
Stat 13, Intro. to Statistical Methods for the Life and Health Sciences.

1. Sample size. 
2. Statistic and parameter.
3. Categorical and quantitative variables.
4. Statistical significance and testing.
5. Null and alternative hypotheses.
6. Z statistic.
7. Simulating null distributions. 
8. p-values. 
9. Heart transplant example. 
10. Standardized statistic. 
11. Note on 1-sided and 2-sided tests. 

Read through chapter 1. 
The course website is http://www.stat.ucla.edu/~frederic/13/W24 
No class Mon Jan15. 
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1. Sample size. 

Each record typically corresponds to an observational unit, and the number of observed 
units in the analysis is called the sample size, n. 

In some situations, the population size might be known and you might have a Simple 
Random Sample (SRS) from the population. The sample size then is the number of people in 
your sample. 
For instance, there are 4 million births every year in the United States.
Suppose we sample 1,000 of them at random from this population, and record for each 
pregnancy, the number of weeks of pregnancy, and the height, weight and gender of the 
baby at birth. 
Here n = 1,000. Each baby is an observational unit.

2. Statistic and parameter. 

A statistic is a numerical description of your sample. Another word for statistic is random 
variable. The sample is typically considered random, and if a different sample were 
obtained, then the statistic might be different.

A parameter, however, is a property of the whole population. If a different sample were 
obtained, the parameter would not change.
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Parameters are properties of the population.  Typically unknown.  Represented by 
Greek letters (like µ or s).
Statistics are properties of the sample.
Represented by Roman letters (like     or s).
Typically, you’re interested in a value of a parameter.  But you can’t know it. So you 
estimate it with a statistic, based on the sample.

There are two means and two standard deviations.
The sample mean     and sample std deviation s are statistics.
Define the population average µ as the sum of all values in the
population ÷ the number of subjects in the population. (parameter).
It turns out       is an unbiased estimate of µ.
That is,     is neither higher nor lower, on average, than µ, if we sampled repeatedly.

3. Categorical and quantitative variables. 
For a quantitative variable, the responses are all numbers and the difference 
between two observations has a natural interpretable meaning. For categorical 
variables there is no such meaning to the difference between two observations. 
The line between the two terms can sometimes be a bit blurry.
e.g. gender of baby would be categorical. 
height, weight, and number of weeks would be quantitative.
eye color, birth type, or pain medication used might be examples of categorical 
variables here with multiple possibilities. 3



4. Statistical significance and Testing.
According to the CDC, 4 million babies were born in the U.S. in 2014 and 10% were born 
preterm (< 37 weeks). Suppose you take a simple random sample (SRS) of women with HG 
and you want to test whether the proportion preterm among women with HG might really 
be different from 10%. 
Suppose in the sample of n=254 mothers with HG, 𝑝̂ = 39/254 (15.35%) are preterm.
You want to test whether something like this could reasonably have happened just by 
chance alone, if the populations were actually identical with respect to delivery time.
Otherwise we conclude that the two population proportions are probably not equal, i.e. 
the difference observed is statistically significant. 
There are different tests, but we’ll just talk about the Z-test (or normal test) for now.
Assumptions:

SRS (or obs are known to be independent)
AND n is large (or pop is known to be normally distributed).

For testing proportions, there should be ≥ 10 of each type of response in the sample.
Here we have 39 preterm and 215 not preterm.

We will talk later in the course about these assumptions and also about the t test. If n is 
small, pop. is normal, and s is unknown, then use t instead of Z.
After checking assumptions, the remaining steps in testing are
* stating the hypotheses,
* computing the test statistic (Z in this case),
* computing the p-value, and
* concluding.

4



5. Null and alternative hypotheses. 
Let π be the proportion preterm in the population from which the sample was drawn.
Null hypothesis (Ho): π = 10%.
This means that any observed difference between the sample proportion, 𝑝̂, and 10%, was
due to chance alone. Usually we specify these hypotheses numerically.
Alternative hypothesis (Ha): π ≠ 10%. Difference is not due to chance alone. (2-sided test.)

Or Ha: π > 10%. Or Ha: π < 10%. (1-sided tests). We will talk about this next lecture.
When in doubt, do a two-sided test, unless there is a specific reason to do a 1-sided test.

