
Stat 13, Intro. to Statistical Methods for the Life and Health Sciences.

1.	Simulation	approach	with	paired	data	and	baseball	example,	continued.
2.	Theory	based	approach	with	paired	data	and	bowl	size	example.	
3.	t	versus	normal	and	assumptions.	
4.	When	to	do	what.	

NO	LECTURE	THU	NOV	3!	Review	for	the	midterm	will	be	in	class	Nov	1.
Recall	there	is	also	no	lecture	or	office	hour	Tue	Nov	8.	
Bring	a	PENCIL	and	CALCULATOR	and	any	books	or	notes	you	want	
to	the	midterm	and	final.	
HW3	is	due	Tue	Nov	1.	4.CE.10,	5.3.28,	6.1.17,	and	6.3.14.	
In	5.3.28d,	use	the	theory-based	formula.	You	do	not	need	to	use	an	applet.
The	midterm	Thu	Nov	10	will	be	on	ch1-7.		
http://www.stat.ucla.edu/~frederic/13/F16	.
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1.	Paired	data	
and	rounding	first	base	example.
• There	is	a	lot	of	overlap	in	the	distributions	and	substantial	
variability.	

• It	is	difficult	to	detect	a	difference	between	the	methods	
when	these	is	so	much	variation.

•

Mean SD
Narrow 5.534 0.260
Wide 5.459 0.273



The	Differences	in	Times



The	Differences	in	Times

• Mean	difference	is	𝑥̅d	=	0.075	seconds
• Standard	deviation	of	the	differences	is	SDd =	
0.0883	sec.	
• This	standard	deviation	of	0.0883	is	smaller	than	
the	original	standard	deviations	of	the	running	
times,	which	were	0.260	and	0.273.	



Rounding	First	Base
• Below	are	the	original	dotplots	with	each	
observation	paired	between	the	base	running	
strategies.
• What	do	you	notice?	



Rounding	First	Base

• Is	the	average	difference	of	𝑥̅d	=	0.075	seconds	
significantly	different	from	0?
• The	parameter	of	interest,	µd,	is	the	long	run	
mean	difference	in	running	times	for	runners	
using	the	narrow	angled	path	instead	of	the		
wide	angled	path.				(narrow	– wide)



Rounding	First	Base
The	hypotheses:
• H0:	µd =	0	
• The	long	run	mean	difference	in	running	times	is	0.

• Ha:	µd≠ 0	
• The	long	run	mean	difference	in	running	times	is	not	0.

• The	statistic	𝑥̅d =	0.075	is	above	zero.
• How	likely	is	it	to	see	an	average	difference	in	running	
times	this	big	or	bigger	by	chance	alone,	even	if	the	base	
running	strategy	has	no	genuine	effect	on	the	times?



Rounding	First	Base

How	can	we	use	simulation-based	methods	to	find	an	
approximate	p-value?	
• The	null	hypothesis	says	the	running	path	does	not	matter.	
• So	we	can	use	our	same	data	set	and,	for	each	runner,	
randomly	decide	which	time	goes	with	the	narrow	path	
and	which	time	goes	with	the	wide	path	and	then	
compute	the	difference.	(Notice	we	do	not	break	our	
pairs.)
• After	we	do	this	for	each	runner,	we	then	compute	a	
mean	difference.	
• We	will	then	repeat	this	process	many	times	to	develop	a	
null	distribution.



Subject 1 2 3 4 5 6 7 8 9 10
narrow	
angle

5.70 5.50 5.85 5.40 5.50 5.15 …

wide	angle 5.75 5.40 5.70 5.35 5.35 5.00 …

diff -0.05 0.10 0.10 0.15 -0.05 0.05 0.15 0.15 0.10 …

5.50

5.55

-0.050.05

5.60

5.50

-0.10

5.55

5.60

0.05

5.80

5.70

-0.10

Random	Swapping

𝑥̅d = 0.016



More	Simulations	
-0.002

-0.002 -0.016
0.030 -0.011

-0.007

0.467
-0.002-0.007

0.007 -0.034
-0.067

-0.002 -0.025
0.020

0.020

0.002

-0.016

-0.007

0.002

0.066

-0.030

-0.002

0.002
0.016

Simulated Mean Differences 0.07
5

-
0.075

With 26 repetitions of creating 
simulated mean differences, we 
did not get any that were as 
extreme as 0.075.



