
Stat 13, Intro. to Statistical Methods for the Life and Health Sciences.

0.	Midterms	and	hw.	
1.	Paired	data	and	studying	with	music	example.	
2.	Simulation	approach	with	paired	data	and	baseball	example.	
3.	Theory	based	approach	for	paired	data	and	M&M	example.	
4.	Multiple	testing	and	publication	bias.	
5.	Two	variables	and	correlation.	
6.	Linear	regression.	

Read	ch7	and	10.	
Hw4	is	due	Tue	and	is	10.1.8,	10.3.14,	10.3.21,	10.4.11.	
http://www.stat.ucla.edu/~frederic/13/sum17	.	
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0. Midterms and hw. 

Hw4	is	10.1.8,	10.3.14,	10.3.21,	and	10.4.11.	
10.1.8	starts	"Which	of	the	following	statements	is	correct?	A.	Changing	the	units	of	
measurements	of	the	explanatory	or	response	variable".	
10.3.14	starts	"Consider	the	following	two	scatterplots	based	on	data	gathered	in	a	
study	of	30	crickets".	
10.3.21	starts	"The	book	Day	Hikes	in	San	Luis	Obisbo	County".
10.4.11	starts	"In	a	study	to	see	if	there	was	an	association	between	weight	loss	and	
the	amount	of	a	certain	protein	in	a	person's	body	fat".	

On	the	midterm,	the	scores	are	listed	on	the	course	website	in	13midscores.xlsx.	
They	are	out	of	20.	
The	mean	was	15.1	=	75.5%.	Median	=	75%.	
SD	=	16.5%.	
The	grading	is	the	standard	scale,	i.e.	90-100	=	A	range,		80-89.9	=	B	range,	etc.	
I	do	reward	improvement	on	the	final.	
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Paired	Data.
Chapter	7



Introduction
• The	paired	data	sets	in	this	chapter	have	one	pair
of	quantitative	response	values	for	each	obs.	unit.	
• This	allows	for	a	comparison	where	the	other	
possible	confounders	are	as	similar	as	possible	
between	the	two	groups.	
• Paired	data	studies	remove	individual	variability	by	
looking	at	the	difference	score	for	each	subject.	
• Reducing	variability	in	data	improves	inferences:
• Narrower	confidence	intervals.	
• Smaller	p-values	when	the	null	hypothesis	is	false.	
• Less	influence	from	confounding	factors.	



1.	Paired	data	and	
studying	with	music	
example.	
Example	7.1



Studying	with	Music
• Many	students	study	while	listening	to	music.		
• Does	it	hurt	their	ability	to	focus?
• In	“Checking	It	Out:	Does	music	interfere	with	
studying?”	Stanford	Prof	Clifford	Nass claims	the	
human	brain	listens	to	song	lyrics	with	the	same	
part	that	does	word	processing.	
• Instrumental	music	is,	for	the	most	part,	
processed	on	the	other	side	of	the	brain,	and	
Nass	claims	that	listening	to	instrumental	music	
has	virtually	no	interference	on	reading	text.		



Studying	with	Music
Consider	the	experimental	designs:
Experiment	A — Random	assignment	to	2	groups
• 27	students	were	randomly	assigned	to	1	of	2	groups:	

• One	group	listens	to	music	with	lyrics.	
• One	group	listens	to	music	without	lyrics.	

• Students	play	a	memorization	game	while	listening	to	
the	particular	music	that	they	were	assigned.



Studying	with	Music
Experiment	B	— Paired	design	using	repeated	measures
• All	students	play	the	memorization	game	twice:	
• Once	while	listening	to	music	with	lyrics	
• Once	while	listening	to	music	without	lyrics.	

Experiment	C	— Paired	design	using	matching
• Sometimes	repeating	something	is	impossible	(like	testing	
a	surgical	procedure)	but	we	can	still	pair.
• Test	each	student	on	memorization.
• Match	students	up	with	similar	scores	and	randomly:
• Have	one	play	the	game	while	listening	to	music	with	
lyrics	and	the	other	while	listening	to	music	without	
lyrics.	



Studying	with	Music
We	will	focus	on	the	repeated	measures	type	of	pairing.
• What	if	everyone	could	remember	exactly	2	more	
words	when	they	listened	to	a	song	without	lyrics?	
• Using	Experiment	A,	there	could	be	a	lot	of	overlap	
between	the	two	sets	of	scores	and	it	would	be	
difficult	to	detect	a	difference,	as	shown	here.

