
Stat 13, Intro. to Statistical Methods for the Life and Health Sciences.

1. Breastfeeding and intelligence example continued. 
2. Paired data, studying with music, running bases, 
3. When to use which formula. 
4. Multiple testing and publication bias. 

Read through ch7. 
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Breastfeeding	and	Intelligence
Group Sample	size, n Sample	mean Sample SD
Breastfed 237 105.3 14.5
Not	BF 85 100.9 14.0



T-statistic
• If	we	can	assume	the	draws	are	iid and	the	populations	are	
normal,	with	unknown	sds,	then	t-statistic	is	used.

• It	is	the	number	of	standard	deviations	our	statistic	is	above	
or	below	the	mean	under	the	null	hypothesis.	

• 𝑡 = #$%$&#$&'()*+,$)-#&.-/	1%23-	
45 = 6̅8(6̅9(:

;8
9

<8
=;9

9

<9

�

• Here,	t	=	 ?:@.B	(?::.C

(
8E.F9

9GH 	=	
� 8E.I9

JF )

= 2.46.	p-value	~	1.4%.	

• 2*pnorm(2.46,lower=F)]	=	1.39%,	
2*pt(2.46,lower=F,df=320)	=	1.44%.		df =	n1+n2-2	here.	



Breastfeeding	and	Intelligence

Meaning	of	the	p-value:
• If	breastfeeding	were	not	related	to	GCI	at	age	4,	
then	the	probability	of	observing	a	difference	of	
4.4	or	more	or	-4.4	or	less	just	by	chance	is	
about	1.4%.	

• A	95%	CI	can	also	be	obtained	using	the	t-

distribution.	The	SE	is	 (?O.@
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So	the	margin	of	error	is	multiplier	x	SE.	



Breastfeeding	and	Intelligence

• The	SE	is	 (?O.@
9
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) =	1.79.	The	margin	of	

error	is	multiplier	x	SE.	
• The	multiplier	should	technically	be	obtained	
using	the	t	distribution,	but	for	large	sample	
sizes	you	get	almost	the	same	multiplier	with	t	
and	normal.	Use	1.96	for	a	95%	CI	to	get
4.40	+/- 1.96	x	1.79	=	4.40	+/- 3.51	=	(0.89,	7.91).

• The	book	uses	2	instead	of	1.96,	and	the	applet	
uses	1.9756	from	the	t-distribution.	Just	use	1.96	
for	this	class.



Breastfeeding	and	Intelligence

• We	have	strong	evidence	against	the	null	
hypothesis	and	can	conclude	the	association	
between	breastfeeding	and	intelligence here	is	
statistically	significant.	

• Breastfed	babies	have	statistically	significantly		
higher	average	GCI	scores	at	age	4.

• We	can	see	this	in	both	the	small	p-value	(0.015)	
and	the	confidence	interval	that	says	the	mean	
GCI	for	breastfed	babies	is	0.89	to	7.91	points	
higher	than	that	for	non-breastfed	babies.



Breastfeeding	and	Intelligence

• Can	you	conclude	that	breastfeeding	improves	average	
GCI	at	age	4?	
• No.		The	study	was	not	a	randomized	experiment.
• We	cannot	conclude	a	cause-and-effect	relationship.	

• There	might	be	alternative	explanations	for	the	
significant	difference	in	average	GCI	values.

• What	might	some	confounding	factors	be?



Breastfeeding	and	Intelligence

• Can	you	conclude	that	breastfeeding	improves	average	
GCI	at	age	4?	
• No.		The	study	was	not	a	randomized	experiment.
• We	cannot	conclude	a	cause-and-effect	relationship.	

• There	might	be	alternative	explanations	for	the	
significant	difference	in	average	GCI	values.
• Maybe	better	educated	mothers	are	more	likely	to	
breastfeed	their	children	

• Maybe	mothers	that	breastfeed	spend	more	time	with	
their	children	and	interact	with	them	more.	

