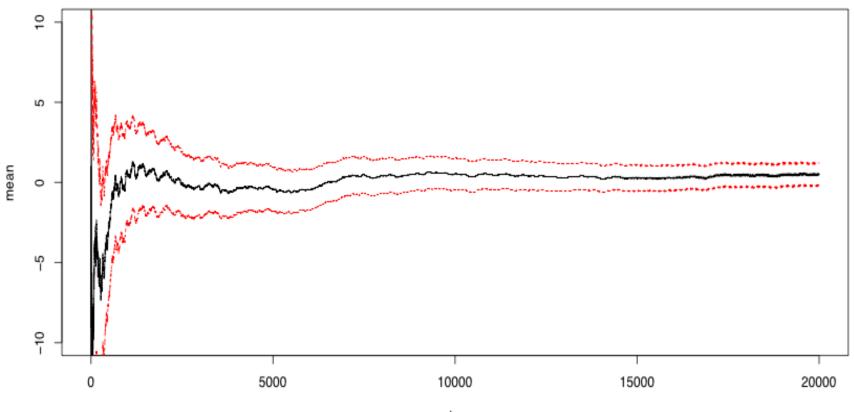


Truth: -49 to 51, exp. value $\mu = 1.0$





Truth: uniform on -49 to 51. $\mu = 1.0$ Estimated using $\overline{X_n}$ +/- 1.96 σ/\sqrt{n} = .95 +/- 0.28 in this example



<u>Central Limit Theorem (CLT)</u>: if $X_1, X_2, ..., X_n$ are iid with mean μ & SD σ , then $(\overline{X_n} - \mu) \div (\sigma/\sqrt{n}) \longrightarrow \text{Standard Normal. (mean 0, SD 1).}$ In other words, X_n has mean μ and a standard deviation of $\sigma \div \sqrt{n}$. Two interesting things about this: (i) As $n \rightarrow \infty$, $X_n \rightarrow normal$. Even if X_i are far from normal. e.g. *average* number of pairs per hand, out of n hands. X_i are 0-1 (Bernoulli). $\mu = p = P(pair) = 3/51 = 5.88\%$. $\sigma = \sqrt{(pq)} = \sqrt{(5.88\% \times 94.12\%)} = 23.525\%$. (ii) We can use this to find **a range** where $\overline{X_n}$ is likely to be. About 95% of the time, a std normal random variable is within -1.96 to +1.96. So 95% of the time, $(\overline{X_n} - \mu) \div (\sigma/\sqrt{n})$ is within -1.96 to +1.96. So 95% of the time, $(\overline{X_n} - \mu)$ is within -1.96 (σ/\sqrt{n}) to +1.96 (σ/\sqrt{n}) . So 95% of the time, $\overline{X_n}$ is within $\mu - 1.96 (\sigma/\sqrt{n})$ to $\mu + 1.96 (\sigma/\sqrt{n})$. That is, 95% of the time, $\overline{X_n}$ is in the interval μ +/- 1.96 (σ/\sqrt{n}). $= 5.88\% + 1.96(23.525\%)/\sqrt{n}$. For n = 1000, this is 5.88% + 1.458%. For n = 1,000,000 get 5.88% + -0.0461%.

Another CLT Example

<u>Central Limit Theorem (CLT):</u> if $X_1, X_2, ..., X_n$ are iid with mean μ & SD σ , then $(\overline{X_n} - \mu) \div (\sigma/\sqrt{n}) \longrightarrow$ Standard Normal. (mean 0, SD 1). In other words, $\overline{X_n}$ is like a draw from a normal distribution with mean μ and standard deviation of $\sigma \div \sqrt{n}$.

That is, 95% of the time, $\overline{X_n}$ is in the interval μ +/- 1.96 (σ/\sqrt{n}).

- Q. Suppose you average \$5 profit per hour, with a SD of \$60 per hour. If you play 1600 hours, let Y be your average profit over those 1600 hours. Find a range where Y is 95% likely to fall.
- A. We want $\mu + 1.96 (\sigma/\sqrt{n})$, where $\mu = \$5, \sigma = \60 , and n=1600. So the answer is

 $5 + - 1.96 \times 60 / \sqrt{1600}$

= \$5 +/- \$2.94, or the range [\$2.06, \$7.94].

