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1.	Confidence	intervals	and	dogs	
sniffing	cancer,	continued.	

• If	we	increase	the	confidence	level	from	95%	to	
99%,	what	will	happen	to	the	width	of	the	
confidence	interval?	



• Since	the	confidence	level	gives	an	indication	of	how	sure	
we	are	that	we	captured	the	actual	value	of	the	
parameter	in	our	interval,	 to	be	more	sure	our	
interval	should	be	wider.	

• How	would	we	obtain	a	wider	interval	of	plausible	values	
to	represent	a	99%	confidence	level?
– Use	a	1%	significance	level in	the	tests.
– Values	that	correspond	to	2-sided	p-values	larger	than	
0.01	should	now	be	in	our	interval.	

Why	2-sided?	CIs	always	correspond	to	2-sided	tests.	We	
want	a	range	on	both	sides	of	the	observed	sample	
mean	or	sample	proportion,	consisting	of	all	plausible	
population	means.	Therefore,	for	a	95%	CI,	we	look	at	all	
possible	population	means	and	ask	if	they	are	consistent	
with	the	data,	in	terms	of	whether	we'd	reject	the	null	
hypothesis	in	a	2-sided	test	at	the	5%	level.			



1.96	SE and	Theory-Based	
Confidence	Intervals	for	a	Single	

Proportion
Section	3.2



Introduction
• Section	3.1	found	confidence	intervals	by	doing	
repeated	tests	of	significance	(changing	the	
value	in	the	null	hypothesis)	to	find	a	range	of	
values	that	were	plausible	for	the	population	
parameter	(long	run	probability	or	population	
proportion).

• This	is	a	very	tedious	way	to	construct	a	
confidence	interval.

• We	will	now	look	at	two	other	ways	to	construct	
confidence	intervals	[1.96	SE	and	Theory-Based].



The	Affordable	
Care	Act
Example	3.2



The	Affordable	Care	Act

• A	November	2013	Gallup	poll	based	on	a	
random	sample	of	1,034	adults	asked	whether	
the	Affordable	Care	Act	had	affected	the	
respondents	or	their	family.	

• 69%	of	the	sample responded	that	the	act	had	
no	effect.	 (This	number	went	down	to	59%	in	
May	2014	and	54%	in	Oct	2014.)

• What	can	we	say	about	the	proportion	of	all	
adult	Americans	that	would	say	the	act	had	no	
effect?



The	Affordable	Care	Act

• We	could	construct	a	confidence	interval	just	
like	we	did	last	time.

• We	find	we	are	95%	confident	that	the	
proportion	of	all	adult	Americans	that	felt	
unaffected	by	the	ACA	is	between	0.661	and	
0.717.

Probability	
under	null 0.659 0.660 0.661 ………… 0.717 0.718 0.719

Two-sided	p-
value 0.0388 0.0453 0.0514 ………… 0.0517 0.0458 0.0365

Plausible	
value	(0.05)? No No Yes ………… Yes No No



Short	cut?

• The	method	we	used	last	time	to	find	our	
interval	of	plausible	values	for	the	parameter	is	
tedious	and	time	consuming.	

• Might	there	be	a	short	cut?
• Our	sample	proportion	should	be	the	middle	of	
our	confidence	interval.

• We	just	need	a	way	to	find	out	how	wide	it	
should	be.



1.96SE	method
The book calls it the 2 SD method but we will use 1.96 instead of  2 and call it the SE instead of  SD. 

• When	a	statistic	is	normally	distributed,	about	
95%	of	the	values	fall	within	1.96	standard	
deviations	of	its	mean	with	the	other	5%	
outside	this	region



1.96	SE	method

• So	we	could	say	that	a	parameter	value	is	
plausible	if	it	is	within	1.96	standard	errors		
from	our	estimate	of	the	parameter,	our	
observed	sample	statistic.

