Stat 13, Intro. to Statistical Methods for the Life and Health Sciences. - 1. echinacea example, continued. - 2. Sampling, bias, and students example. Read chapters 2 and 3. #### 1. Rejecting Ho vs. accepting Ha. Cold and flu on MBCNEWS.com # Got a cold? Sorry, echinacea won't help much Study shows the popular herbal remedy may bring milder symptoms — but that could be due to chance Recommend 7 Health » Diet + Fitness | Living Well | Parenting + Family Echinacea fails to curb the common cold #### Rejecting Ho vs. accepting Ha. Today, most of the evidence seems to indicate that echinacea does boost the immune system a little bit and help to fight colds. From WebMD: "Extracts of echinacea do seem to have an effect on the immune system, your body's defense against germs. Research shows it increases the number of white blood cells, which fight infections. A review of more than a dozen studies, published in 2014, found the herbal remedy had a very slight benefit in preventing colds." Example 2.1A We will look at data collected from the registrar's office from the College of the Midwest for ALL students for Spring 2011 | Student ID | Cumulative GPA | On campus? | |------------|----------------|------------| | 1 | 3.92 | Yes | | 2 | 2.80 | Yes | | 3 | 3.08 | Yes | | 4 | 2.71 | No | | 5 | 3.31 | Yes | | 6 | 3.83 | Yes | | 7 | 3.80 | No | | 8 | 3.58 | Yes | | | | | - What type of variable is "On campus"? - What type is Cumulative GPA? | Student ID | Cumulative GPA | On campus? | |------------|----------------|------------| | 1 | 3.92 | Yes | | 2 | 2.80 | Yes | | 3 | 3.08 | Yes | | 4 | 2.71 | No | | 5 | 3.31 | Yes | | 6 | 3.83 | Yes | | 7 | 3.80 | No | | 8 | 3.58 | Yes | | | | | Here are graphs (a histogram and a bar graph) representing all of the 2919 students at the College of the Midwest for our two variables of interest. - We usually don't have information on an entire population like we do here. - We usually need to make inferences about a population based on a sample. - Suppose a researcher asks the first 30 students she finds on campus one morning whether they live on campus. This would be a quick and convenient way to get a sample. #### For this scenario: - What is the population? - What is the sample? - What is the parameter - What is the statistic? - Do you think this quick and convenient sampling method will result in a similar sample proportion to the population proportion? - The researcher's sampling method might overestimate the proportion of students that live on campus because if it is taken early in the morning most of those that live off campus might not have arrived yet. - We call this sampling method biased. - A sampling method is biased if statistics from samples consistently over or under-estimate the population parameter. - Bias is a property of a sampling method, not the sample - A method is biased if on average its results are not representative. - Sampling bias also depends on what is measured. - Would the morning sampling method be biased in estimating the average GPA of students at the college? - What about estimating the proportion of students wearing orange shirts? - What's a better way of selecting a representative sample? - Use a *random* mechanism to select the observational units - Don't rely on convenience samples - A Simple Random Sample (SRS) is where every collection of size n is equally likely to be the sample selected from the population. - How could we take a Simple Random Sample of 30 students from the College of the Midwest? - Represent each student by ID numbers 1 to 2919 - Have the computer randomly select 30 numbers between 1 and 2919 IDs of the 30 people selected, along with their cumulative GPA and residential status | ID | Cum
GPA | On campus? | ID | Cum
GPA | On campus? | ID | Cum
GPA | On campus? | |------|------------|------------|------|------------|------------|------|------------|------------| | 827 | 3.44 | Υ | 844 | 3.59 | N | 825 | 3.94 | Υ | | 1355 | 2.15 | Υ | 90 | 3.30 | Υ | 2339 | 3.07 | N | | 1455 | 3.08 | Υ | 1611 | 3.08 | Υ | 2064 | 3.48 | Υ | | 2391 | 2.91 | Υ | 2550 | 3.41 | Υ | 2604 | 3.10 | Υ | | 575 | 3.94 | Υ | 2632 | 2.61 | Υ | 2147 | 2.84 | Υ | | 2049 | 3.64 | N | 2325 | 3.36 | Υ | 2590 | 3.39 | Υ | | 895 | 2.29 | N | 2563 | 3.02 | Υ | 1718 | 3.01 | Υ | | 1732 | 3.17 | Υ | 1819 | 3.55 | N | 168 | 3.04 | Υ | | 2790 | 2.88 | Υ | 968 | 3.86 | Υ | 1777 | 3.83 | Υ | | 2237 | 3.25 | Υ | 566 | 3.60 | N | 2077 | 3.46 | Υ | - What is the average cumulative GPA for these 30 students? - $-\bar{x}$ is the sample average - $-\bar{x} = 3.24$ - What proportion live on campus? - $-\hat{p}$ is the sample proportion - $-\hat{p} = 0.80$ - μ is the population mean. - π is the population proportion. - How do we know if \bar{x} and \hat{p} are close to the population values, μ and π ? - A different sample of 30 students would probably have had different values. - How are these statistics useful in estimating the population parameter values? - Let's take more simple random samples of 30 students to examine the null distribution of the statistics from other samples. - We took 5 different SRSs of 30 students - Each sample gives different statistics - This is sampling variability. - The values don't change much: - Average GPAs range from 3.22 to 3.40 - Sample proportions range from 0.63 to 0.83 | Random sample | 1 | 2 | 3 | 4 | 5 | |-------------------------|------|------|------|------|------| | Average GPA () | 3.22 | 3.29 | 3.40 | 3.26 | 3.25 | | proportion on campus () | 0.80 | 0.83 | 0.77 | 0.63 | 0.83 | - Population parameters: - $-\mu$ = 3.288 - $-\pi \approx 0.776$ (2265/2919). - What do the parameters describe? - The true average cumulative GPA and the true proportion on campus of the 2919 students - The statistics tend to be close to the parameters. | Random sample | 1 | 2 | 3 | 4 | 5 | |-------------------------|------|------|------|------|------| | Average GPA () | 3.22 | 3.29 | 3.40 | 3.26 | 3.25 | | proportion on campus () | 0.80 | 0.83 | 0.77 | 0.63 | 0.83 | We took 1000 SRSs and have graphs of the 1000 sample means (for the GPAs) and 1000 sample proportions (for living on campus). The mean of each distribution falls near the population parameter. - What would happen if we took all possible random samples of 30 students from this population? - The averages of the statistics would match the parameters exactly - Statistics computed from SRSs cluster around the parameter. - Why is this an unbiased sampling method? - There is no tendency to over or underestimate the parameter. - The sampling method and statistic you choose determine if a sampling method is biased. - A sample mean of a simple random sample is an unbiased estimate of the population mean. Same for proportions instead of means. - We can generalize when we use simple random sampling because it creates: - A sample that is representative of the population. - A sample statistic that is unbiased and thus close to the parameter for large n. - If the researcher at the College of the Midwest uses 75 students instead of 30 with the same early morning sampling method will it be less biased? - No. Selecting more students in the same manner doesn't fix the tendency to oversample students who live on campus. - A smaller sample that is random is actually more accurate. - What is an advantage of a larger sample size? - Less sample to sample variability.