
Stat 100a, Introduction to Probability.
Outline for the day:
0. pdf of min{X,Y}, and bivariate and marginal density. 
1. CLT.
2. CIs.
3. Sample size calculations. 
4. Random walks. 
5. Reflection principle. 
6. Ballot theorem. 
7. Avoiding zero. 
8. Chip proportions and induction. 
9. Doubling up. 
10. Examples. 

http://www.stat.ucla.edu/~frederic/100A/sum21 
Read through chapter 7.  
No class Mon Sep 6 Labor Day! 
I will have a short, optional review session and tournament with your R functions on Tue Sep7 from 
10am to 1030am and will post it on the course website. 
HW3 is on the course website and is due Tue Sep7 9am. 
For the final exam Sep8, you will need to be on zoom and have your cameras on during the exam! 



0. pdf of min{X,Y}. 

Exam 2 question 14. 
Suppose X and Y are independent, both are exponential, E(X) = 1 and E(Y) = 1⁄4. Let Z 
= min{X,Y}. What is the pdf of Z? 

First, note that for X, l = 1 and for Y, l = 4. 
Second, get F(z), the cdf of Z.  
P(Z > z) = P(X > z and Y > z) = P(X>z) P(Y>z) = e-1z e-4z = e-5z. 
So F(z) = 1 – P(Z > z) = 1 - e-5z. 
Third, take the derivative of F(z) to get the pdf. 
f(z) = F'(z) = 5 e-5z. 



0. Bivariate and marginal density. 
Suppose X and Y are random variables.
If X and Y are discrete, we can define the joint pmf f(x,y) = P(X = x and Y = y).
Suppose X and Y are continuous for the rest of this page. 
Define the bivariate or joint pdf f(x,y) as a function with the properties that f(x,y) ≥ 0, 
and for any a,b,c,d,

P(a ≤ X ≤ b and c ≤ Y ≤ d) = ∫ab ∫cd f(x,y) dy dx. 

The integral ∫-∞ ∞ f(x,y) dy = f(x), the pdf of X, and this function f(x) is sometimes 
called the marginal density of X.  Similarly ∫-∞ ∞ f(x,y) dx is the marginal pdf of Y. 
E(X) = ∫-∞∞ x f(x) dx = ∫-∞∞ x [∫-∞∞ f(x,y) dy] dx = ∫-∞∞ ∫-∞∞ x f(x,y) dy dx.  

Just as P(A|B) = P(AB)/P(B), f(x|y) = f(x,y)/f(y). 
X and Y are independent iff. f(x,y) = fx(x)fy(y).

Now E(XY) = ∫-∞∞ ∫-∞∞ xy f(x,y) dy dx. This can be useful to find 
cov(X,Y) = E(XY) – E(X)E(Y). 
What is E(X2Y+eY)? It = ∫-∞∞ ∫-∞∞ (x2y+ey) f(x,y) dy dx. 



Bivariate and marginal density. 
Suppose the joint density of X and Y is f(x,y) = a exp(x+y), for X and Y in (0,1) x (0,1).  
What is a? What is the marginal density of Y? What type of distribution does X have 
conditional on Y? What is E(X|Y)? What is the mean of X when Y = .2? Are X and Y 
independent? 

∫∫ a exp(x+y) dxdy = 1 = a∫∫ exp(x)exp(y)dxdy = a∫01 exp(x) dx ∫ 0
1 exp(y) dy = a(e-1)2 , 

so a = (e-1)-2. 

The marginal density of Y is f(y) = ∫ 0
1 a exp(x+y) dx = a exp(y) ∫ 01 exp(x)dx = a 

exp(y)(e-1) = exp(y)/(e-1). 

Conditional on Y, the density of X is f(x|y) = f(x,y)/f(y) = a exp(x+y)(e-1)/exp(y) = 
exp(x)/(e-1). So X|Y is like an exponential(1) random variable restricted to (0,1). 

E(X|Y) = ∫ 0
1 x exp(x)/(e-1) dx = 1/(e-1) [x exp(x) - ∫exp(x)dx] = 1/(e-1) [x exp(x) –

exp(x)]0
1 = 1/(e-1) [e – e – 0 + 1] = 1/(e-1). 

When Y = .2, E(X|Y) = 1/(e-1). 

f(y) = exp(y)/(e-1) and similarly f(x) = exp(x)/(e-1), 
so f(x)f(y) = exp(x+y)/(e-1)2 = f(x,y). Therefore, X and Y are independent. 



1. Central Limit Theorem (CLT), ch 7.4.

Sample mean         = ∑Xi / n
iid:  independent and identically distributed.