• This	gives	us	the	simple	formula	for	a	95%	
confidence	interval	of

𝒑" ± 𝟏. 𝟗𝟔	𝑺𝑬



Where	do	we	get	the	SE?

• Null	distribution	for	ACA	with	π =	0.5.



1.96	SE	method

• Using	the	1.96	SE	method	on	our	ACA	data	we	
get	a	95%	confidence	interval

0.69 ± 1.96(0.016)
0.69 ± 0.031

• The	± part,	like	0.031	in	the	above,	is	called	the	
margin	of	error.

• The	interval	can	also	be	written	as	we	did	
before	using	just	the	endpoints;	(0.659,	0.721)

• This	is	approximately	what	we	got	with	our	
range	of	plausible	values	method.	



Theory-Based	Methods

• The	1.96	SE	method	only	gives	us	a	95%	
confidence	interval

• If	we	want	a	different	level	of	confidence,	we	
can	use	the	range	of	plausible	values	(hard)	
or	theory-based	methods	(easy).

• The	theory-based	method	is	valid	provided	
there	are	at	least	10	successes	and	10	
failures	in	your	sample.	



Theory-Based	Methods

• With	the	theory-based	method	we	use	the	
normal	distribution	to	approximate	our	
simulated	null	distribution.

• This	gives	us	a	formula	for	confidence	intervals.

𝑝	"+multiplier × 𝑝̂ 1 − 𝑝̂ /𝑛� .
For	a	95%	CI,	the	book	suggests	a	multiplier	of	2.	
Actually	it	should	be	1.96,	not	2.

qnorm(.975)	=	1.96.	
qnorm(.995)	=	2.58.	



• Let’s	check	out	this	example	using	the	theory-
based	method.

• Remember	69%	of	1034	respondents	were	not	
affected.		

𝑝	"+multiplier × 𝑝̂ 1 − 𝑝̂ /𝑛�

=	69%	+ 1.96	x	 .69(1 − .69)/1034�

=	69%	+ 2.82%.	
With	2	instead	of	1.96	it	would	be	69%	+ 2.88%.



1.96	SE and	Theory-Based	
Confidence	Intervals	for	a	Single	

Mean
Section	3.3



Used	Cars

Example	3.3



Used	Cars

The	following	histogram	displays	data	for	the	selling	
price	of	102	Honda	Civics	that	were	listed	for	sale	on	
the	Internet	in	July	2006.	



Used	Cars
• The	average	of	this	sample	is	𝑥̅ =	$13,292	with	a	
standard	deviation	of	s =	$4,535.	

• What	can	we	say	about	μ,	the	average	price	of	all	
used	Honda	Civics?



Used	Cars
• While	we	should	be	cautious	about	our	sample	
being	representative	of	the	population,	let’s	
treat	it	as	such.

• μ	might	not	equal	$13,292	(the	sample	mean),	
but	it	should	be	close.

• To	determine	how	close,	we	can	construct	a	
confidence	interval.



Confidence	Intervals
• Remember	the	basic	form	of	a	confidence	interval	
is:		

statistic	± multiplier	× SE

The	book	sometimes	uses	the	term	SD	of	statistic	
instead	of	Standard	Error	(SE).

• In	our	case,	the	statistic	is	𝑥̅ and	for	a	95%	
confidence	interval	the	multiplier	is	1.96	so	we	
write	our	95%	confidence	interval	as:	

𝑥̅ ± 1.96(SE)



Confidence	Intervals
• It	is	important	to	note	that	the	SE,	i.e.	the	SD	of	
𝑥̅,	and	the	SD	of	our	sample	(s =	$4,535)	are	not	the	
same.

• There	is	more	variability	in	the	data,	the	car-to-car	
variability,	than	in	sample	means.

• The	SE	for	a	sample	mean	is	𝑠 𝑛�⁄ . This	means	we	
can	write	a	1.96	SE	confidence	interval	for	the	
sample	mean	as:

𝑥̅ ± 1.96	×
𝑠
𝑛�
	

• This	method	will	be	valid	when	the	null	distribution	
is	bell-shaped.



