
Stat 13, Intro. to Statistical Methods for the Life and Health Sciences.

1. Simulations for paired data and rounding first base example continued. 

2. Theory based approach for paired data, M&Ms example. 

3. Multiple test, publication bias, and Reboxetine. 
4. Two quantitative variables, scatterplots and correlation. 

Read chapters 7 and 10.  

HW4 is due Wed, Mar12, 1159pm. 10.1.8, 10.3.14, 10.3.21, and 10.4.11. 
The problems are on the next 5 slides. 

The course website is http://www.stat.ucla.edu/~frederic/13/W25 . 

If I haven't given your midterm back to you yet, I can do so after class. 
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Subject 1 2 3 4 5 6 7 8 9 10

narrow 

angle
5.70 5.50 5.85 5.40 5.50 5.15 …

wide angle
5.75 5.40 5.70 5.35 5.35 5.00 …

diff -0.05 0.10 0.10 0.15 -0.05 0.05 0.15 0.15 0.10 …

5.50

5.55

-0.050.05

5.60

5.50

-0.10

5.55

5.60

0.05

5.80

5.70

-0.10

Random Swapping

ҧ𝑥d = 0.016



More Simulations 

-0.002

-0.002 -0.016
0.030 -0.011

-0.007

0.467
-0.002-0.007

0.007 -0.034

-0.067

-0.002 -0.025

0.020

0.020

0.002

-0.016

-0.007

0.002

0.066

-0.030

-0.002

0.002

0.016

Simulated Mean Differences 0.075-0.075

With 26 repetitions of creating simulated 
mean differences, we did not get any that 
were as extreme as 0.075.



First Base

• Here is a null distribution of 1000 simulated mean differences. 

• Notice it is centered at zero, which makes sense in agreement with the 
null hypothesis. 

• Notice also the SD of these MEAN DIFFERENCES is 0.024. This is the SE.         

• SD of time differences was 0.0883. SE = SD of mean time diff.s = .024. 

• Where is our observed statistic of 0.075?



First Base

• Only 1 of the 1000 repetitions of random 
swappings gave a ҧ𝑥𝑑 value at least as extreme 
as 0.075. 



First Base

• We can also standardize 0.075 by dividing 
by the SE of 0.024 to see our standardized 

statistic = 
0.075

0.024
= 3.125.



Rounding First Base

• With a p-value of 0.1%, we have very strong 
evidence against the null hypothesis. The running 
path makes a statistically significant difference 
with the wide-angle path being faster on average. 

• We can draw a cause-and-effect conclusion since 
the researcher used random assignment of the 
two base running methods for each runner. 

• There was not much information about how these 
22 runners were selected though so it is unclear if 
we can generalize to a larger population. 



3S Strategy

• Statistic: Compute the statistic in the sample. In this case, 
the statistic we looked at was the observed mean 
difference in running times.

• Simulate: Identify a chance model that reflects the null 
hypothesis. We tossed a coin for each runner, and if it 
landed heads we swapped the two running times for that 
runner. If the coin landed tails, we did not swap the times. 
We then computed the mean difference for the 22 
runners and repeated this process many times.

• Strength of evidence: We found that only 1 out of 1000 
of our simulated mean differences was at least as 
extreme as the observed difference of 0.075 seconds. 



First Base

• Approximate a 95% confidence interval for 𝜇d:

– 0.075 ± 1.96(0.024) seconds. 

– (0.028, 0.122) seconds. 

• What does this mean?

– We are 95% confident that, if we were to keep testing 
this indefinitely, the narrow angle route would take 
somewhere between 0.028 to 0.122 seconds longer 
on average than the wide angle route. 

Since n = 22 here, the sample size is pretty small and the 
multiplier of 1.96 is not quite correct. If we assume the 
population of differences is normal, we should use a t 
multiplier, which here would be 2.08, so the 95% CI 
would be (.025, .125). 



First Base

Alternative Analysis

• What do you think would happen if we 
wrongly analyzed the data using a 2 
independent samples procedure? (i.e. The 
researcher selected 22 runners to use the 
wide method and an independent sample of 
22 other runners to use the narrow method, 
obtaining the same 44 times as in the actual 
study.  



First Base

Ignoring the fact that it is paired data, 

we get a p-value of 0.3470.

Does it make 
sense that this 
p-value is larger 
than the one we 
obtained earlier?



