Stat 13, Thu 4/19/12.

- 0. Hand in HW2!
- 1. Resistance.
- 2. n-1 in sample sd formula, and parameters and statistics.
- 3. Probability basic terminology.
- 4. Probability axioms.
- 5. Multiplication rules.
- 6. Probability trees.
- 7. Combinations.

Read chapter 3.

Hw3 is due Thur, 4/26, and Midterm 1 is Thur, 4/26.

You can use calculators, pen or pencil, and one 8.5x11 page of notes, double sided, for the exam.

1. Resistance to outliers.

Sample mean, sd, variance, range, and CV \rightarrow sensitive to outliers. Sample median and IQR \rightarrow resistant to outliers.

 $\{1,2,1,3,5,0\}$. mean is 2, median is 1.5, sd ~ 1.79, IQR = 2. $\{1,2,1,3,5,0,1000\}$. mean ~ 145, median is 2, sd ~ 377, IQR = 3.

2. n-1, parameters, and statistics.

In the formula for the sample sd, $s = \sqrt{\sum [(x_i - \overline{x})^2 / (n-1)]}$

If we replace the n-1 by n, then s is the *RMS* (root-mean-square) of deviations from \bar{x}

In other words, s is the RMS of these deviations times a correction factor $\sqrt{(\frac{n}{n-1})}$ Why this correction factor?

Parameters are properties of the population. Typically unknown. Represented by Greek letters (like μ , or σ).

Statistics (also called *random variables* or *estimates*) are properties of the sample. Represented by Roman letters (like \bar{x} or s).

Typically, you're interested in a value of a parameter. But you can't know it. So you estimate it with a statistic, based on the sample.

There are two means and two standard deviations! The sample mean \overline{x} and sample std deviation s are statistics. Define the population average μ as the sum of all values in the population \div the number of subjects in the population. (parameter). It turns out \overline{x} is an unbiased estimate of μ . That is, \overline{x} is neither higher nor lower, on average, than μ .

Define the population std deviation σ as the RMS of the deviations in the whole population. (a parameter.)

It turns out that if you estimate σ with the RMS of the sample deviations, the estimate you get tends to be a little SMALLER on average than σ . We multiply by the correction factor $\sqrt{(\frac{n}{n-1})}$, so that the estimate s is unbiased.

Note that this correction factor is very nearly 1 for large n, so it doesn't matter much when the sample size n is large.

- 3. Basic terminology of probability.
- a) Notation. P(event) = #. P(X = 5) means the probability that X is 5.
- b) Conditional probability. P(A I B) means the probability of A GIVEN B.
- c) Disjoint. Events A and B are *disjoint* if P(A and B) = 0.
- d) Independent. A and B are independent if knowing A doesn't effect the probability that B will happen, and vice versa.

That is, if $P(A \mid B) = P(A)$, and $P(B \mid A) = P(B)$.

- e.g. A = event first die roll is a 5, B = event second die is a 5.
- e) Or. In math, A <u>OR</u> B always means one or the other or both! If you mean but not both, must say ``but not both".
- f) E^c means not E.
- g) P(AB) means P(A and B).
- 4. Probability axioms.
 - (i) For any event E, $P(E) \ge 0$.
 - (ii) For any event E, $P(E) + P(E^c) = 1$.
 - (iii) For any disjoint events E_1 , E_2 , ..., E_n , $P(E_1 \text{ or } E_2 \text{ or ... or } E_n) = P(E_1) + P(E_2) + ... P(E_n)$.
- (iii) is sometimes called the addition rule for disjoint events.

Note connection with Venn diagrams.

For any events E_1 and E_2 , $P(E_1 \text{ or } E_2) = P(E_1) + P(E_2) - P(E_1E_2)$.

5. Multiplication rules.

We define P(A | B) as P(AB) / P(B).

Independence means $P(A \mid B) = P(A)$, which means P(AB)/P(B) = P(A), i.e.

P(AB) = P(A) P(B).

If this true, then $P(B \mid A) = P(AB)/P(A) = P(A)P(B)/P(A) = P(B)$, as well.

This is sometimes called the multiplication rule, because it means if A and B are independent, then $P(AB) = P(A) \times P(B)$.

Outcomes of different die rolls, spins of a spinner, flips of a coin, etc. can be assumed independent. Similarly, observations sampled *with replacement* are independent, or without replacement from large population are nearly independent.

- e.g. roll 2 dice. P(add up to 12) = P(1st is 6 and 2nd is 6) = P(1st is 6)P(2nd is 6)=1/6 x1/6. P(at least one 6) = 1 P(1st isn't 6 and 2nd isn't 6) = 1 (5/6 x 5/6) = 1 25/36 = 11/36.
- In general, if A and B might not be independent, $P(AB) = P(A) \times P(B \mid A)$. because the right side = $P(A) \cdot P(AB)/P(A) = P(AB)$.
- e.g. pick a card. A =the event that it's a king. B =the event that it's a spade. P(AB) = P(it's) the king of spades) = 1/52. P(A) = 4/52, P(B) = 1/4, so here P(AB) = P(A)P(B), so A and B are independent.

6. Probability trees.

Sometimes you can use probability trees for multiplication rule problems.

```
e.g. deal two cards. P(two red kings) = P(K of hearts -> K of diamonds or K of diamonds -> K of hearts) = P(K of hearts -> K of diamonds) + P(K of diamonds -> K of hearts) = 1/52 x 1/51 + 1/52 x 1/51.
```

Suppose 1% of the population has a disease, and a test is 80% accurate at detection, i.e. P(+ | you have it) = 80%, and P(- | you don't have it) = 80%. Choose someone at random. What is P(test +)?

```
P(+) = P(has it and test +) + P(doesn't have it and test +)
= P(has it) P(test + | has it) + P(doesn't) P(+ | doesn't)
= 1\% (80\%) + 99\% (20\%)
= 20.6\%.
What is P(has it | test +)?
```

P(has it I test +)?
P(has it I +) = P(has it and +) / P(+)
= 1% (80%) / 20.6%
~ 38.8%

7. Combinations.

The number of ways of choosing k distinct objects from a group of n different objects, where the order doesn't matter, is C(n,k) = n!/[k! (n-k)!], with the convention that 0! = 1. Your book writes this ${}_{n}C_{k}$.

k! means 1 x 2 x x k.

These are called combinations.

For instance, pick 2 cards from a deck. P(Ace and King, in either order)? There are n = 52 cards in the deck.

Thus there are C(52,2) = 52! / (2! 50!) = 1326 different possible combinations. If each combination is equally likely, then each combination has a probability of 1/1326.

How many combinations are AK? 4 aces, and for each choice of ace, there are 4 kings to go with it, so there are $4 \times 4 = 16$ such combinations. Each has a probability of 1/1326, so P(AK) = 16/1326.

8. Expected value.

The *expected value* or *mean* of a random variable is the long-term average, if we observe it over and over.

e.g. Mean of a die roll. 1/6(1) + 1/6(2) + ... + 1/6(6) = 3.5.