First	Base
• Here	is	a	null	distribution	of	1000	simulated	mean	differences.	
• Notice	it	is	centered	at	zero,	which	makes	sense	in	agreement	with	
the	null	hypothesis.	

• Notice	also	the	SD	of	these	MEAN	DIFFERENCES	is	0.024	=	SE.									
SD	of	time	differences	was	0.0883.	SD	of	mean	time	diff.s =	.024.	

• Where	is	our	observed	statistic	of	0.075?



First	Base
• Only	1	of	the	1000	repetitions	of	random	swappings gave	a	𝑥̅$
value	at	least	as	extreme	as	0.075.	



First	Base
• We	can	also	standardize	0.075	by	dividing	by	the	SE	of	0.024	to	
see	our	standardized	statistic	=	%.%'(

%.%)*
= 3.125.	



Rounding	First	Base

• With	a	p-value	of	0.1%,	we	have	very	strong	
evidence	against	the	null	hypothesis.	The	running	
path	makes	a	statistically	significant	difference	
with	the	wide-angle	path	being	faster	on	average.	
• We	can	draw	a	cause-and-effect	conclusion	since	
the	researcher	used	random	assignment	of	the	
two	base	running	methods	for	each	runner.	
• There	was	not	much information	about	how	these	
22	runners	were	selected	though	so	it	is	unclear	if	
we	can	generalize	to	a	larger	population.	



3S	Strategy

• Statistic:	Compute	the	statistic	in	the	sample.	In	this	case,	
the	statistic	we	looked	at	was	the	observed	mean	
difference	in	running	times.
• Simulate:	Identify	a	chance	model	that	reflects	the	null	
hypothesis.	We	tossed	a	coin	for	each	runner,	and	if	it	
landed	heads	we	swapped	the	two	running	times	for	that	
runner.	If	the	coin	landed	tails,	we	did	not	swap	the	times.	
We	then	computed	the	mean	difference	for	the	22	
runners	and	repeated	this	process	many	times.
• Strength	of	evidence:	We	found	that	only	1	out	of	1000	
of	our	simulated	mean	differences	was	at	least	as	
extreme	as	the	observed	difference	of	0.075	seconds.	



First	Base
• Approximate	a	95%	confidence	interval	for	𝜇d:
• 0.075	± 1.96(0.024)	seconds.	
• (0.028,	0.122)	seconds.	

• What	does	this	mean?
• We	are	95%	confident	that,	if	we	were	to	keep	testing	
this	indefinitely,	the	narrow	angle	route	would	take	
somewhere	between	0.028	to	0.122	seconds	longer	on	
average	than	the	wide	angle	route.	



First	Base
Alternative	Analysis
• What	do	you	think	would	happen	if	we	wrongly	analyzed	the	
data	using	a	2	independent	samples	procedure?	(i.e.	The	
researcher	selected	22	runners	to	use	the	wide	method	and	
an	independent	sample	of	22	other	runners	to	use	the	narrow	
method,	obtaining	the	same	44	times	as	in	the	actual	study.		



First	Base
Using	an	applet	which	tests	a	difference	between	these	
two	means,	ignoring	the	fact	that	it	is	paired	data,	
we	get	a	p-value	of	0.3470.
Does	it	make	
sense	that	this	
p-value	is	larger	
than	the	one	we	
obtained	earlier?



2.	Theory-based	Approach	
for	Analyzing	Data	from	
Paired	Samples,	and	M&Ms.
Section	7.3



How	Many	M&Ms	
Would	You	Like?
Example	7.3



How	Many	M&Ms	Would	You	Like?
• Does	your	bowl	size	affect	how	much	you	eat?
• Brian	Wansink studied	this	question	with	college	
students	over	several	days.	
• At	one	session,	the	17	participants	were	assigned	to	
receive	either	a	small	bowl	or	a	large	bowl	and	were	
allowed	to	take	as	many	M&Ms	as	they	would	like.
• At	the	following	session,	the	bowl	sizes	were	switched	for	
each	participant.



