Stat 13, Intro. to Statistical Methods for the Life and Health Sciences.

1. Review exercises.

2. Statistical analysis of wildfires.
3. Forecasting earthquakes.

4. Global temperature data.

5. Disease epidemics.

The final is Fri Dec14, 8-11am.
Bring a PENCIL and CALCULATOR and any books or notes you want. No computers.
http://www.stat.ucla.edu/~frederic/13/F18.




3. Review exercises.

5. Suppose the 100 bald men with a mean pulse of 67bpm have a median pulse of
70bpm. Describe the distribution of the pulses of bald men.

a. Left-skewed.

b. Right-skewed.

c. Symmetric.

d. Normal.

e. Confounding factors with heteroskedastic t-test confidence intervals.

f. None of the above.

6. Suppose the IQR is 20bpm, the range is (50bpm, 100bpm), and the 75 percentile is
80bpm. What is the 25t percentile pulse?

7. Find a 95% CI for the difference in mean pulse between the bald men and the long
haired men. Assume the 100 bald men have mean 67bpm and sd 10bpm, and the 300
long haired men have mean 72bpm and sd 14bpm.

8. What can we conclude about statistical significance, based on this 95% CI?




3. Review exercises.

5. Left skewed, because the mean < median.




3. Review exercises.

5. Suppose the 100 bald men with a mean pulse of 67bpm have a median pulse of
70bpm. Describe the distribution of the pulses of bald men.

a. Left-skewed.

b. Right-skewed.

c. Symmetric.

d. Normal.

e. Confounding factors with heteroskedastic t-test confidence intervals.

f. None of the above.

6. Suppose the IQR is 20bpm, the range is (50bpm, 100bpm), and the 75 percentile is
80bpm. What is the 25t percentile pulse?

7. Find a 95% CI for the difference in mean pulse between the bald men and the long
haired men. Assume the 100 bald men have mean 67bpm and sd 10bpm, and the 300
long haired men have mean 72bpm and sd 14bpm.

8. What can we conclude about statistical significance, based on this 95% CI?




3. Review exercises.

6. 60bpm.




3. Review exercises.

5. Suppose the 100 bald men with a mean pulse of 67bpm have a median pulse of
70bpm. Describe the distribution of the pulses of bald men.

a. Left-skewed.

b. Right-skewed.

c. Symmetric.

d. Normal.

e. Confounding factors with heteroskedastic t-test confidence intervals.

f. None of the above.

6. Suppose the IQR is 20bpm, the range is (50bpm, 100bpm), and the 75 percentile is
80bpm. What is the 25t percentile pulse?

7. Find a 95% ClI for the difference in mean pulse between the bald men and the long
haired men. Assume the 100 bald men have mean 67bpm and sd 10bpm, and the 300
long haired men have mean 72bpm and sd 14bpm.

8. What can we conclude about statistical significance, based on this 95% CI?




3. Review exercises.

7.-5 +/- 1.96 SE, where SE = V(100/100 + 142/300) = 1.28582. So the 95% Cl is -5 +/-
1.96(1.28582) = -5 +/- 2.53.




3. Review exercises.

5. Suppose the 100 bald men with a mean pulse of 67bpm have a median pulse of
70bpm. Describe the distribution of the pulses of bald men.

a. Left-skewed.

b. Right-skewed.

c. Symmetric.

d. Normal.

e. Confounding factors with heteroskedastic t-test confidence intervals.

f. None of the above.

6. Suppose the IQR is 20bpm, the range is (50bpm, 100bpm), and the 75 percentile is
80bpm. What is the 25t percentile pulse?

7. Find a 95% ClI for the difference in mean pulse between the bald men and the long
haired men. Assume the 100 bald men have mean 67bpm and sd 10bpm, and the 300
long haired men have mean 72bpm and sd 14bpm.

8. What can we conclude about statistical significance, based on this 95% CI?




3. Review exercises.

8. 0 is not in the interval, so the difference in pulse between bald men and long haired
men is statistically significant.




Forecasting wildfires.