Summary	Statistics

• A	theory-based	confidence	interval	is	quite	similar	
except	it	uses	a	multiplier	that	is	based	on	a	t-
distribution	and	is	dependent	on	the	sample	size	and	
confidence	level.	

• For	theory-based	confidence	interval	for	a	
population	mean	(called	a	one-sample	t-interval)	to	
be	valid,	the	observations	should	be	approximately	
independent,	and	either	the	population	should	be	
normal	or	n	should	be	large.	Check	the	sample	
distribution	for	skew	and	asymmetry.	



Confidence	Intervals

• We	find	our	95%	CI	for	the	mean	price	of	all	used	
Honda	Civics	is	from	$12,411.90	to	$14,172.10.	

• Notice	that	this	is	a	much	narrower	range	than	the	
prices	of	all	used	Civics.

• For	a	99%	confidence	interval,	it	would	be	wider.	The	
multiplier	would	be	2.58	instead	of	1.96.		



Factors	that	Affect	the	Width	of	a	
Confidence	Interval

Section	3.4



Factors	Affecting
Confidence	Interval	Widths

• Level	of	confidence	(e.g.,	90%	vs.	95%)
– As	we	increase	the	confidence	level,	we	increase	the	
width	of	the	interval.

• Sample	size	
– As	sample	size	increases,	variability	decreases	and	
hence	the	standard	error	will	be	smaller.		This	will	
result	in	a	narrower	interval.

• Sample	standard	deviation
– A	larger	standard	deviation,	s,	will	yield	a	wider	
interval.

– For	sample	proportions,	wider	intervals	when	𝑝̂ is	
closer	to	0.5.	 s	=	√	[𝑝̂ (1-𝑝̂)].



Level	of	Confidence

• If	we	have	a	wider	interval,	we	should	be	more	
confident	that	we	have	captured	the	population	
proportion	or	population	mean.

• We	could	see	this	with	repeated	tests	of	
significance.	
– A	higher	confidence	level	corresponds	to	a	
lower	significance	level,	and	one	must	go	
farther	to	the	left	and	farther	to	the	right	in	
our	tables	to	get	our	confidence	interval.	



Sample	Size

• We	know	as	sample	size	increases,	the	variability	
(and	thus	standard	deviation)	in	our	null	distribution	
decreases

n =	90		(SD	=	0.054) n =	361		(SD	=	0.026) n =	1444		(SD	=	0.013)
Sample	size 90 361 1444

SD	of		null	distr. 0.053 0.027 0.013

Margin of error 2	x	SD	=	0.106 2	× SD	=	0.054 2	× SD	=	0.026

Confidence	interval (0.091,	0.303) (0.143,	0.251) (0.171,	0.223)



Sample	Size
• (With	everything	else	staying	the	same)	
increasing	the	sample	size	will	make	a	
confidence	interval	narrower.

Notice:
• The	observed	sample	proportion	is	the	
midpoint.		(that	won’t	change)

• Margin	of	error	is	a	multiple	of	the	standard	
deviation so	as	the	standard	deviation	
decreases,	so	will	the	margin	of	error.



Value	of		𝑝?
(or	the	value	used	for	π under	the	null)

• As	the	value	that	is	used	under	the	null	gets	farther	
away	from	0.5,	the	standard	deviation	of	the	null	
distribution	decreases.	

• When	this	standard	deviation	is	used	in	the	1.96	SE	
method,	the	interval	gets	gradually	narrower.



Standard	Deviation
• Suppose	we	are	taking	repeated	samples	of	a	population.	
• How	do	we	estimate	what	the	standard	deviation	of	the	

sample	mean	will	be?	This	is	the	SE,	𝑠 𝑛�⁄ .

Means	of	samples	of	size	10.