How	Many	M&Ms	Would	You	Like?

• What	are	the	observational	units?
• What	is	the	explanatory	variable?
• What	is	the	response	variable?
• Is	this	an	experiment	or	an	observational	
study?
• Will	the	resulting	data	be	paired?



How	Many	M&Ms	Would	You	Like?
The	hypotheses:
• H0:	µd =	0	
• The	long-run	mean	difference	in	number	of	
M&Ms	taken	(small	– large)	is	0.

• Ha:	µd< 0	
• The	long-run	mean	difference	in	number	of	
M&Ms	taken	(small	– large)	is	less	than	0.



How	Many	M&Ms	Would	You	Like?

• Here	are	the	results	of	a	simulation-based	test.
• The	p-value	is	quite	large	at	0.1220.



How	Many	M&Ms	Would	You	Like?
• Our	null	distribution	was	centered	at	zero	and	
fairly	bell-shaped.
• This	can	all	be	predicted	(along	with	the	variability)	
using	theory-based	methods.
• Theory-based	methods	should	be	valid	if	the	
population	distribution	of	differences	is	symmetric	
(we	can	guess	at	this	by	looking	at	the	sample	
distribution	of	differences)	or	our	sample	size	is	at	
least	20.
• Our	sample	size	was	only	17,	but	this	distribution	
of	differences	is	fairly	symmetric,	so	we	will	
proceed	with	a	theory-based	test.



Theory-based	test
• We	can	do	theory-based	methods	with	the	
applet	we	used	last	time	or	the	theory-based	
applet.
• With	the	applet	we	used	last	time,	we	need	to	
calculate	the	t-statistic:

𝑡 =
𝑥̅$

𝑠$ 𝑛�⁄
• With	the	theory-based	applet,	we	just	need	to	
enter	the	summary	statistics	and	use	a	test	for	a	
one	mean.
• This	kind	of	test	is	called	a	paired	t-test.



Theory-based	results



Conclusion
• The	theory-based	model	gives	slightly	different	results	than	
simulation,	but	we	come	to	the	same	conclusion.		We	do	
not	have	strong	evidence	that	the	bowl	size	affects	the	
number	of	M&Ms	taken.
• We	can	see	this	in	the	large	p-value	(0.1172)	and	the	
confidence	interval	that	included	zero	(-29.5,	7.8).
• The	confidence	interval	tells	us	that	we	are	95%	confident	
that	when	given	a	small	bowl,	people	will	take	somewhere	
between	29.5	fewer	M&Ms	to	7.8	more	M&Ms	on	average	
than	when	given	a	large	bowl.



Why	wasn't	the	difference	statistically	
significant?
• There	could	be	a	number	of	reasons	we	didn’t	get	
significant	results.
• Maybe	bowl	size	doesn’t	matter.
• Maybe	bowl	size	does	matter	and	the	difference	was	too	
small	to	detect	with	our	small	sample	size.
• Maybe	bowl	size	does	matter	with	some	foods,	like	pasta	
or	cereal,	but	not	with	a	snack	food	like	M&Ms.
• Other	ideas?



Strength	of	Evidence
• We	will	have	stronger	evidence	against	the	null	
(smaller	p-value)	when:
• The	sample	size	is	increased.
• The	variability	of	the	data	is	reduced.
• The	effect	size,	or	mean	difference,	is	farther	from	0.

• We	will	get	a	narrower	confidence	interval	when:
• The	sample	size	is	increased.
• The	variability	of	the	data	is	reduced.
• The	confidence	level	is	decreased.



3.	t	versus	normal	and	assumptions.	

Why	do	we	sometimes	use	the	t	distribution	and	
sometimes	the	normal	distribution	in	testing	and	
confidence	intervals?