(from Alexander & Cruz, 2013)




Table 1

Classification of surface fire spread rmodels (19496 - 2000)

Reference Type Origin

Foais [4) Theoretical Umnmited States
Ermmons [5) Theoretical Umnited States
Houtel et =l [6) Theoretical Umited States
MNMcAsrthur [7) Empirical” Ausiralia

Van Wagner [8) Theoretical Canada

Thomas [9) Theoretical Umited Kingdom
MNMcAsrthur [10) Empirical™ Aauwstralia
Andersoax [1 1) Theoretical Umited States

Frandsen [12)
Rothermmsel [13])

Pagni and Peterson [14)
Telisin [15)]

Seward [ 16)

Komnew and Sukhinin [17)
Cekirge [18)

Fujii ez al. [19)

Grashan et a1, [ 20)
Graffin and Allanm [21)
Huang and Xie [22)]

Snecuwjagt and Peet [23)

Aldbin: [24.25)

De Mestire e1 al, [ 26]
Weber [27)

Borrows et &l [ 28]
Focesiry Canada Fire
Danger Group [ 29)]
Croba e1 al. [530)
Marsden-Smedley
and Caxchpole [51)
Graishanm [32)

Dupuy [33)

Santoni and Balbi [34)
ILimn [35)

Cawchpole et a2l [536]
Cawchpole et 21 [37)
Fermandes [ 38)

Vega [539)]

McocCaw [50])

Vaiegas et al. [41)]
Cheney et al. [42)
ILarin: et al. [43)

Margerit and Guiallaume [494]

Burrows [45_46)
Hargrove et al. [47])

Semiempirical
Semiempirical™
Theoretical
Theoretical
Theoretical
Theoretical
Theoretical
Theoretical
Theoretical
Semiempirical
Theoretical
Semiempirical
Theoretical
Theoretical
Theoretical
Semiemprirical
Empirical™

Theoretical
Semiempirical

Theoretical
Theoretical
Theoretical
Theoretical
Semiempirical
Semiempirical
Semiempirical
Semiempirical
Semiempirical
Empirical
Empirical
Theoretical
Theoretical
Semiempirical
Empirical™

Umnited States
Umnmited States
Umnited States
Russia
Umnited States
Russia
Umnited States
Japan

Russia
Aawsiralis
Umited States
Aawstralis
Umited States
Aawsiralis
Aauwsiralis
Aawsiralis
Canada

Greoce
Auwsiralis

Russia
France
France
Umnited States
Aawsiralis
Aawsralis
FPortugal
Spain
Aawsiralis
FPortugal
Aausiralis
France
France
Aawsiralis
Umited States

in foresiry agencices.

Models that constitute the basis of operating tools acrually used

(from Past
et al., 2003




2) Currently used evaluation methods for spread model
a) Is the problem of modeling spread solved?
Many simplifying assumptions in current models.

Simulations can do very well retrospectively,
on data used to make the sims.

b) Methods for model assessment

Evaluate a particular statistic, like surface temperature or spread

Comparison of final burn areas.

Error matrices, Cohen’s K, Sgrensen’s Q.




Mell et al. (2007), retrospective. The experiment shown here was used in model constructi

(b)

Figure 4: (a) Photograph of experimental fire F19 at ¢ — 56 s. (b) Snapshot of WFDS simulation of
experimental fire F19 at ¢ — 56 s.




Observed vs. Predicted spread rate (Cruz & Alexander, 2013), retrospective:
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Observed vs. Predicted spread rate (Cruz & Alexander, 2013), prospective:
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Fig. 6. Observed rates of spread versus model predictions for a selection of studies presented in Table 1 featuring both ‘moderately slow’ and ‘exceedingly fast' spreading fires (i.e.
upwards of ~150 m min~"), The dashed lines around the line of perfect agreement indicate the +35% error interval, Refer to Table 2 for the mean of the model abbreviations (eg.
RCR72 = Rothermel, 1972). MAPE = mean absolute percent error.




Observed and Predicted surface temperature (de Mestre et al., 1989, from Weber 1991
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F1G. 2. Fuel surface temperature ahead of the fire front.

Experimental (solid line), ‘frozen” moisture model (dotted

line), and averaged moisture model (dashed line) are shown.
From de Mestre er al.’