Standard	Deviation
• The	SE,	or	SD	of	the	null	distribution,	is	approximated	by	
𝑠 𝑛�⁄ .

• Remember	that	1.96(𝑠 𝑛)�⁄ is	approximately	the	margin	of	
error	for	a	95%	confidence	interval	for	the	mean,	so	as	the	
standard	deviation	of	the	data	(s)	increases	so	does	the	width	
of	the	confidence	interval.

• Intuitively	this	should	make	sense,	as	more	variability	in	the	
data	should	be	reflected	by	a	wider	confidence	interval.		



Formulas	for	Theory-Based	Confidence	
Intervals

𝑝̂ +𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟× G? HIG?
J

�
								 𝑥̅ ± 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟× K

J�

• The	width	of	the	confidence	interval	increases	
as	level	of	confidence	increases	(multiplier)

• The	width	of	the	confidence	interval	decreases	
as	the	sample	size	increases

• The	value	𝑝̂	also	has	a	more	subtle	effect.		The	
farther	it	is	from	0.5	the	smaller	the	width.

• The	width	of	the	confidence	interval	increases	
as	the	sample	standard	deviation	increases.



What	does	95%	confidence	mean?

• If	we	repeatedly	sampled	from	a	population	and	
constructed	95%	confidence	intervals,	95%	of	our	
intervals	will	contain	the	population	parameter.

• Notice	the	interval	is	the	random	event	here.		



What	does	95%	confidence	mean?

• Suppose	a	95%	confidence	interval	for	a	mean	is	2.5	to	4.3.	
We	would	say	we	are	95%	confident	that	the	population	
mean	is	between	2.5	and	4.3.
– Does	that	mean	that	95%	of	the	data	fall	between	2.5	and	
4.3?			
• No

– Does	that	mean	that	in	repeated	sampling,	95%	of	the	
sample	means	will	fall	between	2.5	and	4.3?
• No

– Does	that	mean	that	there	is	a	95%	chance	the	population	
mean	is	between	2.5	and	4.3?
• Not	quite	but	close.	



What	does	95%	confidence	mean?

• What	does	it	mean	when	we	say	we	are	95%	confident	that	
the	population	mean	is	between	2.5	and	4.3?
– It	means	that	if	we	repeated	this	process	(taking	random	
samples	of	the	same	size	from	the	same	population	and	
computing	95%	confidence	intervals	for	the	population	
mean)	repeatedly,	95%	of	the	confidence	intervals	we	find	
would	contain	the	population	mean.

– P(confidence	interval	contains	µ)	=	95%.	



4.	Cautions	When	Conducting	
Inference,	and	the controversial	

“Bradley	Effect”
Example	3.5A



• Tom	Bradley,	long-time	mayor	of	Los	Angeles,	ran	as	
the	Democratic	Party’s	candidate	for	Governor	of	
California	in	1982.
– Political	polls	of	likely	voters	showed	Bradley	with	
a	significant	lead	in	the	days	before	the	election

– Exit	polls	favored	Bradley	significantly
–Many	media	outlets	projected	Bradley	as	the	
winner

• Bradley	narrowly	lost	the	overall	race

The	“Bradley	Effect”



• After	the	election,	research	suggested	a	smaller	
percentage	of	white	voters	had	voted	for	Bradley	
than	polls	predicted

• A	very	large	proportion	of	undecided	voters	voted	for	
Deukmejian.	

The	“Bradley	Effect”



• What	are	explanations	for	this	discrepancy?
– Likely	voters	answered	the	questions	with	a	“social	
desirability	bias”

– They	answered	polling	questions	the	way	they	
thought	the	interviewer	wanted	them	to.

• Discrepancies	in	polling	and	elections	has	since	been	
called	the	“Bradley	effect.”	

• It	has	been	cited	in	numerous	races	and	has	included	
gender	and	other	stances	on	political	issues.	

