
Stat 13, Intro. to Statistical Methods for the Life and Health Sciences.

1.	Review	exercises.	
2.	Statistical	analysis	of	wildfires.	
3.	Forecasting	earthquakes.	
4.	Global	temperature	data.	
5.	Disease	epidemics.	

The	final	is	Fri	Dec14,	8-11am.	
Bring	a	PENCIL	and	CALCULATOR	and	any	books	or	notes	you	want.	No	computers.	
http://www.stat.ucla.edu/~frederic/13/F18.	
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3.	Review	exercises.	
5.	Suppose	the	100	bald	men	with	a	mean	pulse	of	67bpm	have	a	median	pulse	of	
70bpm.	Describe	the	distribution	of	the	pulses	of	bald	men.	
a.	Left-skewed.	
b.	Right-skewed.	
c.	Symmetric.	
d.	Normal.	
e.	Confounding	factors	with	heteroskedastic	t-test	confidence	intervals.	
f.	None	of	the	above.	

6.	Suppose	the	IQR	is	20bpm,	the	range	is	(50bpm,	100bpm),	and	the	75th percentile	is	
80bpm.	What	is	the	25th percentile	pulse?	

7.	Find	a	95%	CI	for	the	difference	in	mean	pulse	between	the	bald	men	and	the	long	
haired	men.	Assume	the	100	bald	men	have	mean	67bpm	and	sd 10bpm,	and	the	300	
long	haired	men	have	mean	72bpm	and	sd 14bpm.	

8.	What	can	we	conclude	about	statistical	significance,	based	on	this	95%	CI?	



3.	Review	exercises.	
5.	Left	skewed,	because	the	mean	<	median.	
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3.	Review	exercises.	
7.	-5	+/- 1.96	SE,	where	SE	=	√(100/100	+	142/300)	=	1.28582.	So	the	95%	CI	is	-5	+/-
1.96(1.28582)	=	-5	+/- 2.53.	



3.	Review	exercises.	
5.	Suppose	the	100	bald	men	with	a	mean	pulse	of	67bpm	have	a	median	pulse	of	
70bpm.	Describe	the	distribution	of	the	pulses	of	bald	men.	
a.	Left-skewed.	
b.	Right-skewed.	
c.	Symmetric.	
d.	Normal.	
e.	Confounding	factors	with	heteroskedastic	t-test	confidence	intervals.	
f.	None	of	the	above.	

6.	Suppose	the	IQR	is	20bpm,	the	range	is	(50bpm,	100bpm),	and	the	75th percentile	is	
80bpm.	What	is	the	25th percentile	pulse?	

7.	Find	a	95%	CI	for	the	difference	in	mean	pulse	between	the	bald	men	and	the	long	
haired	men.	Assume	the	100	bald	men	have	mean	67bpm	and	sd 10bpm,	and	the	300	
long	haired	men	have	mean	72bpm	and	sd 14bpm.	

8.	What	can	we	conclude	about	statistical	significance,	based	on	this	95%	CI?	



3.	Review	exercises.	
8.	0	is	not	in	the	interval,	so	the	difference	in	pulse	between	bald	men	and	long	haired	
men	is	statistically	significant.	



Forecasting	wildfires.	

(from Alexander & Cruz, 2013)



(from Pastor 
et al., 2003)



2) Currently used evaluation methods for spread models.

a) Is the problem of modeling spread solved?

Many simplifying assumptions in current models.

Simulations can do very well retrospectively, 
on data used to make the sims.

b) Methods for model assessment

Evaluate a particular statistic, like surface temperature or spread rate.

Comparison of final burn areas.

Error matrices, Cohen’s K, Sørensen’s Q.



Mell et al. (2007), retrospective. The experiment shown here was used in model construction.