The	central	limit	theorem	states	that,	for	any	iid
random	variables	X1,	...,	Xn with	mean	µ	and	SD	s,
(𝑥̅ - µ)	÷ (s/√n)	->	standard	normal,	as	n	->	∞.	

iid means	independent	and	identically	distributed,
like	draws	from	the	same	large	population.	
standard	means	mean	0	and	SD	1.



3.	t	versus	normal	and	assumptions.	

CLT:	(𝑥̅ - µ)	÷ (s/√n)	->	standard	normal.
If	Z	is	std.	normal,	then	P(|Z|	<	1.96)	=	95%.

So,	if	n	is	large,	then
P(|(𝑥̅ - µ)	÷ (s/√n)|	<	1.96)	~ 95%.

Mult.	by	(s/√n)	and	get	
P(|𝑥̅ - µ|	<	1.96	s/√n) ~ 95%.
P(µ	−	𝑥̅ is	in	the	range	0	+/- 1.96	s/√n)	~ 95%.
P(µ	is	in	the	range	𝑥̅ +/- 1.96	s/√n)	~ 95%.	

This	all	assumes	n	is	large.	What	if	n	is	small?	



3.	t	versus	normal	and	assumptions.	

CLT:	(𝑥̅ - µ)	÷ (s/√n)	->	standard	normal.

What	about	if	n	is	small?	
A	property	of	the	normal	distribution	is	that	the	
sum	of	independent	normals is	also	normal,	and	
from	this	it	follows	that	if	X1,	...,	Xn are	iid and	
normal,	then	(𝑥̅ - µ)	÷ (s/√n)	is	standard	normal.

So	again	P(µ	is	in	the	range	𝑥̅ +/- 1.96	s/√n)	= 95%.	
This	assumes	you	know	s.	What	if	s is	unknown?	



3.	t	versus	normal	and	assumptions.	

Suppose	X1,	...,	Xn are	iid with	mean	µ	and	SD	s.
CLT:	(𝑥̅ - µ)	÷ (s/√n)	~ std.	normal.
If	X1,	...,	Xn are	normal,	then	(𝑥̅ - µ)÷(s/√n)	is	std.	normal.

s is	the	SD	of	the	population	from	which	X1,	...,	Xn are	
drawn.	s	is	the	SD	of	the	sample,	X1,	...,	Xn .

Gosset (1908)	showed	that	replacing	s with	s,	
if	X1,	...,	Xn are	normal,	then	(𝑥̅ - µ)÷(s/√n)	is	t	distributed.	
So	we	need	the	multiplier	from	the	t	distribution.	



3.	t	versus	normal	and	assumptions.	

To	sum	up,
if	the	observations	are	iid and	n	is	large,	then	

P(µ	is	in	the	range	𝑥̅ +/- 1.96	s/√n)	~ 95%.	
If	the	observations	are	iid and	normal,	then

P(µ	is	in	the	range	𝑥̅ +/- 1.96	s/√n)	~ 95%.	
If	the	obs.	are	iid and	normal	and	s is	unknown,	then

P(µ	is	in	the	range	𝑥̅ +/- tmult s/√n)	~ 95%.
where	tmult is	the	multiplier	from	the	t	distribution.
This	multiplier	depends	on	n.	



3.	t	versus	normal	and	assumptions.	
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4.	When	to	use	which	formula.	
a.	1	sample	numerical	data,	iid observations,	want	a	95%	CI	for	µ.	
• If	n	is	large	and	s is	known,	use	𝑥̅ +/- 1.96	s/√n.	
• If	n	is	small,	draws	are	normal,	and	s is	known,	use	𝑥̅ +/- 1.96	s/√n.	
• If	n	is	small,	draws	are	normal,	and	s is	unknown,	use	𝑥̅ +/- tmult s/√n.
• If	n	is	large	and s is	unknown,	tmult ~	1.96,	so	we	can	use	𝑥̅ +/- 1.96	s/√n.	

n	≥	30	is	often	considered	large	enough	to	use	1.96.
In	practice,	we	typically	do	not	know	the	draws	are	normal,	but	if	the	
distribution	looks	roughly	symmetrical	without	enormous	outliers,	the	t	
formula	may	be	reasonable.	

b.	1	sample	binary	data,	iid observations,	want	a	95%	CI	for	π.

