Stat 13, Thu 5/10/12.

- 1. CLT again.
- 2. Cls.
- 3. Interpretation of a CI.
- 4. Examples.
- 5. Margin of error and sample size.
- 6. Cls using the t table.
- 7. When to use z* and t*.

Read ch. 5 and 6. Hw5 is due Tue, 5/15. Midterm 2 is Thur, 5/17. On Thur, 5/17, I won't be able to have my usual office hour from 230 to 3:30, so it will be instead from 1:30 to 2:15pm.

1. Central Limit Theorem (CLT).

If you have a SRS (or observations are iid), and n is large (or the population is normally distributed), then \overline{x} is normally distributed with mean μ and std deviation $\frac{\sigma}{\sqrt{n}}$, where σ is the std deviation of the population and n is the sample size.

2. Cls.

The examples from last class were a little artificial, because we KNEW the population mean μ .

Usually you take a sample because you don't know μ . We then use the sample mean \bar{x} to estimate the population mean μ .

But what if we want a range, or interval, where we think μ is likely to fall, based on \overline{x} ? That's called a confidence interval (CI). We know from the CLT that \overline{x} is normally distributed with mean μ and std deviation $\frac{\sigma}{\sqrt{n}}$. This means the difference between \overline{x} and μ is typically around $\frac{\sigma}{\sqrt{n}}$. So from this info, we can tell given \overline{x} where μ seems likely to lie.

For instance, if we know $\overline{x} = 10$, and $\frac{\sigma}{\sqrt{n}} = 1$, then it seems pretty likely that μ is between 9 and 11, and very likely between 8 and 12.

The way to get a c%-confidence interval using the Z table:

* First find the values from the table that contain the middle c% of the area under the standard normal curve.

If c = 95, that means 2.5% is to the right of the region, and 2.5% (0.025) is to the left, so you look in Table A til you find 0.025 and you see the appropriate value is 1.96. We call this $z^* = 1.96$.

(or see bottom row of table 4 or in back of book: 95% corresponds to 1.96. 80% would correspond to 1.282.)

The way to get a c%-confidence interval using the Z table:

* First find the values from the table that contain the middle c% of the area under the standard normal curve.

If c = 95, that means 2.5% is to the right of the region, and 2.5% (0.025) is to the left, so you look in Table A til you find 0.025 and you see the appropriate value is 1.96. We call this $z^* = 1.96$.

(or see bottom row of table 4 or in back of book: 95% corresponds to 1.96. c = 80 would correspond to $z^* = 1.282$.)

* Now, just use the formula: \overline{X} +/- $z^* \frac{\sigma}{\sqrt{n}}$, and you have your CI.

For a different confidence level besides 95%, the value of z* would change. The use of this formula is based on the CLT. It can only be used if the following assumptions are met:

- (i) SRS (or somehow you know that the observations are iid), AND
- (ii) n is large (or population is \sim normal and σ is known).

Typically you don't know σ . If n is large you can just plug in s, the standard deviation of the observations in your SAMPLE. In the case of 0-1 data, $s = \sqrt{\hat{p}\hat{q}}$, where \hat{p} and \hat{q} are the proportion of 0's and 1's in the sample.

3. Interpretation of a 95% CI: there's a 95% chance that the CI contains the true population mean μ .

The CI is a random variable (statistic, estimate):

If another sample were taken, there'd be a different sample mean \overline{x} , and therefore a different CI.

Unless we're really unlucky, our CI will contain μ . That is, if we kept sampling over and over, and each time we got a different \bar{x} and a different 95%-CI, then 95% of these CIs would contain μ .

4. Examples.

Suppose we don't know the mean amount of wet manure produced by the avg cow. We sample 400 cows and find that in our sample, the mean is $\bar{x} = 18$ pounds, and the sample standard deviation is s = 5 pounds.

Find a 92%-CI for the population mean.

Answer: It's a SRS and n = 400 is large, so the standard formulas apply, but we don't know σ so we will plug in s. For a 92%-CI, we want the values containing 92% of the area, which means 4% is to the right and 4% is to the left, so from the table, $z^* = 1.75$. The CI is \overline{x} +/- $(z^*)s/\sqrt{n} = 18$ +/- $(1.75)(5) \div \sqrt{400} = 18$ +/- 0.4375.

Another example.

Suppose we don't know the percentage of people with peanut allergies. We take a SRS of 900 people. We find that 72 of them (8.0%) of them have peanut allergies. Find a 90%-CI for the population percentage of people with peanut allergies.