6. Z-statistic.
A test statistic is a summary of the strength of the evidence in your data.
Z-statistic here = (𝑝̂ – 10%) ÷ SE.
SE means Standard Error. We will talk about ways to get the SE either analytically or via 
simulations in a bit. For proportion problems like this, SE = √[π(1-π)/n].
Here, analytically, the SE would be √[.10 x .90 / 254] ~ 1.88%.
Z = (15.34% - 10%)/1.88% = 2.84.
The book calls Z a standardized test statistic.
It indicates how many SDs the observed statistic is above its hypothesized value under Ho.
The book also calls the SE the "standard deviation of the null distribution" but it is usually 
called the standard error or SE.
A value of Z far from 0 (more than 2 or less than -2) indicates strong evidence against the 
null hypothesis. A value of Z between -2 and 2 indicates weak evidence against the null.
|Z| > 3 indicates very strong evidence against the null. 



7. Simulating null distributions and Standard Errors.

We observe 𝑝̂ = 15.34% in our sample, and under Ho, the population percentage π = 10%. 
So we see a difference of 5.34%. This is our quantity of interest, and it is usually a difference 
like this. We want to see if that quantity of interest, 5.34%, is bigger than what we'd expect 
by chance under the null hypothesis.

The Standard Error (SE) is the standard deviation of the quantity of interest under the null 
hypothesis. 

Many stat books just tell you the formulas to get the SE. Your book is different. They want 
to emphasize that in many cases you can estimate the SE by simulations. 

In this example, under Ho, women with HG are just like the rest in terms of probability of 
delivering preterm. We have a SRS of size 254 from a population with π = 10% having 
preterm delivery.  We can simulate 254 draws on the computer, where each draw is 
independent of the others and has a 10% chance of being preterm, and then see what 
results we get.  In R, I did 
x = runif(254)
y = (x<0.1)
phat = mean(y)

The first time, I got phat = 0.1259843. 12.60%.
I tried it many times, and here is what I got. 6
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Simulating null distributions and Standard Errors.

We observe p = 15.34% in our sample, and under Ho, the population percentage π = 10%. 
So we see a difference of 5.34%. This is our quantity of interest, and it is usually a difference 
like this. We want to see if that quantity of interest, 5.34%, is bigger than what we'd expect 
by chance under the null hypothesis.

The Standard Error (SE) is the standard deviation of the quantity of interest under the null 
hypothesis. 

Many stat books just tell you the formulas to get the SE. Your book is different. They want 
to emphasize that in many cases you can estimate the SE by simulations. 

In this example, under Ho, women with HG are just like the rest in terms of probability of 
delivering preterm. We have a SRS of size 254 from a population with π = 10% having 
preterm delivery.  We can simulate 254 draws on the computer, where each draw is 
independent of the others and has a 10% chance of being preterm, and then see what 
results we get.  In R, I did 
x = runif(254)
y = (x<0.1)
phat = mean(y)

The first time, I got phat =  0.1259843. 12.60%.
I tried it many times, and here is what I got. 7



a = rep(0,10000)
for(i in 1:10000){ x = runif(254); a[i] = mean(x<.1)}
hist(a*100,main="simulated preterm percentages", nclass=100,

xlab="percentage preterm in sample")
abline(v=15.34)l
sd(a)                           ## 0.01885409
sqrt(.10 * .90 / 254) ## 0.01882367
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8. p-values. 
The p-value is the probability, assuming Ho is true, that the test statistic will be at least as
extreme as that observed. 

"What are the chances of that?" 

The key idea is that the convention is to compute the probability of getting something as 
extreme as you observed or more extreme. 
e.g. n = 5, πo = 50%,#𝑝= 4/5. The probability that 𝑝̂ = 4/5 is 15.625%. 
However, what if n = 400, πo = 50%, and 𝑝̂ = 201/400? Now the probability of getting 201/400 is 
3.97%, but obviously the data are consistent with the null hypothesis that π = 50%.

Typically, one does a two-sided test, which means that by "extreme", we mean extreme in either 
direction. We want to see how in line our observed value of 𝑝̂ =15.34% is with our null 
hypothesis of a population percentage of 10%. Could our sample of 15.34% preterm have come 
from a population of 10% preterm? A simulation with 𝑝̂ > 15.34% would be more extreme than 
what we observed, and also a simulation with 𝑝̂ < 4.66% would be more extreme than what we 
observed. 
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Guidelines for evaluating strength of 
evidence from p-values

• p-value >0.10, not much evidence against null 
hypothesis

• 0.05 < p-value < 0.10, moderate evidence against the 
null hypothesis

• 0.01 < p-value < 0.05, strong evidence against the 
null hypothesis

• p-value < 0.01, very strong evidence against the null 
hypothesis



phat = rep(0,10000)
for(i in 1:10000){ x = runif(254); phat[i] = mean(x<.1)}
hist(phat*100,main="simulated preterm percentages", nclass=100,

xlab="percentage preterm in sample")
abline(v=15.34)l
mean(abs(phat-.10)>.0534)         ## 0.0051
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Continuing the HG example, using simulations of Ho we obtained 
samples of 254 values, and in 0.51% of these samples, at least 15.34% 
or more were preterm or less than 4.66% were preterm.
So we'd say the p-value is 0.51% for this two-sided test.
The observed difference is highly significant, and we have strong 
evidence against the null hypothesis of HG pregnancies having a 10% 
chance of being preterm like other pregnancies.
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9. Heart Transplant Example. 