Without 
Lyrics

With Lyrics



Studying	with	Music
• Variability	in	people’s	memorization	abilities	may	
make	it	difficult	to	see	differences	between	the	
songs	in	Experiment	A.	
• The	paired	design	focuses	on	the	difference in	
the	number	of	words	memorized,	instead	of	the	
number	of	words	memorized.
• By	looking	at	this	difference,	the	variability	in	
general	memorization	ability	is	taken	away.



Studying	with	Music
• In	Experiment	B,	there	would	be	no	variability	at	
all	in	our	hypothetical	example.	
• While	there	is	substantial	variability	in	the	
number	of	words	memorized	between	students,	
there	would	be	no	variability	in	the	difference	in	
the	number	of	words	memorized.	All	values	
would	be	exactly	2.		
• Hence	we	would	have	extremely	strong	evidence	
of	a	difference	in	ability	to	memorize	words	
between	the	two	types	of	music.



Pairing	and	Random	Assignment

• Pairing	often	increases	power,	and	makes	it	
easier	to	detect	statistical	significance.		
• Can	we	make	cause-and-effect	conclusions	in	
paired	design?		
• Should	we	still	have	random	assignment?



Pairing	and	Random	Assignment

In	our	memorizing	with	or	without	lyrics	example:	
• If	we	see	significant	improvement	in	performance,	is	it	
attributable	to	the	type	of	song?
• What	about	experience?	Could	that	have	made	the	
difference?
• What	is	a	better	design?
• Randomly	assign	each	person	to	which	song	they	hear	
first:	with	lyrics	first,	or	without.	
• This	cancels	out	an	“experience”	effect



Paring	and	Observational	Studies

You	can	often	do	matched	pairs	in	observational	
studies,	when	you	know	the	potential	
confounder	ahead	of	time.	
If	you	are	studying	whether	the	portacaval shunt	
decreases	the	risk	of	heart	attack,	you	could	
match	each	patient	getting	the	shunt	with	a	
patient	of	similar	health	not	getting	the	shunt.	
If	you	are	studying	whether	lefthandedness causes	
death,	and	you	want	to	account	for	age	in	the	
population,	you	could	match	each	leftie	with	a	
rightie of	the	same	age,	and	compare	their	ages	at	
death.	



2.	Simulation-based	
Approach	for	Analyzing	
Paired	Data,	and	rounding	
first	base	example.	
Section	7.2



Rounding	First	Base
Example	7.2



Rounding	First	Base
• Imagine	you’ve	hit	a	line	
drive	and	are	trying	to	
reach	second	base.
• Does	the	path	that	you	
take	to	round	first	base	
make	much	of	a	
difference?	
• Narrow	angle
• Wide	angle

Narrow

Wide



Rounding	First	Base

• Woodward	(1970)	investigated	these	base	running	
strategies.	
• He	timed	22	different	runners	from	a	spot	35	feet	past	
home	to	a	spot	15	feet	before	second.		
• Each	runner	used	each	strategy	(paired	design),	with	a	
rest	in	between.	
• He	used	random	assignment	to	decide	which	path	each	
runner	should	do	first.
• This	paired	design	controls	for	the	runner-to-runner	
variability.



First	Base
• What	are	the	observational	units	in	this	study?
• The	runners	(22	total)

• What	variables	are	recorded?	What	are	their	types	and	
roles?	
• Explanatory	variable:	base	running	method:	wide	or	
narrow	angle	(categorical)
• Response	variable:	time	from	home	plate	to	second	
base	(quantitative)

• Is	this	an	observational	study	or	an	experiment?	
• Randomized	experiment.



The	results



The	Statistics

• There	is	a	lot	of	overlap	in	the	distributions	and	substantial	
variability.	

• It	is	difficult	to	detect	a	difference	between	the	methods	
when	these	is	so	much	variation.

•

Mean SD
Narrow 5.534 0.260
Wide 5.459 0.273



Rounding	First	Base

• However,	these	data	are	clearly	paired.		
• The	paired	response	variable	is	time	difference	
in	running	between	the	two	methods	and	we	
can	use	this	in	analyzing	the	data.	



The	Differences	in	Times



The	Differences	in	Times

• Mean	difference	is	𝑥̅d	=	0.075	seconds
• Standard	deviation	of	the	differences	is	SDd =	
0.0883	sec.	
• This	standard	deviation	of	0.0883	is	smaller	than	
the	original	standard	deviations	of	the	running	
times,	which	were	0.260	and	0.273.	



Rounding	First	Base
• Below	are	the	original	dotplots	with	each	
observation	paired	between	the	base	running	
strategies.
• What	do	you	notice?	