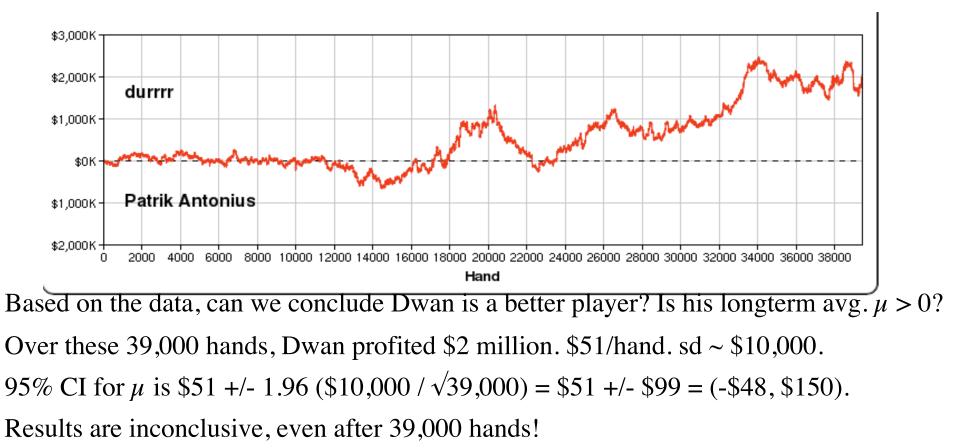
2. Confidence Intervals (CIs) for μ , ch 7.5.

<u>Central Limit Theorem (CLT):</u> if $X_1, X_2, ..., X_n$ are iid with mean μ SD σ , then $(\overline{X_n} - \mu) \div (\sigma/\sqrt{n}) \longrightarrow$ Standard Normal. (mean 0, SD 1). So, 95% of the time, $\overline{X_n}$ is in the interval μ +/- 1.96 (σ/\sqrt{n}).

Typically you know X_n but not μ. Turning the blue statement above around a bit means that 95% of the time, μ is in the interval X_n +/- 1.96 (σ/√n).
This range X_n +/- 1.96 (σ/√n) is called a 95% confidence interval (CI) for μ.
[Usually you don't know σ and have to estimate it using the sample std deviation, s, of your data, and (X_n - μ) ÷ (s/√n) has a t_{n-1} distribution if the X_i are normal.
For n>30, t_{n-1} is so similar to normal though.]

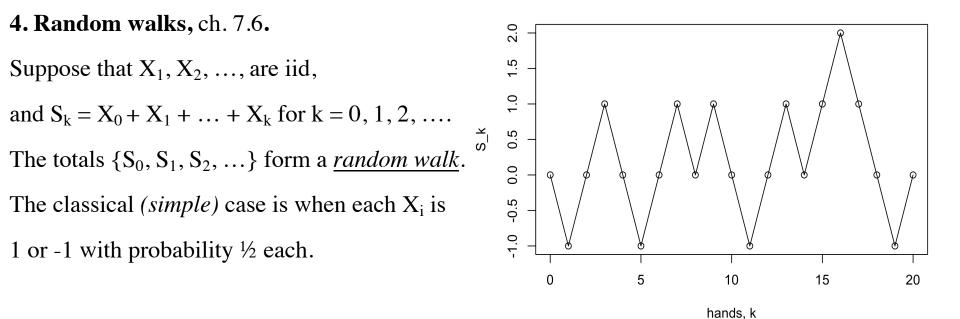
1.96 (σ/\sqrt{n}) is called the *margin of error*.

The range $\overline{X_n}$ +/- 1.96 (σ/\sqrt{n}) is a 95% confidence interval for μ . 1.96 (σ/\sqrt{n}) (from fulltiltpoker.com:)



3. Sample size calculation. How many *more* hands are needed?

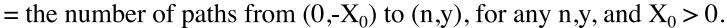
If Dwan keeps winning \$51/hand, then we want n so that the margin of error = \$51. 1.96 (σ/\sqrt{n}) = \$51 means 1.96 (\$10,000) / \sqrt{n} = \$51, so n = [(1.96)(\$10,000)/(\$51)]² ~ 148,000, so about 109,000 *more* hands.

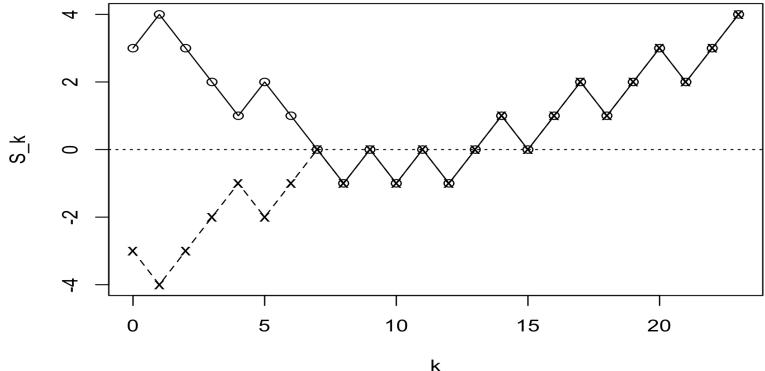


* <u>*Reflection principle*</u>: The number of paths from $(0,X_0)$ to (n,y) that touch the x-axis = the number of paths from $(0,-X_0)$ to (n,y), for any n,y, and $X_0 > 0$.