• Some	mothers	who	do	not	breastfeed	are	less	healthy	
or	their	babies	have	weaker	appetites	and	this	might	
slow	down	development	in	general.	



Breastfeeding	and	Intelligence

• Could	you	design	a	study	that	allows	drawing	a	
cause-and-effect	conclusion?	
• We	would	have	to	run	an	experiment	using	
random	assignment	to	determine	which	
mothers	breastfeed	and	which	would	not.		(It	
would	be	impossible	to	double-blind.)

• Random	assignment	roughly	balances	out	all	
other	variables.	

• Is	it	feasible/ethical	to	conduct	such	a	study?



Strength	of	Evidence
• We	already	know:

• As	sample	size	increases,	the	strength	of	
evidence	increases.		

• Just	as	with	proportions,	as	the	effect	size	
increases,	the	strength	of	evidence	increases.



More	Strength	of	Evidence
• If	the	effect	size	is	held	constant,	i.e.	the	means	are	the	same	
distance	apart,	but	the	standard	deviations	decrease,	then	the	
strength	of	evidence	increases.		

• Which	gives	stronger	evidence	against	the	null?

• Smaller SDs lead to stronger evidence against the null. 



Effects	on	Width	of	Confidence	Intervals

• Just	as	before:
• As	sample	size	increases,	confidence	interval	widths	
tend	to	decrease.

• As	confidence	level	increases,	confidence	interval	
widths	increase.

• The	effect	size,	i.e.	the	difference	in	means,	will	not	
affect	the	width	(margin	of	error)	but	will	affect	the	
center	of	the	CI.

• As	we	saw	with	a	single	mean,	as	the	SDs	of	the	
samples	increase,	the	width	of	the	confidence	
interval	will	increase.	



Paired	Data.
Chapter	7



Introduction
• The	paired	data	sets	in	chapter	7	have	one	pair of	
quantitative	response	values	for	each	obs.	unit.	

• This	allows	for	a	comparison	where	the	other	
possible	confounders	are	as	similar	as	possible	
between	the	two	groups.	
• The	big	idea	is	with	paired	data,	just	view	the	differences
between	each	pair	of	scores	as	your	data.	Now	you	have	
one	variable	and	can	just	analyze	it	using	the	methods	we	
already	know.	

• When	you	analyze	paired	data	this	way,	person	to	person	
variability	gets	removed	so	you	get	more	power	when	
testing,	smaller	p-values	and	smaller	margins	of	error.	



Paring	and	Observational	Studies

You	can	often	do	matched	pairs	in	observational	
studies,	when	you	know	the	potential	
confounder	ahead	of	time.	
If	you	are	studying	whether	the	portacaval shunt	
decreases	the	risk	of	heart	attack,	you	could	
match	each	patient	getting	the	shunt	with	a	
patient	of	similar	health	not	getting	the	shunt.	
If	you	are	studying	whether	lefthandedness causes	
death,	and	you	want	to	account	for	age	in	the	
population,	you	could	match	each	leftie	with	a	
rightie of	the	same	age,	and	compare	their	ages	at	
death.	



Simulation-Based	
Approach	for	Analyzing	
Paired	Data,	and	rounding	
first	base	example.	
Section	7.2



Rounding	First	Base
Example	7.2



Rounding	First	Base
• Imagine	you’ve	hit	a	line	
drive	and	are	trying	to	
reach	second	base.

• Does	the	path	that	you	
take	to	round	first	base	
make	much	of	a	
difference?	
• Narrow	angle
• Wide	angle

Narrow

Wide



Rounding	First	Base

• Woodward	(1970)	investigated	these	base	running	
strategies.	

• He	timed	22	different	runners	from	a	spot	35	feet	past	
home	to	a	spot	15	feet	before	second.		

• Each	runner	used	each	strategy	(paired	design),	with	a	
rest	in	between.	

• He	used	random	assignment	to	decide	which	path	each	
runner	should	do	first.