Rounding	First	Base

• Is	the	average	difference	of	𝑥̅d	=	0.075	seconds	
significantly	different	from	0?
• The	parameter	of	interest,	µd,	is	the	long	run	
mean	difference	in	running	times	for	runners	
using	the	narrow	angled	path	instead	of	the		
wide	angled	path.				(narrow	– wide)



Rounding	First	Base
The	hypotheses:
• H0:	µd =	0	
• The	long	run	mean	difference	in	running	times	is	0.

• Ha:	µd≠ 0	
• The	long	run	mean	difference	in	running	times	is	not	0.

• The	statistic	𝑥̅d =	0.075	is	above	zero.
• How	likely	is	it	to	see	an	average	difference	in	running	
times	this	big	or	bigger	by	chance	alone,	even	if	the	base	
running	strategy	has	no	genuine	effect	on	the	times?



Rounding	First	Base

How	can	we	use	simulation-based	methods	to	find	an	
approximate	p-value?	
• The	null	hypothesis	says	the	running	path	does	not	matter.	
• So	we	can	use	our	same	data	set	and,	for	each	runner,	
randomly	decide	which	time	goes	with	the	narrow	path	
and	which	time	goes	with	the	wide	path	and	then	
compute	the	difference.	(Notice	we	do	not	break	our	
pairs.)
• After	we	do	this	for	each	runner,	we	then	compute	a	
mean	difference.	
• We	will	then	repeat	this	process	many	times	to	develop	a	
null	distribution.



Subject 1 2 3 4 5 6 7 8 9 10
narrow	
angle

5.70 5.50 5.85 5.40 5.50 5.15 …

wide	angle 5.75 5.40 5.70 5.35 5.35 5.00 …

diff -0.05 0.10 0.10 0.15 -0.05 0.05 0.15 0.15 0.10 …

5.50

5.55

-0.050.05

5.60

5.50

-0.10

5.55

5.60

0.05

5.80

5.70

-0.10

Random	Swapping

𝑥̅d = 0.016



More	Simulations	
-0.002

-0.002 -0.016
0.030 -0.011

-0.007

0.467
-0.002-0.007

0.007 -0.034
-0.067

-0.002 -0.025
0.020

0.020

0.002

-0.016

-0.007

0.002

0.066

-0.030

-0.002

0.002
0.016

Simulated Mean Differences 0.07
5

-
0.075

With 26 repetitions of creating 
simulated mean differences, we 
did not get any that were as 
extreme as 0.075.



First	Base
• Here	is	a	null	distribution	of	1000	simulated	mean	differences.	
• Notice	it	is	centered	at	zero,	which	makes	sense	in	agreement	with	
the	null	hypothesis.	

• Notice	also	the	SD	of	these	MEAN	DIFFERENCES	is	0.024	=	SE.									
SD	of	time	differences	was	0.0883.	SD	of	mean	time	diff.s =	.024.	

• Where	is	our	observed	statistic	of	0.075?



First	Base
• Only	1	of	the	1000	repetitions	of	random	swappings gave	a	𝑥̅$
value	at	least	as	extreme	as	0.075.	



First	Base
• We	can	also	standardize	0.075	by	dividing	by	the	SE	of	0.024	to	
see	our	standardized	statistic	=	%.%'(

%.%)*
= 3.125.	



Rounding	First	Base

• With	a	p-value	of	0.1%,	we	have	very	strong	
evidence	against	the	null	hypothesis.	The	running	
path	makes	a	statistically	significant	difference	
with	the	wide-angle	path	being	faster	on	average.	
• We	can	draw	a	cause-and-effect	conclusion	since	
the	researcher	used	random	assignment	of	the	
two	base	running	methods	for	each	runner.	
• There	was	not	much information	about	how	these	
22	runners	were	selected	though	so	it	is	unclear	if	
we	can	generalize	to	a	larger	population.	



3S	Strategy

• Statistic:	Compute	the	statistic	in	the	sample.	In	this	case,	
the	statistic	we	looked	at	was	the	observed	mean	
difference	in	running	times.
• Simulate:	Identify	a	chance	model	that	reflects	the	null	
hypothesis.	We	tossed	a	coin	for	each	runner,	and	if	it	
landed	heads	we	swapped	the	two	running	times	for	that	
runner.	If	the	coin	landed	tails,	we	did	not	swap	the	times.	
We	then	computed	the	mean	difference	for	the	22	
runners	and	repeated	this	process	many	times.
• Strength	of	evidence:	We	found	that	only	1	out	of	1000	
of	our	simulated	mean	differences	was	at	least	as	
extreme	as	the	observed	difference	of	0.075	seconds.	