Example 1.3



Heart Transplants

• The British Medical Journal (2004) reported 
that heart transplants at St. George’s Hospital 
in London had been suspended after a spike in 
the mortality rate

• Of the last 10 heart transplants, 80% had 
resulted in deaths within 30 days 

• This mortality rate was over five times the 
national average. 

• The researchers used 15% as a reasonable 
value for comparison.



Heart Transplants

• Does a heart transplant patient 
at St. George’s have a higher 
probability of dying than the 
national rate of 0.15?  

• Observational units
– The last 10 heart transplantations 

• Variable
– If the patient died or not

• Parameter
– The actual probability of a death after a 

heart transplant operation at St. George’s 



Heart Transplants

• Null hypothesis: Death rate at St. George’s is 
the same as the national rate (0.15).

• Alternative hypothesis: Death rate at St. 
George’s is higher than the national rate.

• H0: 𝜋 = 0.15    Ha: 𝜋 > 0.15 

• Our statistic is 8 out of 10  ( "𝑝 = 0.8)



Heart Transplants

Simulation
• Null distribution of 1000 repetitions of 

drawing samples of 10 “patients” where the 
probability of death is equal to 0.15. 

What is the 
p-value?



Heart Transplants

Strength of Evidence
• Our p-value is 0, so we have very strong 

evidence against the null hypothesis. 
• Even with this strong evidence, it would be 

nice to have more data. 
• Researchers examined the previous 361 heart 

transplantations at St. George’s and found 
that 71 died within 30 days.

• Our new statistic, "𝑝, is 71/361 ≈ 0.1967



Heart Transplants

• Here is a null distribution and p-value based 
on the new statistic.



Heart Transplants

• The p-value was about 0.003
• We still have very strong evidence against the null hypothesis, 

but not quite as strong as the first case

• Another way to measure strength of evidence is to 
standardize the observed statistic



Heart Transplants

• The p-value was about 0.003
• We still have very strong evidence against the null hypothesis, 

but not quite as strong as the first case

• Another way to measure strength of evidence is to 
standardize the observed statistic



10. The Standardized Statistic 
• The standardized statistic is the number of standard deviations our sample 

statistic is above the mean of the null distribution (or below the mean if it 
is negative).

• z = sta&s&c ! mean of null distribu&on
standard devia&on of null distribu&on

• The sd of the null distribution is the standard error. 
• For a single proportion, we will use the symbol z for standardized statistic.
• In the formula above, for the mean, we should use the long-term 

proportion (probability) given in the null hypothesis. If you do simulations, 
the mean of the simulated statistics should be close to this. 



• Here are the standardized 
statistics for our two studies.

𝑧 =
0.80 − 0.15
0.113 = 5.75 𝑧 =

0.197 − 0.15
0.018 = 2.61

• In the first, our observed statistic was 5.75 standard 
deviations above the mean.

• In the second, our observed statistic was 2.61 
standard deviations above the mean. 

• Both of these are very strong, but we have stronger 
evidence against the null in the first.

The Standardized Statistic



Guidelines for strength of evidence

• If a standardized statistic is below -2 or above 
2, we have strong evidence against the null.

Standardized Statistic Evidence Against Null
between -1.5 and 1.5   not much 

below -1.5 or above 1.5 moderate
below -2 or above 2 strong
below -3 or above 3 very strong



11. A quick note on 1-sided versus 2-
sided tests.

• On my exams, I will tell you explicitly whether to do 
a 1 or 2 sided test. 

• On hw problems, you might have to decide 
whether to do a 1-sided or 2-sided test. 

• With the hw, if in the problem you are given that 
you are only looking for evidence in one direction 
as evidence against the null hypothesis, then you 
do a 1-sided test. If you are looking for any
difference in proportions as evidence against the 
null hypothesis, then do a 2-sided test. 



Two-Sided Tests

• The change to the alternative hypothesis 
affects how we compute the p-value.

• Remember that the p-value is the probability 
(assuming the null hypothesis is true) of 
obtaining a proportion that is equal to or 
more extreme than the observed statistic

• In a two-sided test, more extreme goes in 
both directions. 