Suppose X1, X2 , etc. are iid with expected value µ and sd s ,

LAW OF LARGE NUMBERS (LLN):
---> µ .

CENTRAL LIMIT THEOREM (CLT):
(         - µ) ÷ (s/√n)  --->  Standard Normal.

Useful for tracking results.  



95% between -1.96 and 1.96



Truth: -49 or 51, each with prob. 1/2. exp. value = 1.0
Truth: -49 to 51, exp. value µ = 1.0



Truth: uniform on -49 to 51. µ = 1.0
Estimated using       +/- 1.96 s/√n 
= .95 +/- 0.28 in this example



Central Limit Theorem (CLT): if X1 , X2 …, Xn are iid with mean µ& SD s, then

(     - µ) ÷ (s/√n)  --->  Standard Normal. (mean 0, SD 1).

has mean µ and a standard deviation of s÷√n.  
Two interesting things about this:

(i)  As n --> ∞,       --> normal.  Even if Xi are far from normal. 
e.g. average number of pairs per hand, out of n hands. Xi are 0-1 (Bernoulli). 
µ = p = P(pair) = 3/51 = 5.88%.  s = √(pq) = √(5.88% x 94.12%) = 23.525%.  
(ii) We can use this to find a range where       is likely to be. 
About 95% of the time, a std normal random variable is within -1.96 to +1.96.
So 95% of the time, (      - µ) ÷ (s/√n) is within -1.96 to +1.96.

So 95% of the time, (       - µ) is within -1.96 (s/√n) to   +1.96 (s/√n).
So 95% of the time,       is within µ - 1.96 (s/√n) to   µ + 1.96 (s/√n). 
That is, 95% of the time,      is in the interval µ +/- 1.96 (s/√n).
= 5.88% +/- 1.96(23.525%/√n).  For n = 1000, this is 5.88% +/- 1.458%.
For n = 1,000,000 get 5.88% +/- 0.0461%.



Another CLT Example

Central Limit Theorem (CLT): if X1 , X2 …, Xn are iid with mean µ& SD s, then

(      - µ) ÷ (s/√n)  --->  Standard Normal. (mean 0, SD 1).
In other words,       is like a draw from a normal distribution 

with mean µ and standard deviation of s÷√n.  
That is, 95% of the time,       is in the interval µ +/- 1.96 (s/√n).
Q. Suppose you average $5 profit per hour, with a SD of $60 per hour. If you play 

1600 hours, let Y be your average profit over those 1600 hours. Find a range 
where Y is 95% likely to fall.

A. We want µ +/- 1.96 (s/√n), where µ = $5, s = $60, and n=1600.  So the answer 
is 

$5 +/- 1.96 x $60 / √(1600) 
= $5 +/- $2.94, or the range [$2.06, $7.94]. 



2. Confidence Intervals (CIs) for µ, ch 7.5.

Central Limit Theorem (CLT): if X1 , X2 …, Xn are iid with mean µ& SD s, then

(    - µ) ÷ (s/√n)  --->  Standard Normal. (mean 0, SD 1).

So, 95% of the time,      is in the interval µ +/- 1.96 (s/√n).

Typically you know       but not µ. Turning the blue statement above around a bit 
means that 95% of the time, µ is in the interval +/- 1.96 (s/√n). 

This range +/- 1.96 (s/√n) is called a 95% confidence interval (CI) for µ.
[Usually you don’t know s and have to estimate it using the sample std deviation, s, 
of your data, and (      - µ) ÷ (s/√n) has a tn-1 distribution if the Xi are normal. 
For n>30, tn-1 is so similar to normal though.]

1.96 (s/√n) is called the margin of error.



The range +/- 1.96 (s/√n) is a 95% confidence interval for µ. 1.96 (s/√n) 
(from fulltiltpoker.com:)

Based on the data, can we conclude Dwan is a better player? Is his longterm avg. µ > 0?
Over these 39,000 hands, Dwan profited $2 million. $51/hand. sd ~ $10,000.
95% CI for µ is $51 +/- 1.96 ($10,000 / √39,000) = $51 +/- $99 = (-$48, $150).
Results are inconclusive, even after 39,000 hands! 
3. Sample size calculation. How many more hands are needed before the 95% CI is 

conclusive? 
If Dwan keeps winning $51/hand, then we want n so that the margin of error = $51.
1.96 (s/√n) = $51 means 1.96 ($10,000) / √n = $51, so n = [(1.96)($10,000)/($51)]2 ~  

148,000, so about 109,000 more hands. 