First	Base
• Approximate	a	95%	confidence	interval	for	𝜇d:
• 0.075	± 1.96(0.024)	seconds.	
• (0.028,	0.122)	seconds.	

• What	does	this	mean?
• We	are	95%	confident	that,	if	we	were	to	keep	testing	
this	indefinitely,	the	narrow	angle	route	would	take	
somewhere	between	0.028	to	0.122	seconds	longer	on	
average	than	the	wide	angle	route.	



First	Base
Alternative	Analysis
• What	do	you	think	would	happen	if	we	wrongly	analyzed	the	
data	using	a	2	independent	samples	procedure?	(i.e.	The	
researcher	selected	22	runners	to	use	the	wide	method	and	
an	independent	sample	of	22	other	runners	to	use	the	narrow	
method,	obtaining	the	same	44	times	as	in	the	actual	study.		



First	Base
Ignoring	the	fact	that	it	is	paired	data,	
we	get	a	p-value	of	0.3470.

Does	it	make	
sense	that	this	
p-value	is	larger	
than	the	one	we	
obtained	earlier?



3.	Theory	based	approach	
for	Analyzing	Data	from	
Paired	Samples,	and	M&Ms.
Section	7.3



How	Many	M&Ms	
Would	You	Like?
Example	7.3



How	Many	M&Ms	Would	You	Like?
• Does	your	bowl	size	affect	how	much	you	eat?
• Brian	Wansink studied	this	question	with	college	
students	over	several	days.	
• At	one	session,	the	17	participants	were	assigned	to	
receive	either	a	small	bowl	or	a	large	bowl	and	were	
allowed	to	take	as	many	M&Ms	as	they	would	like.
• At	the	following	session,	the	bowl	sizes	were	switched	for	
each	participant.



How	Many	M&Ms	Would	You	Like?

• What	are	the	observational	units?
• What	is	the	explanatory	variable?
• What	is	the	response	variable?
• Is	this	an	experiment	or	an	observational	
study?
• Will	the	resulting	data	be	paired?



How	Many	M&Ms	Would	You	Like?
The	hypotheses:
• H0:	µd =	0	
• The	long-run	mean	difference	in	number	of	
M&Ms	taken	(small	– large)	is	0.

• Ha:	µd< 0	
• The	long-run	mean	difference	in	number	of	
M&Ms	taken	(small	– large)	is	less	than	0.



How	Many	M&Ms	Would	You	Like?

• Here	are	the	results	of	a	simulation-based	test.
• The	p-value	is	quite	large	at	0.1220.



How	Many	M&Ms	Would	You	Like?
• Our	null	distribution	was	centered	at	zero	and	
fairly	bell-shaped.
• This	can	all	be	predicted	(along	with	the	variability)	
using	theory-based	methods.
• Theory-based	methods	should	be	valid	if	the	
population	distribution	of	differences	is	symmetric	
(we	can	guess	at	this	by	looking	at	the	sample	
distribution	of	differences)	or	our	sample	size	is	at	
least	20.
• Our	sample	size	was	only	17,	but	this	distribution	
of	differences	is	fairly	symmetric,	so	we	will	
proceed	with	a	theory-based	test.



Theory-based	test
• We	can	do	theory-based	methods	with	the	
applet	we	used	last	time	or	the	theory-based	
applet.
• With	the	applet	we	used	last	time,	we	need	to	
calculate	the	t-statistic:

𝑡 =
𝑥̅$

𝑠$ 𝑛�⁄
• With	the	theory-based	applet,	we	just	need	to	
enter	the	summary	statistics	and	use	a	test	for	a	
one	mean.
• This	kind	of	test	is	called	a	paired	t-test.



Theory-based	results



Conclusion
• The	theory-based	model	gives	slightly	different	results	than	
simulation,	but	we	come	to	the	same	conclusion.		We	do	
not	have	strong	evidence	that	the	bowl	size	affects	the	
number	of	M&Ms	taken.
• We	can	see	this	in	the	large	p-value	(0.1172)	and	the	
confidence	interval	that	included	zero	(-29.5,	7.8).
• The	confidence	interval	tells	us	that	we	are	95%	confident	
that	when	given	a	small	bowl,	people	will	take	somewhere	
between	29.5	fewer	M&Ms	to	7.8	more	M&Ms	on	average	
than	when	given	a	large	bowl.