Errors in windspeed measurements (Sullivan and Knight, 2001)

Table 2. Errors in estimating 5-min wind averages at a fire front
as a percentage of the measured wind within 68% confidence
limits (1 SD) assuming a standard deviation of 27% of the mean
wind speed.

No._ of Fire width

anemometers 040 m =80 m =160 m =300 m
1 +38% +33% +30% +28%

2 +33% +27% +23% +21%

4 +30% +23% +19% +10%

8 +28% +21% +16% +13%

One anemometer can predict the wind speed at another lo-
cation (say at the front of a small fire) with a probability
curve associated with the convolution of two 26.7% curves,
1.e., from eq. 8. sf = 37.8% of the mean wind speed. In other
words there 1s a 68% chance of the wind speed at the fire
front being within +37.8% of the measured wind speed. This
1s not particularly good.




Observed and Simulated burn polygons (Arca et al., 2007)

Time step Observed ROS Simulated ROS
1 7.0 6.5
2 12.4 10.3
3 6.6 7.4
whole area 8.1 8.1
Observed

Simulated 1
Simulated 2

----------

» » »
-----
N

0 125 250 500 750 ‘
 — e s— L
Figure 2 — Comparison between observed and simulated fire areas from the
simulation n. 4 (custom fuel model CM28) using raster wind maps (Simulated 1) and
constant wind field (Simulated 2).




Observed and Simulated burn polygons (Fujioka, 2002)

Predicted vs Observed Bee Perimeter, 29/1730 PDT

with 9?% Confidence I{wtorval
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Figure 7. Position and error corrected perimeter prediction for the Bee Fire, 29 June 1996, 1730 PDT, and
approximate 95% confidence interval for the true perimeter.




Remote Sensing techniques.
Error matrix (Congalton

- o~ o~ a

Table 1. An Example Error Matrix

Reference Data

row

D C BA SB total

D 65 4 22 24 115 Land Cover Categories

C 6 81 5 8 100 D =deciduous

BA 0 11 85 19 115 C = conifer

SB 4 7 3 90 104 BA =barren

column 75 103 115 141 434 SB = shrub

total
OVERALL ACCURACY =
321 /434 = 74%

PRODUCER’S ACCURACY USER’'S ACCURACY

D=65/75= 87%
C=81/103= 79%
BA=85/115= 74%
SB=90/141= 64%

Cohen’s K (Congalton 1991)

D=65/115= 57%
C=81/100= 81%
BA=85/115= 74%
SB=90/104= 87%

N E Xip — Z (xp *x;)

B=—izl  i=l
N?— 2 (% *x,)
i=1

Sorensen's original formula was intended to be applied to presence/absence data, and is
03 2C 2|AN Bj
A+ B |A|+|B|




Overlap proportion (Duff et al., 2013). Black = overlapping burn area,

white = burn area predicted but not observed, grey = burn area observed but not predic
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Difference between burn areas, evaluated radially as a function of 0
(Cui & Perera, 2010)

al., 2013)

— underprediction
overprediction

1500
5.65

1000

4.95

424

353



Few studies look at evolution of predicted & observed burn areas over time (Mell et al. 200

 symbols: exp. F19; shading: WFDS
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Burning Index (BI)

NFDRS:
Spread Component (SC) and Energy Release Component (ERC)

each based on dozens of equations.
BI =[10.96 x SC x ERC] 046

e Uses daily weather variables, drought index, and
vegetation info. Human interactions excluded.
e Predicts: flame length,
... area/fire? # of fires? # of fires? Total burn area?




Percentage of days with wildfires vs. Index (Viegas et al., 1999)

% of days with fires

% of days with fires

'
Figure 3. Percentage ys of days with fires: (a) A. H.
Provence; (b) Veneto.




Mean area burned per day vs. Index (Viegas et al., 1999)
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Figure 4. Average area yg (ha) bumed daily: (a) A. H.
Provence; (b) Veneto.




Some BI equations: (From Pyne et al., 1996:)

Rate of spread: R =1Ig € (1 + ¢y, + ¢5) / (ppe Qo). Oven-dry bulk density: p, = w/0.
Reaction Intensity: Ig= I w, h nyns. Effective heating number: € = exp(-138/c).
Optimum reaction velocity: I = T . (B/ Bop)™ exp[A(1- B/ Bop)].