The	“Bradley	Effect”



• In	the	2008	New	Hampshire	democratic	primary		
– Obama	received	36.45%	of	the	primary	votes
– Clinton	received	39.09%.	

• This	result	shocked	many	since	Obama	seemed	to	hold	a	lead	
over	Clinton.	

• USA	Today/Gallup	poll	days	before	the	primary,	n =	778.	
– 41%	of	likely	voters	said	they	would	vote	for	Obama
– 28%	of	likely	voters	said	they	would	vote	for	Clinton

• How	unlikely	are	the	Clinton	and	Obama	poll	numbers	given	
that	39.09%	and	36.45%	of	actual	primary	voters	voted	for	
Clinton	and	Obama?

Clinton	vs.	Obama



• We’re	assuming	that	the	778	people	in	the	survey	are	a	good	
representation	of	those	who	will	vote.	
– The	778	people	aren’t	a	simple	random	sample.	
– Need	to	have	a	list	of	all	voters	in	the	election,	and	
randomly	choose	some.	

• Pollsters	used	random	digit	dialing	and	asked	if	respondents	
planned	to	vote	in	the	Democratic	primary.	
– 9%	(a	total	of	778)	agreed	to	participate.	
– 319	said	that	they	planned	to	vote	for	Obama	and	218	for	
Clinton.

Clinton	vs.	Obama



Suppose	we	make	the	following	assumptions:
1. Random	digit	dialing	is	a	reasonable	way	to	get	a	

sample	of	likely	voters.
2. The	9%	who	participated	are	like	the	91%	who	

didn’t.
3. Voters	who	said	they	planned	to	vote actually	

voted	in	the	primary.
4. Answers	to	who	they	say	they	will	vote	for	match	

who	they	actually	vote	for.	
Then	we	expect	the	sample	proportion	to	agree	with	
the	final	vote	proportion.	

Clinton	vs.	Obama



• One	question	is	whether	the	proportion	of	likely	voters	
who	say	they	will	vote	for	Obama	is	the	same	as	the	
proportion	of	likely	voters	who	actually	vote	for	Obama	
(observed	on	primary	day	to	be	0.3645).		

• What	would	the	Bradley	Effect	do	in	this	case?
– The	proportion	who	say	they	will	vote	for	Obama	would	be	
larger	than	0.3645.	

Clinton	vs.	Obama



• State	the	Null	and	Alternative	hypotheses
– Null:	The	proportion	of	likely	voters	who	would	
claim	to	vote	for	Obama	is	0.3645.

– Alternative:	The	proportion	of	likely	voters	who	
would	claim	to	vote	for	Obama	is	higher	than	
0.3645.

Clinton	vs.	Obama



• Simulation	of	778	individuals	randomly	chosen	
from	a	population	where	36.45%	vote	for	
Obama	

• The	chance	of	getting	a	sample	proportion	of	
0.41	successes	or	higher	is	very	small.	0.004.	

Clinton	vs.	Obama



• Convincing	evidence	that	the	discrepancy	between	
what	people	said	and	how	they	voted	is	not	
explained	by	random	chance	alone.	

• At	least	one	of	the	4	model	assumptions	is	not	true.

Clinton	vs.	Obama



1. Random	digit	dialing	is	a	reasonable	way	to	get	a	
sample	of	likely	voters
– Roughly	equivalent	to	a	SRS	of	New	Hampshire	
residents	who	have	a	landline	or	cell	phone

– Slight	over-representation	of	people	with	more	
than	one	phone

Clinton	vs.	Obama



2. The	9%	of	individuals	reached	by	phone	who	
agree	to	participate	are	like	the	91%	who	didn’t
– 91%	includes	people	who	didn’t	answer	their	
phone	and	who	didn’t	participate	

– Assumes	that	respondents	are	like	non-
respondents.	

– The	response	rate was	very	low,	but	typical	for	
phone	polls	

– No	guarantee	that	the	9%	are	representative.