• This	paired	design	controls	for	the	runner-to-runner	
variability.



First	Base
• What	are	the	observational	units	in	this	study?

• The	runners	(22	total)
• What	variables	are	recorded?	What	are	their	types	and	
roles?	
• Explanatory	variable:	base	running	method:	wide	or	
narrow	angle	(categorical)

• Response	variable:	time	from	home	plate	to	second	
base	(quantitative)

• Is	this	an	observational	study	or	an	experiment?	
• Randomized	experiment.



The	results



Paired	data	and	rounding	first	
base	example.
• There	is	a	lot	of	overlap	in	the	distributions	and	substantial	
variability.	

• It	is	difficult	to	detect	a	difference	between	the	methods	
when	these	is	so	much	variation.

•

Mean SD
Narrow 5.534 0.260
Wide 5.459 0.273



Rounding	First	Base

• These	data	are	clearly	paired.		
• The	paired	response	variable	is	time	difference	
in	running	between	the	two	methods	and	we	
can	use	this	in	analyzing	the	data.	



The	Differences	in	Times



The	Differences	in	Times

• Mean	difference	is	𝑥̅d	=	0.075	seconds
• Standard	deviation	of	the	differences	is	SDd =	
0.0883	sec.	

• This	standard	deviation	of	0.0883	is	smaller	than	
the	original	standard	deviations	of	the	running	
times,	which	were	0.260	and	0.273.	



Rounding	First	Base
• Below	are	the	original	dotplots	with	each	
observation	paired	between	the	base	running	
strategies.

• What	do	you	notice?	



Rounding	First	Base

• Is	the	average	difference	of	𝑥̅d	=	0.075	seconds	
significantly	different	from	0?

• The	parameter	of	interest,	µd,	is	the	long	run	
mean	difference	in	running	times	for	runners	
using	the	narrow	angled	path	instead	of	the		
wide	angled	path.				(narrow	– wide)



Rounding	First	Base
The	hypotheses:
• H0:	µd =	0	

• The	long	run	mean	difference	in	running	times	is	0.
• Ha:	µd≠ 0	

• The	long	run	mean	difference	in	running	times	is	not	0.

• The	statistic	𝑥̅d =	0.075	is	above	zero.
• How	likely	is	it	to	see	an	average	difference	in	running	
times	this	big	or	bigger	by	chance	alone,	even	if	the	base	
running	strategy	has	no	genuine	effect	on	the	times?



Rounding	First	Base

How	can	we	use	simulation-based	methods	to	find	an	
approximate	p-value?	
• The	null	hypothesis	says	the	running	path	does	not	matter.	
• So	we	can	use	our	same	data	set	and,	for	each	runner,	
randomly	decide	which	time	goes	with	the	narrow	path	
and	which	time	goes	with	the	wide	path	and	then	
compute	the	difference.	(Notice	we	do	not	break	our	
pairs.)

• After	we	do	this	for	each	runner,	we	then	compute	a	
mean	difference.	

• We	will	then	repeat	this	process	many	times	to	develop	a	
null	distribution.



Subject 1 2 3 4 5 6 7 8 9 10
narrow	
angle

5.70 5.50 5.85 5.40 5.50 5.15 …

wide	angle 5.75 5.40 5.70 5.35 5.35 5.00 …

diff -0.05 0.10 0.10 0.15 -0.05 0.05 0.15 0.15 0.10 …

5.50

5.55

-0.050.05

5.60

5.50

-0.10

5.55

5.60

0.05

5.80

5.70

-0.10

Random	Swapping

𝑥̅d = 0.016



More	Simulations	
-0.002

-0.002 -0.016
0.030 -0.011

-0.007

0.467
-0.002-0.007

0.007 -0.034
-0.067

-0.002 -0.025
0.020

0.020

0.002

-0.016

-0.007

0.002

0.066

-0.030

-0.002

0.002
0.016

Simulated Mean Differences 0.07
5

-
0.075

With 26 repetitions of creating 
simulated mean differences, we 
did not get any that were as 
extreme as 0.075.