Observed vs. Predicted spread rate (Cruz & Alexander, 2013), retrospective:



Observed vs. Predicted spread rate (Cruz & Alexander, 2013), prospective:



Observed and Predicted surface temperature (de Mestre et al., 1989, from Weber 1991)



Errors in windspeed measurements (Sullivan and Knight, 2001)



Observed and Simulated burn polygons (Arca et al., 2007)



Observed and Simulated burn polygons (Fujioka, 2002)



Cohen’s K (Congalton 1991)

Remote Sensing techniques.
Error matrix (Congalton 

1991)



Overlap proportion (Duff et al., 2013). Black = overlapping burn area, 
white = burn area predicted but not observed, grey = burn area observed but not predicted.



Difference between burn areas, evaluated radially as a function of q
(Cui & Perera, 2010) (Duff et 

al., 2013)



Few studies look at evolution of predicted & observed burn areas over time (Mell et al. 2007)



Burning Index (BI)

NFDRS: 
Spread Component (SC) and Energy Release Component (ERC),
each based on dozens of equations.

BI = [10.96 x SC x ERC] 0.46

• Uses daily weather variables, drought index, and 
vegetation info. Human interactions excluded.

• Predicts: flame length, 
… area/fire? # of fires? # of fires? Total burn area? 



Percentage of days with wildfires vs. Index (Viegas et al., 1999)



Mean area burned per day vs. Index (Viegas et al., 1999)



Some BI equations: (From Pyne et al., 1996:)

Rate of spread: R = IR x (1 + fw + fs) / (rbe Qig). Oven-dry bulk density: rb = w0/d. 

Reaction Intensity: IR =  G’ wn h hMhs. Effective heating number: e = exp(-138/s). 

Optimum reaction velocity: G’ =  G’max (b / bop)A exp[A(1- b / bop)].

Maximum reaction velocity: G’max = s1.5 (495 + 0.0594 s1.5) -1.

Optimum packing ratios: bop = 3.348 s -0.8189.    A = 133 s -0.7913.

Moisture damping coef.:  hM = 1 - 259 Mf /Mx + 5.11 (Mf /Mx)2 - 3.52 (Mf /Mx)3.

Mineral damping coef.: hs = 0.174 Se
-0.19 (max = 1.0).

Propagating flux ratio: x = (192 + 0.2595 s)-1 exp[(0.792 + 0.681 s0.5)(b + 0.1)].

Wind factors: sw = CUB (b/bop)-E.   C = 7.47 exp(-0.133 s0.55).  B = 0.02526 s0.54. 
E = 0.715 exp(-3.59 x 10-4 s).

Net fuel loading: wn = w0 (1 - ST). Heat of preignition: Qig = 250 + 1116 Mf.

Slope factor: fs = 5.275 b -0.3 (tan f)2. Packing ratio: b = rb / rp.



Good news for BI:

• BI is positively associated with wildfire occurrence.

• Positive correlations with number of fires, daily area burned, 
and area per fire.

• Properly emphasizes windspeed, relative humidity.



Some problems with BI

• Correlations are low.
§ Corr(BI, area burned) = 0.09
§ Corr(BI, # of fires) = 0.13
§ Corr(BI, area per fire) = 0.076
! Corr(date, area burned) = 0.06
! Corr(windspeed, area burned) = 0.159

• Too high in Winter (esp Dec and Jan)
Too low in Fall (esp Sept and Oct)









Separable Estimation for Point Processes

• Consider l(t, x1, …, xk; q). [For fires, x1=location, x2 = area.]
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Error diagrams (Molchan 1990, Xu and Schoenberg 2011)



Model Construction

• Wildfire incidence seems roughly multiplicative.
(only marginally significant in separability test)

• Windspeed. RH, Temp, Precip all matter. 
• Tapered Pareto size distribution f, smooth spatial background µ.