Maximum reaction velocity: I'” .. = ' (495 + 0.0594 ') -1,

Optimum packing ratios: B,, = 3.348 ¢ 08189 A =133 5013,

Moisture damping coef.: My = 1 - 259 M;/M, + 5.11 (M;/M,)? - 3.52 (M;/M,)>.
Mineral damping coef.: Ny = 0.174 S, 01° (max = 1.0).

Propagating flux ratio: & = (192 + 0.2595 )1 exp[(0.792 + 0.681 c*)(B + 0.1)].

Wind factors: c,, = CUB (B/Bo,) . C =7.47 exp(-0.133 6°). B =0.02526 4.
E =0.715 exp(-3.59 x 10 5).

Net fuel loading: w, = wq (1 - St). Heat of preignition: Q;, = 250 + 1116 M.

Slope factor: ¢ = 5.275 B 03 (tan ¢)>. Packing ratio: = py, / p,.




Good news for BI:

BI is positively associated with wildfire occurrence.

Positive correlations with number of fires, daily area burned,
and area per fire.

Properly emphasizes windspeed, relative humidity.




Some problems with BI

e (Correlations are low.
=  Corr(BI, area burned) = 0.09
= Corr(BI, # of fires) =0.13
» Corr(BI, area per fire) =0.076
I Corr(date, area burned) = 0.06
! Corr(windspeed, area burned) = 0.159

e Too high in Winter (esp Dec and Jan)
Too low in Fall (esp Sept and Oct)




Burn Area(sqkm)
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Separable Estimation for Point Processes

e Consider A(t, Xy, ..., X\; 0). [For fires, x,=location, x, = area.]
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Total area burned (sq m)

Total area burned vs. average windspeed
r=0.16

Average windspeed




Total area burned

000 005 010 015 020 025 030 035

Total area burned vs. average max relative humidity

Average max relative humidity




Total area burned (sq m)
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Total area burned vs. average max temperature

Average max temperature (F)
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Error diagrams (Molchan 1990, Xu and Schoenberg 2011)
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Model Construction

* Wildfire incidence seems roughly multiplicative.
(only marginally significant in separability test)
e Windspeed. RH, Temp, Precip all matter.

e Tapered Pareto size distribution f, smooth spatial background

[*] A(tx.a) =

f(a) pu(x) p1exp(B,RH + B;WS) (B4 + BsTemp)(max{s - B;Prec,Bg

Relative AICs (Model - Constant, so lower is better):

Constant

RH

BI

Model [#]

0

-262.9

-302.7

-601.1




Comparison of Predictive Efficacy

False alarms % of fires

per year correctly

alarmed
BI 150: 32 22.3
Model [*]: 32 34.1
BI 200: 13 8.2
Model [*]: 13 15.1




Forecasting Earthquakes.




The Hawkes process (Hawkes 1971) is a useful form for modeling
clustered processes like earthquakes, where

Atxy,m) = p(x,y,m) ' g(t-t;, x-x; y-y;, m).

i:ti<t

An example is the Epidemic-Type Aftershock Sequence (ETAS) mode
Ogata (1988, 1998), which has been used for earthquakes as well as
invasive species (Balderama et al. 2012) and crime (Mohler et al. 20
With ETAS, u(x,y,m) = u(x,y) f(m), and e.g.

f(m) o exp{—[(m — mg)},

Ko exp{a(m —my)}
P +dr

g(t,z,y,m) =




Difficulty of point process model evaluation.

With most types of data, such as regression style data, time series data, or observations o
spatial-temporal grid, can just look at residuals
observed — predicted

for each observation. Closer to 0 = better.
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With point processes, this doesn’t work.




With point processes, the observations are a collection of points indicating where and wh
the phenomenon occurred, and typically the model output is an intensity function

M(u) = anticipated rate of points around spatial-temporal location u.

Can compare number observed and number predicted over each bin, but there are proble
large pixels yield low power.

with small pixels, residuals are mostly 0 or 1. Highly skewed.