View	the	data	as	0	or	1,	so	sample	percentage	p	=	𝑥̅, and	
s	=	√[p(1-p)],	s = √[p(1-p)].	



4.	When	to	use	which	formula.	
a.	1	sample	numerical	data,	iid observations,	want	a	95%	CI	for	µ.	
• If	n	is	large	and	s is	known,	use	𝑥̅ +/- 1.96	s/√n.	
• If	n	is	small,	draws	are	normal,	and	s is	known,	use	𝑥̅ +/- 1.96	s/√n.	
• If	n	is	small,	draws	~	normal,	and	s is	unknown,	use	𝑥̅ +/- tmult s/√n.
• If	n	is	large	and s is	unknown,	tmult ~	1.96,	so	we	can	use	𝑥̅ +/- 1.96	s/√n.	

b.	1	sample	binary	data,		iid observations,	want	a	95%	CI	for	π.

View	the	data	as	0	or	1,	so	sample	percentage	p	=	𝑥̅, and	
s	=	√[p(1-p)],	s = √[p(1-p)].
If	n	is	large	and	π	is	unknown,	use	𝑥̅ +/- 1.96	s/√n.	

Here	large	n	means	≥	10	of	each	type	in	the	sample.	



4.	When	to	use	which	formula.	
What	if	n	is	small	and	the	draws	are	not	normal?	
That	is	a	situation	outside	the	scope	of	this	course,	but	some	
techniques	have	been	developed,	such	as	the	bootstrap,	which	
are	sometimes	useful	in	these	situations.	



4.	When	to	use	which	formula.	
c.	Numerical	data	from	2	samples,	iid observations,	want	a	95%	
CI	for	µ1 - µ2.	

If	n	is	large	and	s is	unknown,	use	𝑥1@ - 𝑥̅2+/- 1.96	
ABC

DB
+ ACC

DC

�
.	

As	with	one	sample,	if	s1 is	known,	replace	s1 with	s1,	and	the	same	for	
s2.	And	as	with	one	sample,	if	s1 and	s2 are	unknown,	the	sample	sizes	
are	small,	and	the	distributions	are	roughly	normal,	then	use	tmult instead	
of	1.96.	If	the	sample	sizes	are	small,	the	distributions	are	normal,	and	s1
and	s2 are	known,	then	use	1.96.	

d.	Binary	data	from	2	samples,	iid observations,	want	a	95%	CI	
for	π1 - π2.	
same	as	in	c	above,with	p1 = 𝑥1@ ,	s1 =	√[p1	(1-p1)],	s1 = √[p1	(1-p1)].
Large	for	binary	data	means	sample	has	≥	10	of	each	type.		



4.	When	to	use	which	formula.	
e.	Matched	pairs	data,	iid observations,	want	a	95%	CI	for	µ.	
Look	at	differences	(score	with	treatment	minus	score	with	
control)	and	treat	differences	as	ordinary	numerical	data	
according	to	parts	a	or	b.		
• If	n	is	large	and	s is	known,	use	𝑥̅ +/- 1.96	s/√n.	
• If	n	is	small,	draws	are	normal,	and	s is	known,	use	𝑥̅ +/- 1.96	s/√n.	
• If	n	is	small,	draws	are	normal,	and	s is	unknown,	use	𝑥̅ +/- tmult s/√n.
• If	n	is	large	and s is	unknown,	tmult ~	1.96,	so	we	can	use	𝑥̅ +/- 1.96	s/√n.	

n	≥	30	is	often	considered	large	enough	to	use	1.96.
In	practice,	we	typically	do	not	know	the	draws	are	normal,	but	if	the	
distribution	looks	roughly	symmetrical	without	enormous	outliers,	the	t	
formula	may	be	reasonable.	