[*]  l(t,x,a) = 
f(a) µ(x) b1exp(b2RH + b3WS) (b4 + b5Temp)(max{b6 - b7Prec,b8})

Relative AICs (Model - Constant, so lower is better):

Constant RH BI Model [*]

0 -262.9 -302.7 -601.1



Comparison of Predictive Efficacy

False alarms
per year

% of fires 
correctly 
alarmed

BI 150: 32 22.3

Model [*]: 32 34.1

BI 200: 13 8.2

Model [*]: 13 15.1



Forecasting Earthquakes. 



The	Hawkes	process	(Hawkes	1971)	is	a	useful	form	for	modeling	
clustered	processes	like	earthquakes,	where	

l(t,x,y,m)	=	µ(x,y,m)	+						g(t-ti,	x-xi,	y-yi,	mi).

An	example	is	the	Epidemic-Type	Aftershock	Sequence	(ETAS)	model	of	
Ogata	(1988,	1998),	which	has	been	used	for	earthquakes	as	well	as	
invasive	species	(Balderama	et	al.	2012)	and	crime	(Mohler	et	al.	2011).	
With	ETAS,	µ(x,y,m)	=	µ(x,y)	f(m),	and	e.g.
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Difficulty of point process model evaluation.
With most types of data, such as regression style data, time series data, or observations on a 

spatial-temporal grid, can just look at residuals

observed – predicted

for each observation. Closer to 0 = better.

With point processes, this doesn’t work.



With point processes, the observations are a collection of points indicating where and when 
the phenomenon occurred, and typically the model output is an intensity function 
l(u) = anticipated rate of points around spatial-temporal location u.
Can compare number observed and number predicted over each bin, but there are problems.
large pixels yield low power.
with small pixels, residuals are mostly 0 or 1. Highly skewed.
For many models, the residual plot simply looks like a plot of the points themselves.



2. RELM and CSEP.

The Regional Earthquake Likelihood Models (RELM) project 
[Field (2007)] led to the Collaboratory for the Study of 
Earthquake Predictability (CSEP) [Jordan (2006)]. 

RELM tested earthquake forecast models for California. 
Rigorous, prospective 5 year testing in a dedicated testing center, 

1/1/06-1/1/11. [Schorlemmer and Gerstenberger (2007)].

CSEP expanded to regional earthquake forecasts around the world, 
including California, Japan, New Zealand, Italy, the 
Northwest Pacific, the Southwest Pacific and the entire 
globe. Testing centers in Japan, Switzerland, New Zealand 
and the United States. 

CSEP models are five-year, one-day, or recently three-month 
forecasts. Forecast an expected number of events in each 
space time magnitude bin. For 1 day models, bins are 0.1◦
lon by 0.1◦ lat by 0.1M from M3.95 to 8.95. 

For M8.95-10, one bin of size 0.1◦ by 0.1◦ by 1.05M. 
The U.S. testing center is located at the So. California Earthquake 

Center (SCEC) and hosts forecast experiments for 
California, the Northwest and Southwest Pacific, and the 
global experiments.



Some models in CSEP.

A. Helmstetter, Kagan and Jackson (2007)
B. Kagan, Jackson and Rong (2007).
C. Shen, Jackson and Kagan (2007).
Epidemic-Type Aftershock Sequence (ETAS) model 
[Zhuang, Ogata and Vere-Jones (2004), Ogata and 
Zhuang (2006)].
Short-Term Earthquake Probabilities (STEP) model
[Gerstenberger et al. (2005)].

All based exclusively on previous seismicity except C, 
which uses geodetic and geological info.

Earthquake catalogs were obtained from the Advanced 
National Seismic System (ANSS). 

142 shallow earthquakes with a M≥3.95 occurred in 
RELM’s spatial temporal window. 
Note that each RELM model does not necessarily
produce a forecasted seismicity rate for every pixel in 
the space–time region.



Numerical summaries.

In RELM, consensus was reached that all models would be tested using a certain suite of 
numerical tests [Jackson and Kagan (1999), Schorlemmer et al. (2007)].