Why	wasn't	the	difference	statistically	
significant?
• There	could	be	a	number	of	reasons	we	didn’t	get	
significant	results.
• Maybe	bowl	size	doesn’t	matter.
• Maybe	bowl	size	does	matter	and	the	difference	was	too	
small	to	detect	with	our	small	sample	size.
• Maybe	bowl	size	does	matter	with	some	foods,	like	pasta	
or	cereal,	but	not	with	a	snack	food	like	M&Ms.
• Other	ideas?



Strength	of	Evidence
• We	will	have	stronger	evidence	against	the	null	
(smaller	p-value)	when:
• The	sample	size	is	increased.
• The	variability	of	the	data	is	reduced.
• The	effect	size,	or	mean	difference,	is	farther	from	0.

• We	will	get	a	narrower	confidence	interval	when:
• The	sample	size	is	increased.
• The	variability	of	the	data	is	reduced.
• The	confidence	level	is	decreased.



4.	Multiple	testing	and	publication	
bias.	
A	p-value	is	the	probability,	assuming	the	null	hypothesis	
of	no	relationship	is	true,	that	you	will	see	a	difference	as	
extreme	as,	or	more	extreme	than,	you	observed.	
So,	5%	of	the	time	you	are	looking	at	unrelated	things,	you	
will	find	a	statistically	significant	relationship.	
This	underscores	the	need	for	followup confirmation	
studies.	
If	testing	many	explanatory	variables	simultaneously,	it	can	
become	very	likely	to	find	something	significant	even	if	
nothing	is	actually	related	to	the	response	variable.	



4.	Multiple	testing	and	publication	
bias.	
*	For	example,	if	the	significance	level	is	5%,	then	for	100	
tests	where	all	null	hypotheses	are	true,	the	expected	
number	of	incorrect	rejections	(Type	I	errors)	is	5.	If	the	
tests	are	independent,	the	probability	of	at	least	one	Type	I	
error	would	be	99.4%.
*	To	address	this	problem,	scientists	sometimes	change	the	
significance	level	so	that,	under	the	null	hypothesis	that	
none	of	the	explanatory	variables	is	related	to	the	
response	variable,	the	probability	of	rejecting	any of	them	
is	5%.	
*	One	way	is	to	use	Bonferroni's	correction:	with	m
explanatory	variables,	use	significance	level	5%/m.	
P(at	least	1	Type	I	error)	will	be	≤ m	(5%/m)	=	5%.	



P(Type	I	error	on	explanatory	1)	=	5%/m.
P(Type	I	error	on	explanatory	2)	=	5%/m.
P(Type	1	error	on	at	least	one	explanatory)	≤
P(error	on	1)	+	P(error	on	2)	+	...	+	P(error	on	m) =	m	x	5%/m.



Multiple	testing	and	publication	bias.	

Imagine	a	scenario	where	a	drug	is	tested	many	
times	to	see	if	it	reduces	the	incidence	of	some	
response	variable.	If	the	drug	is	testes	100	times	
by	100	different	researchers,	the	results	will	be	
stat.	sig.	about	5	times.
If	only	the	stat.	sig.	results	are	published,	then	the	
published	record	will	be	very	misleading.	



Multiple	testing	and	publication	bias.	
A	drug	called	Reboxetine made	by	Pfizer	was	
approved	as	a	treatment	for	depression	in	Europe	
and	the	UK	in	2001,	based	on	positive	trials.	
A	meta-analysis	in	2010	found	that	it	was	not	only	
ineffective	but	also	potentially	harmful.	The	report	
found	that	74%	of	the	data	on	patients	who	took	
part	in	the	trials	of	Reboxetine were	not	published	
because	the	findings	were	negative.	Published	
data	about	reboxetine overestimated	its	benefits	
and	underestimated	its	harm.
A	subsequent	2011	analysis	indicated	Reboxetine
might	be	effective	for	severe	depression	though.	



5.	Two	quantitative	
variables.	
Chapter	10



Two	Quantitative	
Variables:	Scatterplots	
and	Correlation
Section	10.1



Scatterplots	and	Correlation

Time 30 41 41 43 47 48 51 54 54 56 56 56 57 58

Score 100 84 94 90 88 99 85 84 94 100 65 64 65 89

Time 58 60 61 61 62 63 64 66 66 69 72 78 79

Score 83 85 86 92 74 73 75 53 91 85 62 68 72

Suppose	we	collected	data	on	the	relationship	between	the	
time	it	takes	a	student	to	take	a	test	and	the	resulting	score.		



Scatterplot

Put	explanatory		
variable	on	the	
horizontal	axis.

Put	response	
variable	on	the	
vertical	axis.