Answer: This is a 0-1 question. It's a SRS and n is large because there are 72 with allergies and 828 without, and both of these are \geq 10. So the standard formulas apply.

For a 90%-CI, $z^* = 1.645$ from the bottom row of Table 4. The formula for the 90%-CI is \bar{x} +/- z^* σ/\sqrt{n} .

We don't know σ so use $s = \sqrt{\hat{p}\hat{q}} = \sqrt{(8.0\% \text{ x } 92.0\%)} \sim 0.271$.

Our 90%-CI is 8.0% +/- (1.645) (0.271) / $\sqrt{900}$ which is 8.0% +/- 1.486%.

5. Margin of error and sample size.

This +/- part is called a margin of error.

5. Margin of error and sample size.

This +/- part is called a margin of error (m in the book). $m = z^* \sigma / \sqrt{n}$.

Suppose you know what margin of error, m, you want. But you don't know what sample size n you need.

Just let $m = z^* \sigma / \sqrt{n}$. Solving for n, we get $n = (z^* \sigma / m)^2$.

This tells you how large the sample size needs to be to achieve the margin of error. Typically for margin of error you want a 95%-confidence level, so $z^* = 1.96$, unless otherwise specified.

Example: Continuing with peanut allergies, we took a SRS of 900 people and found that 72 of them (8.0%) of them had peanut allergies and a 90%-CI for the population percentage of people with peanut allergies was 8.0% +/- 1.486%. How many *more* people are needed to get this margin of error for the 90%-CI down to 1%?

Answer: $n = (z^* \sigma / m)^2$. Here it's a 90%-Cl so $z^* = 1.645$. σ is unknown so use $s = \sqrt{(8.0\% \times 92.0\%)} \sim 0.271$. m = 1%. So, $n = (1.645 \times 0.271 / .01)^2 \sim 1987$. We already have 900 so we need 1087 more.

6. Using the t table.

Assumptions for CIs using the Z (std normal) table:

- (i) SRS (or somehow you know that the observations are iid),
- AND (ii) n is large (or the population is normal and σ is known).

Under these conditions, the CLT says that \bar{x} is normally distributed with mean μ and std deviation $\frac{\sigma}{\sqrt{n}}$, so a CI is \bar{x} +/- $z^*\frac{\sigma}{\sqrt{n}}$, and you can substitute s for σ .

If n is small and you know the population is normal, then s might be substantially different from σ . If σ is unknown but estimated using s, then use of the t table is appropriate, rather than the Z table.

Specifically, if you have:

- (i) SRS (or the observations are iid),
- AND (ii) population is normal,
- AND (iii) σ is unknown, and estimated with s,

then \overline{x} is t_{n-1} distributed with mean μ and std deviation $\frac{\partial}{\sqrt{n}}$, so a CI is \overline{x} +/- t* s/ \sqrt{n} . t* is given in Table 4 or the back of the book. n-1 is the "degrees of freedom" (df). Can't use the Z table when n is small and distribution of the population is unknown.

Example using the t table.

Suppose you take a SRS of 10 patients with hand, foot and mouth disease and record their ages. You find that \bar{x} is 12 and s = 7. Find a 95% CI for μ , the mean age among the whole population of patients with hand, foot and mouth disease, assuming the ages in this population are normally distributed.

Answer.

Here we have a SRS, the pop. is normal, and σ is unknown, so use the t table. df = n-1 = 10-1 = 9. From Table 4, for a 95% CI, with df = 9, t* = 2.26. So, the 95% CI is \bar{x} +/- t* s/ \sqrt{n} = 12 +/- 2.262 (7)/ $\sqrt{10}$ = 12 +/- 5.01, or the interval (6.99,17.01).

Note that if the population is 0s and 1s, then this contradicts the assumption that the population is normal, so you'd never use the t table with this type of data.

7. When to use z* and t*.

The book seems to always recommend using t* rather than z*.

- a) If it's a simple random sample (SRS) and the population is normal, σ is unknown, and n is small (< 25), then use t*.
- b) If it's a SRS and the population is normal, σ is known, and n is small (< 25), then use z^* .
- c) If it's a SRS and n is large, then t* and z* are very close together, so it doesn't really matter which you use. The book recommends t*, but I'm going to suggest you use z* since it's easier to determine, especially when the sample size is such that the df isn't a value in the table on the last page of the book. On the hw, I will tell the reader to accept either t* or z* for this case, and similarly on my exams.
- d) One thing that's crucial to me is that you understand that, if the population might NOT be normal and n is NOT large, then neither t* nor z* is appropriate.