2. Theory based approach 
for Analyzing Data from 

Paired Samples, and M&Ms.
Section 7.3



How Many M&Ms Would You 
Like?

Example 7.3



How Many M&Ms Would You Like?
• Does your bowl size affect how much you eat?

• Brian Wansink studied this question with college 
students over several days. 

• At one session, the 17 participants were assigned to 
receive either a small bowl or a large bowl and were 
allowed to take as many M&Ms as they would like.

• At the following session, the bowl sizes were switched for 
each participant.



How Many M&Ms Would You Like?

• What are the observational units?

• What is the explanatory variable?

• What is the response variable?

• Is this an experiment or an observational 
study?

• Will the resulting data be paired?



How Many M&Ms Would You Like?

The hypotheses:

• H0: µd = 0 

– The long-run mean difference in number of 
M&Ms taken (small – large) is 0.

• Ha: µd < 0 

– The long-run mean difference in number of 
M&Ms taken (small – large) is less than 0.



How Many M&Ms Would You Like?

• Here are the results of a simulation-based test.

• The p-value is quite large at 0.1220.



How Many M&Ms Would You Like?

• Our null distribution was centered at zero and 
fairly bell-shaped.

• Theory-based methods using the t distribution 
should be valid if  is unknown and the population 
distribution of differences is normal (we can guess 
at this by looking at the sample distribution of 
differences). Alternatively, we can use the normal 
distribution if our sample size is at least 30.

• Our sample size was only 17, but this distribution 
of differences looks pretty normal, so we will 
proceed with a t-test. 



Theory-based test

𝑡 =
ҧ𝑥𝑑
Τ𝑠𝑑 𝑛

• This kind of test is called a paired t-test. 



Theory-based results



Conclusion

• The theory-based test gives slightly different results than 
simulation, 11.7% instead of 12.2% for the p-value, but we 
come to the same conclusion.  We do not have strong 
evidence that the bowl size affects the number of M&Ms 
taken.

• We can see this in the large p-value (0.1172) and the 
confidence interval that included zero (-29.5, 7.8).

• The confidence interval tells us that we are 95% confident 
that when given a small bowl, people will take somewhere 
between 29.5 fewer M&Ms to 7.8 more M&Ms on average 
than when given a large bowl.



Why wasn't the difference statistically 
significant?

• There could be a number of reasons we didn’t get 
significant results.

– Maybe bowl size doesn’t matter.

– Maybe bowl size does matter and the difference was too 
small to detect with our small sample size.

– Maybe bowl size does matter with some foods, like 
pasta or cereal, but not with a snack food like M&Ms. 



Strength of Evidence

• We will have stronger evidence against the null 
(smaller p-value) when:

– The sample size is increased.

– The variability of the data is reduced.

– The effect size, or mean difference, is farther from 0.

• We will get a narrower confidence interval when:

– The sample size is increased.

– The variability of the data is reduced.

– The confidence level is decreased.



Conclusion

• The theory-based test gives slightly different results than 
simulation, 11.7% instead of 12.2% for the p-value, but we 
come to the same conclusion.  We do not have strong 
evidence that the bowl size affects the number of M&Ms 
taken.

• We can see this in the large p-value (0.1172) and the 
confidence interval that included zero (-29.5, 7.8).

• The confidence interval tells us that we are 95% confident 
that when given a small bowl, people will take somewhere 
between 29.5 fewer M&Ms to 7.8 more M&Ms on average 
than when given a large bowl.



3. Multiple testing and publication 
bias. 

A p-value is the probability, assuming the null hypothesis 
of no relationship is true, that you will see a difference as 
extreme as, or more extreme than, you observed. 

So, when you are looking at unrelated things, 5% of the 
time you will find a statistically significant relationship. 

This underscores the need for followup confirmation 
studies. If testing many explanatory variables 
simultaneously, it can become very likely to find something 
significant even if nothing is actually related to the 
response variable. 



Multiple testing and publication 
bias. 

* For example, if the significance level is 5%, then for 100 
tests where all null hypotheses are true, the expected 
number of incorrect rejections (Type I errors) is 5. If the 
tests are independent, the probability of at least one Type I 
error would be 99.4%. P(no Type I errors) = .95100 = 0.6%.  

* To address this problem, scientists sometimes change the 
significance level so that, under the null hypothesis that 
none of the explanatory variables is related to the 
response variable, the probability of rejecting at least one 
of them is 5%. 