4. Random walks, ch. 7.6.

Suppose that X1, X2, …, are iid, 

and Sk = X0 + X1 + … + Xk for k = 0, 1, 2, ….

The totals {S0, S1, S2, …} form a random walk. 

The classical (simple) case is when each Xi is 

1 or -1 with probability ½ each.

* Reflection principle: The number of paths from (0,x) to (n,y) that touch the x-axis = the number 
of paths from (0,-x) to (n,y), for any n,y, and x > 0.

* Ballot theorem: In n = a+b hands, if player A won a hands and B won b hands, where a>b, and 
if the hands are aired in random order, P(A won more hands than B throughout the telecast) 
= (a-b)/n.

[In an election, if candidate X gets x votes, and candidate Y gets y votes, where x > y, then the

probability that X always leads Y throughout the counting is (x-y) / (x+y).]

* For a simple random walk, P(S1 ≠ 0, S2 ≠ 0, …, Sn ≠ 0) = P(Sn = 0), for any even n.



5. Reflection Principle. The number of paths from (0,x) to (n,y) that touch the x-axis = 
the number of paths from (0,x) to (n,y), for any n,y, and x > 0.

For each path from (0,x) to (n,y) that touches the x-axis, you can reflect the first part til
it touches the x-axis, to find a path from (0,-x) to (n,y), and vice versa.

Total number of paths from (0,-x) to (n,y) is easy to count: it’s just C(n,a), where you go 
up a times and down b times. 
[For example, to go from (0,-10) to (100, 20), you have to "profit" 30, so you go up 
a=65 times and down b=35 times, and the number of paths is C(100,65). 
In general, a-b = y - (-x) = y + x. a+b=n, so b = n-a, 2a-n=y+x, a=(n+y+x)/2].



6. Ballot theorem. In n = a+b hands, if player A won a hands and B won b hands, 

where a>b, and if the hands are aired in random order, 

then P(A won more hands than B throughout the telecast) = (a-b)/n.

Proof: We know that, after n = a+b hands, the total difference in hands won is a-b. 

Let x = a-b. 

We want to count the number of paths from (1,1) to (n,x) that do not touch the x-axis.
By the reflection principle, the number of paths from (1,1) to (n,x) that do touch the x-

axis equals the total number of paths from (1,-1) to (n,x).
So the number of paths from (1,1) to (n,x) that do not touch the x-axis equals the 

number of paths from (1,1) to (n,x) minus the number of paths from (1,-1) to 
(n,x)
= C(n-1,a-1) – C(n-1,a)

= (n-1)! / [(a-1)! (n-a)!] – (n-1)! / [a! (n-a-1)!]

= {n! / [a! (n-a)!]} [(a/n) - (n-a)/n]

= C(n,a) (a-b)/n. 

And each path is equally likely, and has probability 1/C(n,a).

So, P(going from (0,0) to (n,x) without touching the x-axis = (a-b)/n.



7. Avoiding zero. 

For a simple random walk, for any even # n, P(S1 ≠ 0, S2 ≠ 0, …, Sn ≠ 0) = P(Sn = 0).

Proof. The number of paths from (0,0) to (n, j) that don’t touch the x-axis at positive times

= the number of paths from (1,1) to (n,j) that don’t touch the x-axis at positive times 

= paths from (1,1) to (n,j) - paths from (1,-1) to (n,j) by the reflection principle. 

Therefore, 

P(S1 > 0, S2 > 0, …, Sn-1 > 0, Sn = j) = ½[P(Sn-1 = j-1) – P(Sn-1 = j+1). 

Summing from j = 2 to ∞, 

P(S1 > 0, S2 > 0, …, Sn-1 > 0, Sn > 0)

= ½ [P(Sn-1 = 1) - P(Sn-1 = 3)] +  ½ [P(Sn-1 = 3) - P(Sn-1 = 5)] +  ½ [P(Sn-1 = 5) - P(Sn-1 = 7)] + ... 

=  ½ P(Sn-1 = 1). and these terms are eventually 0
Now note that P(Sn-1 = 1) = P(Sn = 0), because to end up at (n, 0), you have to be at (n-1,1) and then go 
down, or at (n-1,-1) and then go up. So P(Sn = 0) = ½ P(Sn-1 = 1) + ½ P(Sn-1 = -1) = P(Sn-1 = 1). 
Thus P(S1 > 0, S2 > 0, …, Sn-1 > 0, Sn > 0) = ½ P(Sn = 0). By the same arguments, 
P(S1 < 0, S2 < 0, …, Sn-1 < 0, Sn < 0) = ½ P(Sn = 0).
So, P(S1 ≠ 0, S2 ≠ 0, …, Sn ≠ 0) = P(Sn = 0). 