Clinton	vs.	Obama



3. Voters	who	said	they	plan	to	vote	in	the	
Democratic	primary	will	vote	in	the	primary
– There is	no	guarantee.		

4. Respondent	answers	to	who	they	say	they	will	
vote	for	matches	who	they	actually	vote	for.
There is	no	guarantee.	

Clinton	vs.	Obama



Because	of	the	wide	disparity	between	polls	and	the	
primary,	an	independent	investigation	was	done	with	
the	following	conclusions:
1. People	changed	their	opinion	at	the	last	minute
2. People	in	favor	of	Clinton	were	more	likely	not	to	

respond	
3. The	Bradley	Effect
4. Clinton	was	listed	before	Obama	on	every	ballot
These	are	examples	of	nonrandom	errors.	

Clinton	vs.	Obama



• Statistically	significant	means	that	the	results	are	
unlikely	to	happen	by	chance	alone.

• Practically	important	means	that	the	difference	is	
large	enough	to	matter	in	the	real	world.

5.	Statistical	and	Practical	
significance.	



Cautions

• Practical	importance	is	context	dependent	and	
somewhat	subjective.

• Well	designed	studies	try	to	equate	statistical	
significance	with	practical	importance,	but	not	
always.

• Look	at	the	sample	size.
– If	very	large,	expect	significant	results.
– If	very	small,	don’t	expect	significant	results.	(A	lot	
of	missed	opportunities---type	II	errors.)



Longevity	example.

According	to	data	from	the	WHO	(2014)	and	World	
Cancer	Report	(2014),	the	average	number	of	cigarettes	
smoked	per	adult	per	day	in	the	U.S.	is	2.967,	and	in	
Latvia	it	is	2.853.
The	sample	sizes	are	huge,	so	even	this	little	difference	
is	stat.	sig.	(In	the	U.S.,	the	National	Health	Interview	
Survey	has	n	>	87000).	
If	you	do	not	like	cigarette	smoke	around	you,	should	
you	move	to	Latvia?	
The	difference	is	statistically	significant,	but	not	
practically	significant	for	most	purposes.	



Causation.	

Chapter	4



• Previously	research	questions	focused	on	one proportion		
– What	proportion	of	the	time	did	Marine	choose	the	right	
bag?	

• We	will	now	start	to	focus	on	research	questions	comparing	
two groups.		
– Are	smokers	more	likely	than	nonsmokers	to	have	lung	
cancer?	

– Are	children	who	used	night	lights	as	infants	more	likely	
to	need	glasses	than	those	who	didn’t	use	night	lights?



• Typically	we	observe	two	groups	and	we	also	have	
two	variables	(like	smoking	and	lung	cancer).

• So	with	these	comparisons,	we	will:
– determine	when	there	is	an	association	
between	our	two	variables.

– discuss	when	we	can	conclude	the	outcome	of	
one	variable	causes	an	outcome	of	the	other.



6.	Observational	studies	and	
confounding.
Types	of	Variables
• When	two	variables	are	involved	in	a	study,	they	
are	often	classified	as	explanatory	and	response	

• Explanatory	variable (Independent,	Predictor)
– The	variable	we	think	may	be	causing	or	
explaining	or	used	to	predict	a	change	in	the	
response	variable.	(Many	times,	this	is	the	
variable	the	researchers	are	manipulating.)

• Response	variable (Dependent)
– The	variable	we	think	may	be	being	impacted	
or	changed	by	the	explanatory	variable.	



Roles	of	Variables

• Choose	the	explanatory	and	response	variable:
– Smoking	and	lung	cancer	
– Heart	disease and	diet
– Hair	color	and	eye	color

• Sometimes	there	is	a	clear	distinction	between	
explanatory	and	response	variables	and	
sometimes	there	isn’t.



Observational	Studies

• The	norovirus	study	is	an	example	of	an	
observational	study.