* One way is to use Bonferroni's correction: with m 
explanatory variables, use significance level 5%/m. 

P(at least 1 Type I error) will be ≤ m (5%/m) = 5%. 



Multiple testing and publication bias. 

Imagine a scenario where a drug is tested many 
times to see if it reduces the incidence of some 
response variable. If the drug is tested 100 times 
by 100 different researchers, the results will be 
stat. sig. about 5 times.

If only the stat. sig. results are published, then the 
published record will be very misleading. 



Multiple testing and publication bias. 

A drug called Reboxetine made by Pfizer was 
approved as a treatment for depression in Europe 
and the UK in 2001, based on positive trials. 

A meta-analysis in 2010 found that it was not only 
ineffective but also potentially harmful. The report 
found that 74% of the data on patients who took 
part in the trials of Reboxetine were not published 
because the findings were negative. Published 
data about reboxetine overestimated its benefits 
and underestimated its harm.

A subsequent 2011 analysis indicated Reboxetine 
might be effective for severe depression though. 



4. Two quantitative variables, 
scatterplots and correlation. 

Chapter 10



Two Quantitative 
Variables: Scatterplots and 

Correlation
Section 10.1



Scatterplots and Correlation

Time 30 41 41 43 47 48 51 54 54 56 56 56 57 58

Score 100 84 94 90 88 99 85 84 94 100 65 64 65 89

Time 58 60 61 61 62 63 64 66 66 69 72 78 79

Score 83 85 86 92 74 73 75 53 91 85 62 68 72

Suppose we collected data on the relationship between the 
time it takes a student to take a test and the resulting score.  



Scatterplot

Put explanatory  
variable on the 
horizontal axis.

Put response 
variable on the 
vertical axis.



Describing Scatterplots

• When we describe data in a scatterplot, we 
describe the 

– Direction  (positive or negative)

– Form  (linear or not)

– Strength  (strong-moderate-weak, we will let 
correlation help us decide)

– Unusual Observations

• How would you describe the time and test 
scatterplot?



Correlation

• Correlation measures the strength and direction of a linear 
association between two quantitative variables.

• Correlation is a number between -1 and 1.  

• With positive correlation one variable increases, on average, 
as the other increases.

• With negative correlation one variable decreases, on average, 
as the other increases.

• The closer it is to either -1 or 1 the closer the points fit to a 
line.

• The correlation for the test data is -0.56.



Correlation Guidelines

Correlation Value Strength of 
Association

What this means

0.7 to 1.0 Strong The points will appear to be nearly a 
straight line

0.3 to 0.7 Moderate When looking at the graph the 
increasing/decreasing pattern will be 
clear, but there is considerable 
scatter.

0.1 to 0.3 Weak With some effort you will be able to 
see a slightly increasing/decreasing 
pattern

0 to 0.1 None No discernible increasing/decreasing 
pattern

Same Strength Results with Negative Correlations



Back to the test data

Actually the last three people to finish the test had scores of 
93, 93, and 97.

What does this do 
to the correlation?



Influential Observations

• The correlation changed from -0.56 (a fairly moderate 
negative correlation) to -0.12 (a weak negative 
correlation).

• Points that are far to the left or right and not in the 
overall direction of the scatterplot can greatly change the 
correlation.  (influential observations)



Correlation

• Correlation measures the strength and direction of 
a linear association between two quantitative 
variables.

– -1 < r < 1

– Correlation makes no distinction between 
explanatory and response variables.

– Correlation has no units. 

– Correlation is not resistant to outliers. It is 
sensitive. 



Learning Objectives for Section 10.1

• Summarize the characteristics of a scatterplot by describing its 
direction, form, strength and whether there are any unusual 
observations. 

• Recognize that the correlation coefficient is appropriate only 
for summarizing the strength and direction of a scatterplot 
that has linear form. 

• Recognize that a scatterplot is the appropriate graph for 
displaying the relationship between two quantitative variables 
and create a scatterplot from raw data.

• Recognize that a correlation coefficient of 0 means there is no 
linear association between the two variables and that a 
correlation coefficient of -1 or 1 means that the scatterplot is 
exactly a straight line.

• Understand that the correlation coefficient is influenced by 
extreme observations.



Note that correlation ≠ causation. 



Note that correlation ≠ causation. 



Note that correlation ≠ causation. 
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