- *<u>Ballot theorem</u>: In n = a+b hands, if player A won a hands and B won b hands, where a>b, and if the hands are aired in random order, P(A won more hands than B *throughout* the telecast) = (a-b)/n.
- [In an election, if candidate X gets x votes, and candidate Y gets y votes, where x > y, then the probability that X always leads Y throughout the counting is (x-y) / (x+y).]
- * For a simple random walk, $P(S_1 \neq 0, S_2 \neq 0, ..., S_n \neq 0) = P(S_n = 0)$, for any even n.

5. Reflection Principle. The number of paths from $(0,X_0)$ to (n,y) that touch the x-axis





For each path from $(0,X_0)$ to (n,y) that touches the x-axis, you can reflect the first part til it touches the x-axis, to find a path from $(0,-X_0)$ to (n,y), and vice versa.

Total number of paths from $(0, X_0)$ to (n, y) is easy to count: it's just C(n,a), where you go up *a* times and down *b* times.

[For example, to go from (0,-10) to (100, 20), you have to "profit" 30, so you go up a=65 times and down b=35 times, and the number of paths is C(100,65).

In general, $a-b = y - (-X_0) = y + X_0$. a+b=n, so b = n-a, $2a-n=y+X_0$, $a=(n+y+X_0)/2$].

6. Ballot theorem. In n = a+b hands, if player A won a hands and B won b hands,

where a>b, and if the hands are aired in random order,

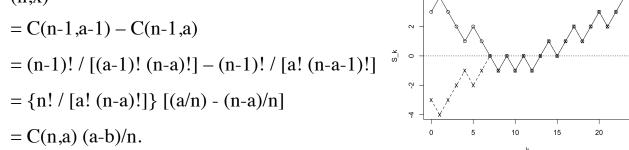
then P(A won more hands than B *throughout* the telecast) = (a-b)/n.

Proof: We know that, after n = a+b hands, the total difference in hands won is a-b.

Let x = a-b.

We want to count the number of paths from (1,1) to (n,x) that do not touch the x-axis. By the reflection principle, the number of paths from (1,1) to (n,x) that **do** touch the x-axis equals the total number of paths from (1,-1) to (n,x).

So the number of paths from (1,1) to (n,x) that **do not** touch the x-axis equals the number of paths from (1,1) to (n,x) minus the number of paths from (1,-1) to (n,x) \neg



And each path is equally likely, and has probability 1/C(n,a).

So, P(going from (0,0) to (n,x) without touching the x-axis = (a-b)/n.

7. Avoiding zero.

For a simple random walk, for any even # n, $P(S_1 \neq 0, S_2 \neq 0, ..., S_n \neq 0) = P(S_n = 0)$. Proof. The number of paths from (0,0) to (n, j) that don't touch the x-axis at positive times

= the number of paths from (1,1) to (n,j) that don't touch the x-axis at positive times

= paths from (1,1) to (n,j) - paths from (1,-1) to (n,j) by the *reflection principle*

$$= N_{n-1,j-1} - N_{n-1,j+1}.$$
Let $Q_{n,j} = P(S_n = j)$. By the logic above,
 $P(S_1 > 0, S_2 > 0, ..., S_{n-1} > 0, S_n = j) = \frac{1}{2}[Q_{n-1,j-1} - Q_{n-1,j+1}].$
Summing from $j = 2$ to ∞ ,
 $P(S_1 > 0, S_2 > 0, ..., S_{n-1} > 0, S_n > 0)$

$$= \frac{1}{2}[Q_{n-1,1} - Q_{n-1,3}] + \frac{1}{2}[Q_{n-1,3} - Q_{n-1,5}] + \frac{1}{2}[Q_{n-1,5} - Q_{n-1,7}] + ... and these terms are eventually 0$$

$$= (1/2) Q_{n-1,1}.$$

Now note that $Q_{n-1,1} = P(S_n = 0)$, because to end up at (n, 0), you have to be at (n-1,1) and then go down, or at (n-1,-1) and then go up. So $P(S_n = 0) = (1/2) Q_{n-1,1} + (1/2) Q_{n-1,-1} = Q_{n-1,1}$. Thus $P(S_1 > 0, S_2 > 0, ..., S_{n-1} > 0, S_n > 0) = \frac{1}{2} P(S_n = 0)$. By the same arguments, $P(S_1 < 0, S_2 < 0, ..., S_{n-1} < 0, S_n < 0) = 1/2 P(S_n = 0)$. So, $P(S_1 \neq 0, S_2 \neq 0, ..., S_n \neq 0) = P(S_n = 0)$.

8. Chip proportions and induction, Theorem 7.6.6.

P(win a tournament) is proportional to your number of chips.

Simplified scenario. Suppose you either go up or down 1 each hand, with prob. 1/2. Suppose there are n chips, and you have k of them.