For many models, the residual plot simply looks like a plot of the points themselves.

R. A. CLEMENTS, E P. SCHOENBERG AND D. SCHORLEMMER
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2. RELM and CSEP.

The Regional Earthquake Likelithood Models (RELM) project
[Field (2007)] led to the Collaboratory for the Study of Iy
Earthquake Predictability (CSEP) [Jordan (2006)].

RELM tested earthquake forecast models for California.

Rigorous, prospective 5 year testing in a dedicated testing center, A
1/1/06-1/1/11. [Schorlemmer and Gerstenberger (2007)].

CSEP expanded to regional earthquake forecasts around the world,
including California, Japan, New Zealand, Italy, the
Northwest Pacific, the Southwest Pacific and the entire
globe. Testing centers in Japan, Switzerland, New Zealand
and the United States.

CSEP models are five-year, one-day, or recently three-month
forecasts. Forecast an expected number of events in each
space time magnitude bin. For 1 day models, bins are 0.1°
lon by 0.1¢ lat by 0.1M from M3.95 to 8.95.

For M8.95-10, one bin of size 0.1° by 0.1° by 1.05M.

The U.S. testing center is located at the So. California Earthquake
Center (SCEC) and hosts forecast experiments for
California, the Northwest and Southwest Pacific, and the
global experiments.
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Some models in CSEP.

A. Helmstetter, Kagan and Jackson (2007)

B. Kagan, Jackson and Rong (2007).

C. Shen, Jackson and Kagan (2007).

Epidemic-Type Aftershock Sequence (ETAS) model
[Zhuang, Ogata and Vere-Jones (2004), Ogata and
Zhuang (2006)].

Short-Term Earthquake Probabilities (STEP) model
[Gerstenberger et al. (2005)].

All based exclusively on previous seismicity except C,
which uses geodetic and geological info.

Earthquake catalogs were obtained from the Advanced
National Seismic System (ANSS).

142 shallow earthquakes with a M>3.95 occurred in
RELM’s spatial temporal window.

Note that each RELM model does not necessarily
produce a forecasted seismicity rate for every pixel in
the space—time region.
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Numerical summaries.

In RELM, consensus was reached that all models would be tested using a certain suite o
numerical tests [Jackson and Kagan (1999), Schorlemmer et al. (2007)].

N-Test compares total number of earthquakes for model and observations.
L-Test compares likelthood.
R-Test compares likelihood ratio for two models.

L and N test can be used to see if discrepancies for 1 model are stat. significant.
Simulate, and see if the likelihood for the data is in the middle 95% range.
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Schorlemmer et al. 2007




Some drawbacks of these tests were discovered (Schorlemmer et al. 2010).

The N-test and L-test have low power and are typically unable to discern
significant lack of fit unless the overall rate of the model fits very poorly.

Further, even when the tests do reject a model, they do not typically indicate
where or when the model fits poorly, or how it could be improved.

Model Lobs y Nobs
Mainshock+Aftershock
A. Helmstetter —22881.46 0.000 142
B. Kagan —10765.43 0.008 81
C. Shen —10265.20 0.002 86
Daily
ETAS —387.69 1.00 85
STEP —-50.43 0.00 83

Clements et al. 2011




Pixel-based residuals.
Compare N(A;) with [, A(t, x) dt dx, on pixels A,;.
(Baddeley, Turner, Moller, Hazelton, 2005)

Problems:

* If pixels are large, lose power.
* If pixels are small, residuals are mostly ~ 0,1.

-- non-normality after standardization.

* Smoothing reveals only gross features.
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Pearson residuals for Model B:




Pearson residuals for Model B: Pearson residuals for Model C:




How can you see how well the model fits?
a) Deviance residuals

b) Superthinned residuals

c¢) Voronoi residuals.

-- Given two competing models, can consider the difference between residuals,
number of observed fires — number expected, over each pixel.

Problem: Hard to interpret. If difference = 3, 1s this because model A overestimat
3? Or because model B underestimated by 3? Or because model A overestima
by 1 and model B underestimated by 2?