Describing	Scatterplots
•When	we	describe	data	in	a	scatterplot,	
we	describe	the	
• Direction		(positive	or	negative)
• Form		(linear	or	not)
• Strength		(strong-moderate-weak,	we	will	let	
correlation	help	us	decide)
• Unusual	Observations
• How	would	you	describe	the	time	and	test	
scatterplot?



Correlation
• Correlation	measures	the	strength	and	direction	of	a	
linear association	between	two	quantitative variables.
• Correlation	is	a	number	between	-1	and	1.		
• With	positive	correlation	one	variable	increases,	on	
average,	as	the	other	increases.
• With	negative	correlation	one	variable	decreases,	on	
average,	as	the	other	increases.
• The	closer	it	is	to	either	-1	or	1	the	closer	the	points	fit	to	
a	line.
• The	correlation	for	the	test	data	is	-0.56.



Correlation	Guidelines
Correlation	Value Strength	of	

Association
What	this	means

0.7	to	1.0	 Strong The	points	will	appear	to	be	nearly	a	
straight	line

0.3	to	0.7 Moderate When	looking	at	the	graph	the	
increasing/decreasing	pattern	will	be	
clear,	but there	is	considerable	
scatter.

0.1	to	0.3 Weak With	some	effort	you	will	be	able	to	
see	a	slightly	increasing/decreasing	
pattern

0	to	0.1 None No	discernible	increasing/decreasing	
pattern

Same Strength	Results	with	Negative	Correlations



Back	to	the	test	data
Actually	the	last	three	people	to	finish	the	test	had	scores	of	
93,	93,	and	97.

What	does	this	do	
to	the	correlation?



Influential	Observations
• The	correlation	changed	from	-0.56	(a	fairly	moderate	
negative	correlation)	to	-0.12	(a	weak	negative	
correlation).
• Points	that	are	far	to	the	left	or	right	and	not	in	the	
overall	direction	of	the	scatterplot	can	greatly	change	the	
correlation.		(influential	observations)



Correlation
• Correlation	measures	the	strength	and	direction	of	
a	linear association	between	two	quantitative
variables.
• -1	< r	< 1
• Correlation	makes	no	distinction	between	
explanatory	and	response	variables.
• Correlation	has	no	units.	
• Correlation	is	not	resistant	to	outliers.	It	is	
sensitive.	



Learning	Objectives	for	Section	10.1
• Summarize	the	characteristics	of	a	scatterplot	by	
describing	its	direction,	form,	strength	and	whether	
there	are	any	unusual	observations.	
• Recognize	that	the	correlation	coefficient	is	appropriate	
only	for	summarizing	the	strength	and	direction	of	a	
scatterplot	that	has	linear	form.	
• Recognize	that	a	scatterplot	is	the	appropriate	graph	for	
displaying	the	relationship	between	two	quantitative	
variables	and	create	a	scatterplot	from	raw	data.
• Recognize	that	a	correlation	coefficient	of	0	means	there	
is	no	linear	association	between	the	two	variables	and	
that	a	correlation	coefficient	of	-1	or	1	means	that	the	
scatterplot	is	exactly	a	straight	line.
• Understand	that	the	correlation	coefficient	is	influenced	
by	extreme	observations.



Inference	for	the	Correlation	
Coefficient:	Simulation-Based	
Approach
Section	10.2



We	will	look	at	a	small	sample	example	to	see	if	
body	temperature	is	associated	with	heart	rate.



Temperature	and	Heart	Rate
Hypotheses

• Null:	There	is	no	association	between	heart	rate	
and	body	temperature.	(ρ	=	0)
• Alternative:	There	is	a	positive	linear	association	
between	heart	rate	and	body	temperature.	(ρ	>	
0)

ρ	=	rho



Inference	for	Correlation	with	Simulation	
(Section	10.2)

1.	Compute	the	observed	statistic.		(Correlation)	
2.	Scramble	the	response	variable,	compute	the	simulated	
statistic,	and	repeat	this	process	many	times.

3.	Reject	the	null	hypothesis	if	the	observed	statistic	is	in	the	tail	
of	the	null	distribution.



Temperature	and	Heart	Rate

Tmp 98.3 98.2 98.7 98.5 97.0 98.8 98.5 98.7 99.3 97.8
HR 72 69 72 71 80 81 68 82 68 65
Tmp 98.2 99.9 98.6 98.6 97.8 98.4 98.7 97.4 96.7 98.0
HR 71 79 86 82 58 84 73 57 62 89

Collect	the	Data



Temperature	and	Heart	Rate

r	=	0.378

Explore	the	Data



Temperature	and	Heart	Rate
• If	there	was	no	association	between	heart	rate	and	body	
temperature,	what	is	the	probability	we	would	get	a	
correlation	as	high	as	0.378	just	by	chance?