Let $p_k = P(\text{win tournament given } k \text{ chips}) = P(\text{random walk goes } k \rightarrow n \text{ before hitting } 0).$

Now, clearly $p_0 = 0$. Consider p_1 . From 1, you will either go to 0 or 2.

So, $p_1 = 1/2 p_0 + 1/2 p_2 = 1/2 p_2$. That is, $p_2 = 2 p_1$.

We have shown that $p_j = j p_1$, for j = 0, 1, and 2.

(*induction:*) Suppose that, for $j = 0, 1, 2, ..., m, p_j = j p_1$.

We will show that $p_{m+1} = (m+1) p_1$.

Therefore, $p_j = j p_1$ for all j.

That is, P(win the tournament) is prop. to your number of chips.

 $p_m = 1/2 p_{m-1} + 1/2 p_{m+1}$. If $p_j = j p_1$ for $j \le m$, then we have $mp_1 = 1/2 (m-1)p_1 + 1/2 p_{m+1}$,

so $p_{m+1} = 2mp_1 - (m-1) p_1 = (m+1)p_1$.

- **9. Doubling up.** Again, P(winning) = your proportion of chips.
- Theorem 7.6.7, p152, describes another simplified scenario.
- Suppose you either double each hand you play, or go to zero, each with probability 1/2.
- Again, P(win a tournament) is prop. to your number of chips.
- Again, $p_0 = 0$, and $p_1 = 1/2$ $p_2 = 1/2$ p_2 , so again, $p_2 = 2$ p_1 .
- We have shown that, for j = 0, 1, and $2, p_j = j p_1$.
- (*induction:*) Suppose that, for $j \le m$, $p_j = j p_1$.
- We will show that $p_{2m} = (2m) p_1$.

Therefore, $p_j = j p_1$ for all $j = 2^k$. That is, P(win the tournament) is prop. to # of chips.

This time, $p_m = 1/2 p_0 + 1/2 p_{2m}$. If $p_j = j p_1$ for $j \le m$, then we have

$$mp_1 = 0 + 1/2 p_{2m}$$
, so $p_{2m} = 2mp_1$. Done.

In Theorem 7.6.8, p152, you have k of the n chips in play. Each hand, you gain 1 with prob. p, or lose 1 with prob. q=1-p.

Suppose $0 and <math>p \neq 0.5$. Let r = q/p. Then P(you win the tournament) = $(1-r^k)/(1-r^n)$. The proof is again by induction, and is similar to the proof we did of Theorem 7.6.6.

10. Examples.

- (Chen and Ankenman, 2006). Suppose that a \$100 winner-take-all tournament has $1024 = 2^{10}$ players. So, you need to double up 10 times to win. Winner gets \$102,400.
- Suppose you have probability p = 0.54 to double up, instead of 0.5.
- What is your expected profit in the tournament? (Assume only doubling up.)
- Answer. P(winning) = 0.54^{10} , so exp. return = 0.54^{10} (\$102,400) = \$215.89. So exp. profit = \$115.89.
- What if each player starts with 10 chips, and you gain a chip with
- p = 54% and lose a chip with p = 46%? What is your expected profit?
- Answer. r = q/p = .46/.54 = .852. P(you win) = $(1-r^{10})/(1-r^{10240}) = 79.9\%$. So exp. profit = .799(\$102400) - \$100 ~ \$81700.

Random Walk example.

- Suppose you start with 1 chip at time 0 and that your tournament is like a simple random walk, but if you hit 0 you are done. P(you have not hit zero by time 47)? We know that starting at 0, $P(Y_1 \neq 0, Y_2 \neq 0, ..., Y_{2n} \neq 0) = P(Y_{2n} = 0)$.
- So, for a random walk starting at (0,0),
- by symmetry $P(Y_1 > 0, Y_2 > 0, ..., Y_{48} > 0) = \frac{1}{2} P(Y_1 \neq 0, Y_2 \neq 0, ..., Y_{2n} \neq 0)$ = $\frac{1}{2} P(Y_{48} = 0) = \frac{1}{2} Choose(48,24)(\frac{1}{2})^{48}$.
- Also $P(Y_1 > 0, Y_2 > 0, ..., Y_{48} > 0) = P(Y_1 = 1, Y_2 > 0, ..., Y_{48} > 0)$
- = P(start at 0 and win your first hand, and then stay above 0 for at least 47 more hands)
- = P(start at 0 and win your first hand) x P(from (1,1), stay above 0 for \ge 47 more hands)
- = 1/2 P(starting with 1 chip, stay above 0 for at least 47 more hands).
- So, multiplying both sides by 2,
- P(starting with 1 chip, stay above 0 for at least 47 hands) = Choose(48,24)($\frac{1}{2}$)⁴⁸
- = 11.46%.