-- Better: consider difference between log-likelihoods, in each pixel. The result ma
called deviance residuals (Clements et al. 2011), ~ resids from gen. linear mo
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FIG. 3. Left panel (a): deviance residuals for model A versus B. Sum of deviance residuals is
84.393. Right panel (b): close-up of deviance residuals for model A versus B near the Imperial fault.




Superthinning (Clements et al., 2012)

Choose some number ¢ ~ mean( A, ).

Superpose: where A (t,x,y) < ¢, add in points of a simulated Poisson process o
ratec- (tALY).

Thin: where A (t.,X;,y;) > ¢, keep each point (t;,x;,y;) with prob. ¢/ A (t,X,Y;) -
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FIG. 11. One realization of super-thinned residuals for the five models considered
B (circles = observed earthquakes: plus signs = simulated points). Top-left panel (a): model A
e (k = 2.76). Top-center panel (b): model B (k = 2.95). Top-right panel (c): model C (k = 2.73).

Bottom-left panel (d): ETAS (k = 1.35). Bottom-right panel (e): STEP (k =0.75).

FIG. 9. Superposed residuals for model C. Simulated points make up 90.7% of all points.
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¢) Voronoi residuals (Bray et al. 2013)

A Voronoi tessellation divides a space into cells Ci where Ci contains all locati
closer to event 1 than any other observed event.

Within each cell, calculate residuals fi = 1— / Adp
C;
r~1-X; X ~T(3.569,3.569) (Tanemura 2003) — 1-|C2
’
g - ‘t' 5
[T RY
3 3
3 7 . .o', ;: 7
:- 3- | o
" f T T T T ) - r T ! T T !
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X

spatially adaptive and nonparametric.



Voronoi Residuals

Voronoi Tessellation: (Okabe, 2000) a

partitioning of S into n convex polygons
(tiles)

Di = {xe X :||x=x| <||x —x||,Vj # i}

Voronoi Residual:

) ,  1-|DjA

) ~ SE(|D/)
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Global temperature data. Hawkins and Sutton 2017.

Global mean surface air temperature above pre—industrial using various reference periods
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Fic. 5. Comparing projections (RCP4.5) using five different reference periods for four example GCMs, showing
the ensemble means. Note that the observed change is used as the anomaly from 1850 to 1900 to the chosen
reference period. Most of the CMIP5 GCMs behave more like CanESM2 and EC-EARTH than NorESMI-M.




Global temperature data. Hawkins and Sutton 2017.

Global mean surface air temperature: CMIP5 RCP4.5 & HadCRUT4
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Fic. 7. Comparing CMIP5 projections (RCP4.5, 42 models) for the future using four different reference pe-
riods. Red stars indicate projected time of crossing 2 K above preindustrial (defined as 1850-1900) with red
bars representing the 5%-95% range. Black error bars show 5%-95% temperature ranges for defined periods
as indicated in legend. Observations (black) and observational uncertainties (gray) shown for HadCRUT4.3
(Morice et al. 2012). The CW 14 observations are shown in red.




Global temperature data. Kay 2015.

bl
o

>
o

w
o

observations

—
o

1850 control member 1

O
o

IIIIIIIIIllllllllllllllllllll

Global Mean Surface
Temperature Anomaly (K)
No
o
lllllllllllllllllllllllllllll

4L
o

[ I [ [ I
1850 19201950 2000 2050 2100
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Morice et al. 2012).
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Forecasting the spread of infectious diseases.

.
£
] £ >
n o
v A
— [ -
£ R .
k P =5
5
p :_;;,- o
[ -
&
3

1960 1970 1980 1990 2000 2010

year




* Epidemics have traditionally been modeled by grid based compartmental models lik

and SEIR models (e.g. Althaus 2014).

* More recently, point process models have been used, especially Hawkes models, off

greater forecast precision (Law et al. 2009, Chaffee 2017).

* With Hawkes processes, the productivity or expected number of disease transmissio
triggered directly by a given infected persion, is static. In the case of Hawkes models

to earthquakes (e.g. Ogata 1988, Ogata 1998), the basic Hawkes model was extended

allow the productivity of an earthquake to depend on its magnitude, but still not to dep

on the time or location of the event, nor on the number of previously occurring events.