• If	there	is	no	association,	we	can	break	apart	the	
temperatures	and	their	corresponding	heart	rates.		We	
will	do	this	by	shuffling	one	of	the	variables.	



Shuffling	Cards
• Let’s	remind	ourselves	what	we	did	with	cards	to	find	our	
simulated	statistics.
• With	two	proportions,	we	wrote	the	response	on	the	
cards,	shuffled	the	cards	and	placed	them	into	two	piles	
corresponding	to	the	two	categories	of	the	explanatory	
variable.
• With	two	means	we	did	the	same	thing	except	this	time	
the	responses	were	numbers	instead	of	words.



20.0% 
Improvers

66.7% 
Improvers
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Improver

Improver

Improver
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Improver

Improver

Improver

ImproverNon-
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Non-
improver

Non-
improver

Non-
improver

Non-
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Non-
improver

Non-
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Non-
improver

Non-
improver

Non-
improver

Non-
improver

Non-
improver

Non-
improver

Non-
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40.0% 
Improvers

46.7% 
Improvers0.400 – 0.467 = -0.067

Difference in Simulated Proportions



mean = 3.90mean = 19.82

Music No	music

14.5

25.2

11.6

12.6

18.6

12.1

30.534.5

-7.0

45.6 10.0

9.6

-10.7

7.2-14.7

21.3

2.2

4.5

-10.7

21.8

2.4

mean = 6.38 mean = 16.12
6.38 – 16.12 = -9.74

Difference in Simulated Means



Shuffling	Cards
• Now	how	will	this	shuffling	be	different	when	
both	the	response	and	the	explanatory	variable	
are	quantitative?	
• We	can’t	put	things	in	two	piles	anymore.
• We	still	shuffle	values	of	the	response	variable,	
but	this	time	place	them	next	to	two	values	of	
the	explanatory	variable.	



98.3° 98.2° 97.7° 98.5° 97.0° 98.8° 98.5° 98.7° 99.3° 97.8°

98.2° 99.9° 98.6° 98.6° 97.8° 98.4° 98.7° 97.4° 96.7° 98.0°

r = 0.378

6972 8180 82687172

r = 0.073

Simulated Correlations

Body Temperature and Heart Rate

68 65

7971 8458 57738286 62 89



More	Simulations
0.054

-0.253 -0.345
0.062 0.259

0.339

0.447
-0.008

-0.229

-0.029
0.059 -0.006

-0.034

-0.327 0.100
0.067

0.212

0.097

0.447

0.034

0.167

0.329
0.020

-0.042

0.232

0.200
0.314

Only one simulated statistic out of 30 
was as large or larger than our 
observed correlation of 0.378, hence 
our p-value for this null distribution 
is 1/30 ≈ 0.03.

Simulated Correlations 0.378



Temperature	and	Heart	Rate
• We	can	look	at	the	output	of	1000	shuffles	with	
a	distribution	of	1000	simulated	correlations.



Temperature	and	Heart	Rate
• Notice	our	null	
distribution	is	
centered	at	0	and	
somewhat	symmetric.
• We	found	that	
530/10000	times	we	
had	a	simulated	
correlation	greater	
than	or	equal	to	0.378.



Temperature	and	Heart	Rate
• With	a	p-value	of	0.053	=	5.3%,	we	almost	but	
do	not	quite	have	statistical	significance.	This	is	
moderate	evidence	of	a	positive	linear	
association	between	body	temperature	and	
heart	rate.	Perhaps	a	larger	sample	would	give	a	
smaller	p-value.



6.	Linear	Regression
Section	10.3



Introduction
• If	we	decide	an	association	is	linear,	it	is	helpful	
to	develop	a	mathematical	model	of	that	
association.	
• Helps	make	predictions	about	the	response	
variable.	
• The	least-squares	regression	line is	the	most	
common	way	of	doing	this.		



Introduction
• Unless	the	points	are	perfectly	linearly	alligned,	
there	will	not	be	a	single	line	that	goes	through	
every	point.		
• We	want	a	line	that	gets	as	close	as	possible	to	all	
the	points.



Introduction
• We	want	a	line	that	minimizes	the	vertical	distances	
between	the	line	and	the	points	
• These	distances	are	called	residuals.
• The	line	we	will	find	actually	minimizes	the	sum	of	the	
squares	of	the	residuals.
• This	is	called	a	least-squares	regression	line.	