N-Test compares total number of earthquakes for model and observations.
L-Test compares likelihood.
R-Test compares likelihood ratio for two models.

L and N test can be used to see if discrepancies for 1 model are stat. significant.
Simulate, and see if the likelihood for the data is in the middle 95% range.

Schorlemmer et al. 2007



Clements et al. 2011

Some drawbacks of these tests were discovered (Schorlemmer et al. 2010).

The N-test and L-test have low power and are typically unable to discern 
significant lack of fit unless the overall rate of the model fits very poorly.

Further, even when the tests do reject a model, they do not typically indicate 
where or when the model fits poorly, or how it could be improved.



Pixel-based residuals.
Compare N(Ai) with ∫A l(t, x) dt dx, on pixels Ai.
(Baddeley, Turner, Møller, Hazelton, 2005) 

Problems:

* If pixels are large, lose power.
* If pixels are small, residuals are mostly ~ 0,1.

-- non-normality after standardization.
* Smoothing reveals only gross features.

Pearson residuals for Model B:



Pearson residuals for Model B: Pearson residuals for Model C:



-- Given two competing models, can consider the difference between residuals,      
number of observed fires – number expected, over each pixel.  

Problem:  Hard to interpret. If difference = 3, is this because model A overestimated by 
3? Or because model B underestimated by 3? Or because model A overestimated 
by 1 and model B underestimated by 2? 

-- Better: consider difference between log-likelihoods, in each pixel. The result may be 
called deviance residuals (Clements et al. 2011), ~ resids from gen. linear models.

How can you see how well the model fits? 
a) Deviance residuals
b) Superthinned residuals
c) Voronoi residuals. 





Superthinning (Clements et al., 2012)

Choose some number c ~ mean(     ). 

Superpose: where     (t ,x,y) < c, add in points of a simulated Poisson process of 
rate c - (t , x, y) . 

Thin: where (ti,xi,yi) > c, keep each point (ti,xi,yi) with prob. c /     (ti,xi,yi) .





c) Voronoi residuals (Bray et al. 2013)

A Voronoi tessellation divides a space into cells Ci where Ci contains all locations 
closer to event i than any other observed event.

Within each cell, calculate residuals

(  (Tanemura 2003)

spatially adaptive and nonparametric. 







overprediction

underprediction



Model A



Model B

Model C



Global temperature data. Hawkins and Sutton 2017. 



Global temperature data. Hawkins and Sutton 2017. 



Global temperature data. Kay 2015. 



Forecasting	the	spread	of	infectious	diseases.	
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* Epidemics have traditionally been modeled by grid based compartmental models like SIR 

and SEIR models (e.g. Althaus 2014). 

* More recently, point process models have been used, especially Hawkes models, offering 

greater forecast precision (Law et al. 2009, Chaffee 2017). 

* With Hawkes processes, the productivity or expected number of disease transmissions 

triggered directly by a given infected persion, is static. In the case of Hawkes models applied 

to earthquakes (e.g. Ogata 1988, Ogata 1998), the basic Hawkes model was extended to 

allow the productivity of an earthquake to depend on its magnitude, but still not to depend 

on the time or location of the event, nor on the number of previously occurring events. 

* With diseases, one may want the productivity to vary. 
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Hawkes models and ETAS.

Probabilistic models for point processes typically involve modeling the 

conditional rate

l(t,x,y,m) = expected rate of accumulation of points at time t, location (x,y), and 

magnitude m, given the history of all previous events. 

Hawkes (1971) modeled l(t) = µ + K     g(t-ti).

µ ≥ 0 is the background rate, K is the productivity, 0≤K≤1, and g is the 

triggering density satisfying .