• In	observational	studies,	researchers	observe and	
measure	the	explanatory	variable	but	do	not	set	
its	value	for	each	subject.	

• Examples:	
– A	significantly	higher	proportion	of	individuals	
with	lung	cancer	smoked	compared	to	same-
age	individuals	who	don’t	have	lung	cancer	

– College	students	who	spend	more	time	on	
Facebook	tend	to	have	lower	GPAs



Observational	Studies

Do	these	studies	prove	that	smoking	causes lung	
cancer	or	Facebook	causes lower	GPAs?	
• Many	people	who	see	these	types	of	studies	think	
so…	

• It	depends	on	the	study	design



Night	Lights	and	Nearsightedness

Example	4.1



Nightlights	and	Near-Sightedness

• Near-sightedness	often	develops	in	childhood
• Recent	studies	looked	to	see	if	there	is	an	association	

between	near-sightedness	and	night	light	use	with	infants
• Researchers	interviewed	parents	of	479	children	who	

were	outpatients	in	a	pediatric	ophthalmology	clinic
• Asked	whether	the	child	slept	with	the	room	light	on,	with	

a	night	light	on,	or	in	darkness	before	age	2
• Children	were	also	separated	into	two	groups:	near-

sighted	or	not	near-sighted	based	on	the	child’s	recent	eye	
examination



Night-lights	and	near-sightedness

Darkness Night	Light Room	Light Total
Near-sighted 18 78 41 137
Not	near-sighted 154 154 34 342
Total 172 232 75 479

The	largest	group	of	near-sighted	kids	slept	in	rooms	
with	night	lights.	It	might	be	better	to	look	at	the	
data	in	terms	of	proportions.
Conditional	proportions	
18/172	≈	0.105 78/232	≈	0.336 41/75	≈	0.547



Night	lights	and	near-sightedness

Darkness Night	Light Room	Light Total
Near-sighted 10.5%		

18/172
33.6%
78/232

54.7%
41/75

137

Not	near-sighted 154 154 34 342
Total 172 232 75 479

• Notice	that	as	the	light	level	increases,	the	percentage	of	
near-sighted	children	also	increases.	

• We	say	there	is	an	association between	near-sightedness	
and	night	lights.

• Two	variables	are	associated if	the	values	of	one	variable	
provide	information	(help	you	predict)	the	values	of	the	
other	variable.



Night	lights	and	near-sightedness

• While	there	is	an	association	between	the	
lighting	condition	nearsightedness,	can	we	
claim	that	night	lights	and	room	lights	caused
the	increase	in	near-sightedness?

• Might	there	be	other	reasons	for	this	
association?



Night	lights	and	near-sightedness

• Could	parents’	eyesight	be	another	explanation?
–Maybe	parents	with	poor	eyesight	tend	to	use	
more	light	to	make	it	easier	to	navigate	the	
room	at	night	and	parents	with	poor	eyesight	
also	tend	to	have	children	with	poor	eyesight.	

– Now	we	have	a	third	variable	of	parents’	
eyesight	

– Parents’	eyesight	is	considered	a	confounding	
variable.

– Other	possible	confounders?	Wealth?	Books?	
Computers?	



Confounding	Variables
• A	confounding	variable	is	associated	with	both	the	
explanatory	variable	and	the	response	variable.

• We	say	it	is	confounding	because	its	effects	on	the	
response	cannot	be	separated	from	those	of	the	
explanatory	variable.

• Because	of	this,	we	can’t	draw	cause	and	effect	
conclusions	when	confounding	variables	are	
present.



Confounding	Variables
• Since	confounding	variables	can	be	present	in	
observational	studies,	we	can’t	conclude	causation	
from	these	kinds	of	studies.

• This	doesn’t	mean	the	explanatory	variable	isn’t	
influencing	the	response	variable.	Association	may	
not	imply	causation,	but	can	be	a	pretty	big	hint.