First	Base
• Here	is	a	null	distribution	of	1000	simulated	mean	differences.	
• Notice	it	is	centered	at	zero,	which	makes	sense	in	agreement	with	
the	null	hypothesis.	

• Notice	also	the	SD	of	these	MEAN	DIFFERENCES	is	0.024	=	SE.									
SD	of	time	differences	was	0.0883.	SD	of	mean	time	diff.s =	.024.	

• Where	is	our	observed	statistic	of	0.075?



First	Base
• Only	1	of	the	1000	repetitions	of	random	swappings gave	a	𝑥̅/
value	at	least	as	extreme	as	0.075.	



First	Base
• We	can	also	standardize	0.075	by	dividing	by	the	SE	of	0.024	to	
see	our	standardized	statistic	=	:.:Q@

:.:PO
= 3.125.	



First	Base
• The	simulation	p-value	is	0.1%.	We	can	also	standardize	0.075	by	
dividing	by	the	SE	of	0.024	to	see	our	standardized	statistic	=	
:.:Q@
:.:PO

= 3.125.	

• If	we	had	used	the	formula	instead	of	simulations	to	get	the	SE,	
we	would	have	obtained	s/√n	=	.0883/√22	=	.019	instead	of	
.024.	Here	s	=	.0883.	s	is	the	sample	sd of	the	differences.	Using	
the	formula	for	the	SE,	we	would	get	a	standardized	statistic	of	
.075/.019	=	3.95.	

• Either	way,	clearly	stat.	sig.	Using	the	formulas,	you	would	get	
2*pt(3.95,lower=F,df=21)	=	0.0732%	instead	of	0.1%.	This	relies	on	
assuming	the	time	differences	are	normal	though.	



Rounding	First	Base

• With	a	p-value	of	0.1%,	we	have	very	strong	
evidence	against	the	null	hypothesis.	The	running	
path	makes	a	statistically	significant	difference	
with	the	wide-angle	path	being	faster	on	average.	

• We	can	draw	a	cause-and-effect	conclusion	since	
the	researcher	used	random	assignment	of	the	
two	base	running	methods	for	each	runner.	

• There	was	not	much information	about	how	these	
22	runners	were	selected	though	so	it	is	unclear	if	
we	can	generalize	to	a	larger	population.	



First	Base
• Using	the	simulation	based	SE	of	.024,	approximate	a	95%	
confidence	interval	for	𝜇d:
• 0.075	± 1.96(0.024)	seconds.	
• (0.028,	0.122)	seconds.	

• What	does	this	mean?
• We	are	95%	confident	that,	if	we	were	to	keep	testing	
this	indefinitely,	the	narrow	angle	route	would	take	
somewhere	between	0.028	to	0.122	seconds	longer	on	
average	than	the	wide	angle	route.	



First	Base
Alternative	Analysis
• What	do	you	think	would	happen	if	we	wrongly	analyzed	the	
data	using	a	2	independent	samples	procedure?	(i.e.	the	
researcher	selected	22	runners	to	use	the	wide	method	and	
an	independent	sample	of	22	other	runners	to	use	the	narrow	
method,	obtaining	the	same	44	times	as	in	the	actual	study.		



First	Base
Using	an	applet	which	tests	a	difference	between	these	
two	means,	ignoring	the	fact	that	it	is	paired	data,	
we	get	a	p-value	of	0.3470.
This	p-value	is	
much	larger	than	
the	one	we	
obtained	earlier.	



Theory-based	Approach	for	
Analyzing	Data	from	Paired	
Samples,	and	M&Ms.
Section	7.3



How	Many	M&Ms	
Would	You	Like?
Example	7.3



How	Many	M&Ms	Would	You	Like?
• Does	your	bowl	size	affect	how	much	you	eat?
• Brian	Wansink studied	this	question	with	college	
students	over	several	days.	