* With diseases, one may want the productivity to vary.




Hawkes models and ETAS.

Probabilistic models for point processes typically involve modeling the
conditional rate
A(t,x,y,m) = expected rate of accumulation of points at time t, location (x,y), a
magnitude m, given the history of all previous events.
Hawkes (1971) modeled A(t) = pu + Kzg(t—ti).
I.ti<t
i = 0 1s the background rate, K is the productivity, 0<sK<I, and g 1s the

triggering density satisfying jg(u) du =1
0

Ogata (1988) proposed the Epidemic-Type Aftershock Sequence (ETAS) mod

which is like a Hawkes model but where the productivity can depend on

magnitude.

MO =p + Kz g(t-t;; m;), with g(u; m;) = (u+c)P exp{a(mi-M,)}. 70 -

I:ti<t




When the prevalence of a disease is low in a region, as is the case when the epide

has never struck before or has not struck in considerable time, then the conditiona
intensity A is small and one would expect the rate of transmission for each infecte

person to be quite high. A carrier of the disease may be expected to infect many o

When the epidemic is at its peak and many subjects have contracted the disease,
other hand, A is large and one might expect the rate of transmission to be lower d
human efforts at containment and intervention of the disease, and because many
subjects may have already been exposed and thus might be recovered and immun

further infection, or deceased.

This suggests a model where the productivity for a subject infected at time t is

inversely related to the conditional intensity at time t. Since the conditional intensity in

turn depends critically on this productivity, we call the model recursive.
71



We may write this model A(t) = p + fot H(A.) g(t-t') AN(t),

where pu>0, g>0 is a density function, and A, means A(t').

We focus in particular in what follows on the case where

H(x) = kx™% so that A(t) = p+x J " A gt - t) dN(t).

We will refer to the special case where a =1, i.e. where
A)=p+x fot g(t-t') / Av AN(t'), as the standard recursive

model.

The triggering density g may be given e.g. by an exponential

72

density, g(u) = B exp(-fu).
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(a) Simulation of a std. recursive model with u=0.05, k =2, and g exponential with [ =
(b) Simulation of a Hawkes model with the same g and p as in (a), and with K = p/(p+x
that the processes in (a) and (b) have the same expected number of points.
(c) Simulation of a standard recursive model with u=0.1, «k = 2, and g exponential with rate 1.
(d) Simulation of a Hawkes model with the same g and [ as in (¢), and with K = p/(u+x) so
the processes in (c) and (d) have the same expected number of points.

All 4 simulations are over the same temporal domain [0, 1000]. The points are spread
uniformly over the y axis for ease of visualization. =




Application to CA Rocky Mountain Spotted Fever cases.

Recorded cases of Rocky Mountain Spotted Fever in California fro

Jan 1, 1960 to Dec 31, 2011 were collected by the CDC and catalo
by Project Tycho, www.tycho.pitt.edu.

Weeks with no data over this period were treated as having zero

confirmed cases.
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Histogram of confirmed Rocky Mountain Spotted Fever cases in
California from 1/1/1960 to 12/31/2011, along with the estimated ra!e
of the recursive model (green) and Hawkes model (red), each with

exponential triggering function and fit by maximum likelihood. K.
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Application to CA Rocky Mountain Spotted Fever cases.

In order further to assess the fit of the model, we used super-thinne
residuals (Clements et al. 2013). In super-thinning, one selects a
constant b, thins the observations by keeping each observed point T
independently with probability b/A(t,) if A(T;) > b, and superposes
points from a Poisson process with rate (b—A)1,_,, where 1 denotes
indicator function. A default choice for b is the mean of A" at the
observed points, as suggested in Gordon et al. (2015). The resultin

super-thinned residuals form a homogeneous Poisson process with

b iff. A" is the true conditional rate of the observed point process

(Clements et al. 2013).
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Application to CA Rocky Mountain Spotted Fever cases.

Super-thinned residuals t, and their corresponding standardized
interevent times u,.. The solid line shows, for each value of t,, the
normalized cumulative sum of u,. There are fewer small interevent
times than expected, especially between 1979 and 1985. Otherwise
interevent times appear to be well scattered.
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