8. Chip proportions and induction, Theorem 7.6.6.
P(win a tournament) is proportional to your number of chips.
Simplified scenario. Suppose you either go up or down 1 each hand, with prob. 1/2. 
Suppose there are n chips, and you have k of them. 
Let pk = P(win tournament given k chips) = P(random walk goes k -> n before hitting 0).
Now, clearly p0 = 0. Consider p1.  From 1, you will either go to 0 or 2. 
So, p1 = 1/2 p0 + 1/2 p2 = 1/2 p2. That is, p2 = 2 p1.
We have shown that pj = j p1, for j = 0, 1, and 2.
(induction:) Suppose that, for j = 0, 1, 2, …, m, pj = j p1. 
We will show that pm+1 = (m+1) p1.
Therefore, pj = j p1 for all j.
That is, P(win the tournament) is prop. to your number of chips.
pm= 1/2 pm-1 + 1/2 pm+1. If pj = j p1 for j ≤ m, then we have 
mp1 = 1/2 (m-1)p1 + 1/2 pm+1, 
so pm+1 = 2mp1 - (m-1) p1 = (m+1)p1.



9. Doubling up. Again, P(winning) = your proportion of chips.
Theorem 7.6.7, p152, describes another simplified scenario. 
Suppose you either double each hand you play, or go to zero, each with probability 1/2. 
Again, P(win a tournament) is prop. to your number of chips.
Again, p0 = 0, and p1 = 1/2 p2. So again, p2 = 2 p1.
We have shown that, for j = 0, 1, and 2, pj = j p1.
(induction:) Suppose that, for j ≤ m, pj = j p1. 
We will show that p2m = (2m) p1.
Therefore, pj = j p1 for all j = 2k. That is, P(win the tournament) is prop. to # of chips.
This time, pm= 1/2 p0 + 1/2 p2m. If pj = j p1 for j ≤ m, then we have 
mp1 = 0 + 1/2 p2m, so p2m = 2mp1. Done.

In Theorem 7.6.8, p152, you have k of the n chips in play. Each hand, you gain 1 with 
prob. p, or lose 1 with prob. q=1-p.
Suppose 0<p <1 and p≠0.5. Let r = q/p. Then P(you win the tournament) = (1-rk)/(1-rn).
The proof is again by induction, and is similar to the proof we did of Theorem 7.6.6.



10. Examples. 

(Chen and Ankenman, 2006). Suppose that a $100 winner-take-all 
tournament has 1024 = 210 players. So, you need to double up 10 
times to win. Winner gets $102,400. 

Suppose you have probability p = 0.54 to double up, instead of 0.5. 

What is your expected profit in the tournament? (Assume only doubling 
up.)

Answer. P(winning) = 0.5410, so exp. return = 0.5410 ($102,400) = 
$215.89. So exp. profit = $115.89.

What if each player starts with 10 chips, and you gain a chip with 

p = 54% and lose a chip with p = 46%? What is your expected profit?

Answer. r = q/p = .46/.54 = .852. P(you win) = (1-r10)/(1-r10240) = 79.9%.

So exp. profit = .799($102400) - $100 ~ $81700.



Random Walk example.

Suppose you start with 1 chip at time 0 and that your tournament is like a simple

random walk, but if you hit 0 you are done.  P(you have not hit zero by time 47)?

We know that starting at 0, P(Y1 ≠ 0, Y2 ≠ 0, …, Y2n ≠ 0) = P(Y2n = 0).

So, for a random walk starting at (0,0), 

by symmetry P(Y1 > 0, Y2 > 0, …, Y48 > 0) = ½ P(Y1 ≠ 0, Y2 ≠ 0, …, Y2n ≠ 0) 

= ½ P(Y48 = 0) = ½ Choose(48,24)(½)48. 

Also P(Y1 > 0, Y2 > 0, …, Y48 > 0) = P(Y1 = 1, Y2 > 0, …, Y48 > 0)

= P(start at 0 and win your first hand, and then stay above 0 for at least 47 more hands)

= P(start at 0 and win your first hand) x P(from (1,1), stay above 0 for ≥ 47 more hands)

= 1/2 P(starting with 1 chip, stay above 0 for at least 47 more hands).

So, multiplying both sides by 2, 

P(starting with 1 chip, stay above 0 for at least 47 hands) = Choose(48,24)(½)48

= 11.46%. 