• At	one	session,	the	17	participants	were	assigned	to	
receive	either	a	small	bowl	or	a	large	bowl	and	were	
allowed	to	take	as	many	M&Ms	as	they	would	like.

• At	the	following	session,	the	bowl	sizes	were	switched	for	
each	participant.



How	Many	M&Ms	Would	You	Like?

• What	are	the	observational	units?
• What	is	the	explanatory	variable?
• What	is	the	response	variable?
• Is	this	an	experiment	or	an	observational	
study?

• Will	the	resulting	data	be	paired?



How	Many	M&Ms	Would	You	Like?
The	hypotheses:
• H0:	µd =	0	

• The	long-run	mean	difference	in	number	of	
M&Ms	taken	(small	– large)	is	0.

• Ha:	µd< 0	
• The	long-run	mean	difference	in	number	of	
M&Ms	taken	(small	– large)	is	less	than	0.



How	Many	M&Ms	Would	You	Like?

• Here	are	the	results	of	a	simulation-based	test.
• The	p-value	is	quite	large	at	0.1220.



How	Many	M&Ms	Would	You	Like?
• Our	sample	size	was	only	17,	but	this	distribution	
of	differences	is	fairly	symmetric	and	looks	perhaps	
reasonably	approximated	by	the	normal	dist.,	so	
we	will	proceed	with	a	theory-based	test here.	It	is	
a	close	call	though.	



t-test.	

• If	we	can	assume	the	differences	for	each	person	
are	iid and	normal	with	unknown	sd,	then	with	a	
theory	based	test	we	calculate	the	t-statistic:

𝑡 =
𝑥̅/

𝑠/ 𝑛�⁄
• This	kind	of	test	is	called	a	paired	t-test.



Conclusion
• The	theory-based	t-test	results	in	a	p-value	of	11.72%	and	a	
95%	CI	of	(-29.5,	7.8).	Thus	it	gives	slightly	different	results	
than	simulation,	but	we	come	to	the	same	conclusion.		We	
do	not	have	strong	evidence	that	the	bowl	size	affects	the	
number	of	M&Ms	taken.

• We	can	see	this	in	the	large	p-value	(0.1172)	and	the	
confidence	interval	that	includes	zero	(-29.5,	7.8).

• The	confidence	interval	tells	us	that	we	are	95%	confident	
that	when	given	a	small	bowl,	people	will	take	somewhere	
between	29.5	fewer	M&Ms	to	7.8	more	M&Ms	on	average	
than	when	given	a	large	bowl.	



Why	wasn't	the	difference	statistically	
significant?
• There	could	be	a	number	of	reasons	we	didn’t	get	
significant	results.
• Maybe	bowl	size	does	not	matter.
• Maybe	bowl	size	does	matter	and	the	difference	was	too	
small	to	detect	with	our	small	sample	size.

• Maybe	bowl	size	does	matter	with	some	foods,	like	pasta	
or	cereal,	but	not	with	a	snack	food	like	M&Ms.	



When	to	use	which	formula.	
a.	1	sample	numerical	data,	iid observations,	want	a	95%	CI	for	µ.	
• If	n	is	large	and	s is	known,	use	𝑥̅ +/- 1.96	s/√n.	
• If	n	is	small,	draws	are	normal,	and	s is	known,	use	𝑥̅ +/- 1.96	s/√n.	
• If	n	is	small,	draws	are	normal,	and	s is	unknown,	use	𝑥̅ +/- tmult s/√n.
• If	n	is	large	and s is	unknown,	tmult ~	1.96,	so	we	can	use	𝑥̅ +/- 1.96	s/√n.	

n	≥	30	is	often	considered	large	enough	to	use	1.96.
In	practice,	we	typically	do	not	know	the	draws	are	normal,	but	if	the	
distribution	looks	roughly	symmetrical	without	enormous	outliers,	the	t	
formula	may	be	reasonable.	

b.	1	sample	binary	data,	iid observations,	want	a	95%	CI	for	π.