Ogata (1988) proposed the Epidemic-Type Aftershock Sequence (ETAS) model, 

which is like a Hawkes model but where the productivity can depend on 

magnitude. 

l(t) = µ +  K      g(t-ti; mi), with g(u; mi) = (u+c)-p exp{a(mi-M0)}. 70



When the prevalence of a disease is low in a region, as is the case when the epidemic 

has never struck before or has not struck in considerable time, then the conditional 

intensity λ is small and one would expect the rate of transmission for each infected 

person to be quite high. A carrier of the disease may be expected to infect many others. 

When the epidemic is at its peak and many subjects have contracted the disease, on the 

other hand, λ is large and one might expect the rate of transmission to be lower due to 

human efforts at containment and intervention of the disease, and because many 

subjects may have already been exposed and thus might be recovered and immune to 

further infection, or deceased. 

This suggests a model where the productivity for a subject infected at time t is 

inversely related to the conditional intensity at time t. Since the conditional intensity in 

turn depends critically on this productivity, we call the model recursive. 
71



We	may	write	this	model	λ(t)	=	μ +	∫
0
t	H(λt′)	g(t	– t')	dN(t'),	

where	μ>0,	g>0	is	a	density	function,	and	λt′ means	λ(t′).	

We	focus	in	particular	in	what	follows	on	the	case	where	

H(x)	=	k x−α,	so	that	λ(t)	=	μ +	k ∫
0
t	 λt′

−α g(t	– t')	dN(t').	

We	will	refer	to	the	special	case	where	α	=	1,	i.e.	where	

λ(t)	=	μ +	k ∫
0
t	 g(t	– t')	/	λt′ dN(t'),		as	the	standard	recursive	

model.	

The	triggering	density	g	may	be	given	e.g.	by	an	exponential	

density,	g(u)	=	β	exp(-βu).	 72



(a) Simulation of a std. recursive model with μ = 0.05, k = 2, and g exponential with β = 0.8. 
(b) Simulation of a Hawkes model with the same g and μ as in (a), and with K = μ/(μ+k) so 
that the processes in (a) and (b) have the same expected number of points. 
(c) Simulation of a standard recursive model with μ=0.1, k = 2, and g exponential with rate 1.  
(d) Simulation of a Hawkes model with the same g and μ as in (c), and with K = μ/(μ+k) so 
the processes in (c) and (d) have the same expected number of points. 
All 4 simulations are over the same temporal domain [0, 1000]. The points are spread 
uniformly over the y axis for ease of visualization. 73



Application to CA Rocky Mountain Spotted Fever cases. 

Recorded cases of Rocky Mountain Spotted Fever in California from 

Jan 1, 1960 to Dec 31, 2011 were collected by the CDC and catalogued 

by Project Tycho, www.tycho.pitt.edu.  

Weeks with no data over this period were treated as having zero 

confirmed cases. 
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Histogram of confirmed Rocky Mountain Spotted Fever cases in 
California from 1/1/1960 to 12/31/2011, along with the estimated rate 
of the recursive model (green) and Hawkes model (red), each with 
exponential triggering function and fit by maximum likelihood. 
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Application to CA Rocky Mountain Spotted Fever cases. 

In order further to assess the fit of the model, we used super-thinned 

residuals (Clements et al. 2013). In super-thinning, one selects a 

constant b, thins the observations by keeping each observed point τi

independently with probability b/λ(τi) if λ(τi) > b, and superposes 

points from a Poisson process with rate (b−λ)1λ≤b, where 1 denotes the 

indicator function. A default choice for b is the mean of λ^ at the 

observed points, as suggested in Gordon et al. (2015). The resulting 

super-thinned residuals form a homogeneous Poisson process with rate 

b iff. λ^ is the true conditional rate of the observed point process 

(Clements et al. 2013). 
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Application to CA Rocky Mountain Spotted Fever cases. 

Super-thinned residuals tk and their corresponding standardized 
interevent times uk. The solid line shows, for each value of tk, the 
normalized cumulative sum of uk. There are fewer small interevent
times than expected, especially between 1979 and 1985. Otherwise the 
interevent times appear to be well scattered. 
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