View	the	data	as	0	or	1,	so	sample	percentage	𝑝̂ =	𝑥̅, and	
s	=	√[𝑝̂(1-𝑝̂)],	s = √[p(1-p)].	



When	to	use	which	formula.	
a.	1	sample	numerical	data,	iid observations,	want	a	95%	CI	for	µ.	
• If	n	is	large	and	s is	known,	use	𝑥̅ +/- 1.96	s/√n.	
• If	n	is	small,	draws	are	normal,	and	s is	known,	use	𝑥̅ +/- 1.96	s/√n.	
• If	n	is	small,	draws	~	normal,	and	s is	unknown,	use	𝑥̅ +/- tmult s/√n.
• If	n	is	large	and s is	unknown,	tmult ~	1.96,	so	we	can	use	𝑥̅ +/- 1.96	s/√n.	

b.	1	sample	binary	data,		iid observations,	want	a	95%	CI	for	π.

View	the	data	as	0	or	1,	so	sample	percentage	𝑝̂ =	𝑥̅, and	
s	=	√[𝑝̂(1-𝑝̂)],	s = √[p(1-p)].
If	n	is	large	and	π	is	unknown,	use	𝑥̅ +/- 1.96	s/√n.	

Here	large	n	means	≥	10	of	each	type	in	the	sample.	



What	if	n	is	small	and	the	draws	are	not	normal?	
Then	simulations	are	basically	your	only	choice.	There	are	
other	possible	solutions	outside	the	scope	of	this	course,	such	
as	the	bootstrap,	which	are	sometimes	useful	in	these	
situations.	



When	to	use	which	formula.	
c.	Numerical	data	from	2	samples,	iid observations,	want	a	95%	
CI	for	µ1 - µ2.	

If	n	is	large	and	s is	unknown,	use	𝑥1d - 𝑥̅2+/- 1.96	
#89

e8
+ #99

e9

�
.	

As	with	one	sample,	if	s1 is	known,	replace	s1 with	s1,	and	the	same	for	
s2.	And	as	with	one	sample,	if	s1 and	s2 are	unknown,	the	sample	sizes	
are	small,	and	the	distributions	are	roughly	normal,	then	use	tmult instead	
of	1.96.	If	the	sample	sizes	are	small,	the	distributions	are	normal,	and	s1
and	s2 are	known,	then	use	1.96.	

d.	Binary	data	from	2	samples,	iid observations,	want	a	95%	CI	
for	π1 - π2.	
same	as	in	c	above,with	𝑝q1 = 𝑥1d ,	s1 =	√[𝑝̂1	(1-𝑝̂1)],	s1 = √[p1	(1-p1)].
Large	for	binary	data	means	sample	has	≥	10	of	each	type.		



When	to	use	which	formula.	
e.	Matched	pairs	data,	iid observations,	want	a	95%	CI	for	µ.	
Look	at	differences	(score	with	treatment	minus	score	with	
control)	and	treat	differences	as	ordinary	numerical	data	
according	to	parts	a	or	b.		
• If	n	is	large	and	s is	known,	use	𝑥̅ +/- 1.96	s/√n.	
• If	n	is	small,	draws	are	normal,	and	s is	known,	use	𝑥̅ +/- 1.96	s/√n.	
• If	n	is	small,	draws	are	normal,	and	s is	unknown,	use	𝑥̅ +/- tmult s/√n.
• If	n	is	large	and s is	unknown,	tmult ~	1.96,	so	we	can	use	𝑥̅ +/- 1.96	s/√n.	

n	≥	30	is	often	considered	large	enough	to	use	1.96.
In	practice,	we	typically	do	not	know	the	draws	are	normal,	but	if	the	
distribution	looks	roughly	symmetrical	without	enormous	outliers,	the	t	
formula	may	be	reasonable.	This	is	often	a	tough	judgement	call.	