Are	Dinner	Plates	Getting	
Larger?
Example	10.3



Growing	Plates?
• There	are	many	recent	articles	and	TV	reports	
about	the	obesity	problem.		
• One	reason	some	have	given	is	that	the	size	of	
dinner	plates	are	increasing.	
• Are	these	black	circles	the	same	size,	or	is	one	
larger	than	the	other?	



Growing	Plates?
• They	appear	to	be	the	same	size	for	many,	but	the	
one	on	the	right	is	about	20%	larger	than	the	left.		

• This	suggests	that	people	will	put	more	food	on	
larger	dinner	plates	without	knowing	it.		

• There	is	name	for	this	phenomenon:	Delboeuf
illusion



Growing	Plates?
• Researchers	gathered	data	to	investigate	the	claim	that	
dinner	plates	are	growing
• American	dinner	plates	sold	on	ebay on	March	30,	
2010	(Van	Ittersum and	Wansink,	2011)
• Year	manufactured	and	diameter	are	given.	



Growing	Plates?
• Both	year	(explanatory	variable)	and	diameter	in	inches	
(response	variable)	are	quantitative.	
• Each	dot	represents	one	plate	in	this	scatterplot.
• Describe	the	association	here.



Growing	Plates?
• The	association	appears	to	be	roughly	linear
• The	least	squares	regression	line	is	added	
• How	can	we	describe	this	line?



Regression	Line
The	regression	equation	is	𝑦9 = 𝑎 + 𝑏𝑥:		
• a is	the	y-intercept
• b is	the	slope
• x is	a	value	of	the	explanatory	variable
• ŷ is	the	predicted	value	for	the	response	
variable

• For	a	specific	value	of	x,	the	corresponding	
distance	y − 𝑦9 (or	actual	– predicted)	is	a	
residual



Regression	Line
• The	least	squares	line	for	the	dinner	plate	data	is	
𝑦9 = −14.8 + 0.0128𝑥
• Or	diameterI = −14.8 + 0.0128(year)
• This	allows	us	to	predict	plate	diameter	for	a	
particular	year.		



Slope
𝑦9 = −14.8 + 0.0128𝑥

• What	is	the	predicted	diameter	for	a	plate	
manufactured	in	2000?	
• -14.8	+	0.0128(2000)	=	10.8	in.

• What	is	the	predicted	diameter	for	a	plate	
manufactured	in	2001?	
• -14.8	+	0.0128(2001)	=	10.8128	in.

• How	does	this	compare	to	our	prediction	for	the	
year	2000?
• 0.0128	larger

• Slope	b =	0.0128	means	that	diameters	are	predicted	
to	increase	by	0.0128	inches	per	year	on	average



Slope
• Slope	is	the	predicted	change	in	the	response	
variable	for	one-unit	change	in	the	explanatory	
variable.
• Both	the	slope	and	the	correlation	coefficient	for	
this	study	were	positive.
• The	slope	is	0.0128
• The	correlation	is	0.604	

• The	slope	and	correlation	coefficient	will	always	
have	the	same	sign.



y-intercept
• The	y-intercept	is	where	the	regression	line	crosses	the	
y-axis	or	the	predicted	response	when	the	explanatory	
variable	equals	0.		
• We	had	a	y-intercept	of	-14.8	in	the	dinner	plate	
equation.		What	does	this	tell	us	about	our	dinner	plate	
example?
• Dinner	plates	in	year	0	were	-14.8	inches.	

• How	can	it	be	negative?	
• The	equation	works	well	within	the	range	of	values	given	for	the	
explanatory	variable,	but	fails	outside	that	range.		

• Our	equation	should	only	be	used	to	predict	the	size	of	
dinner	plates	from	about	1950	to	2010.		



Extrapolation
• Predicting	values	for	the	response	variable	for	
values	of	the	explanatory	variable	that	are	
outside	of	the	range	of	the	original	data	is	called	
extrapolation.



Coefficient	of	Determination

• While	the	intercept	and	slope	have	meaning	in	
the	context	of	year	and	diameter,	remember	that		
the	correlation	does	not.	It	is	just	0.604.
• However,	the	square	of	the	correlation	
(coefficient	of	determination	or	r2)	does	have	
meaning.
• r2	 =	0.6042	=	0.365	or	36.5%
• 36.5%	of	the	variation	in	plate	size	(the	response	
variable)	can	be	explained	by	its	linear	
association	with	the	year	(the	explanatory	
variable).



Learning	Objectives	for	Section	10.3
• Understand	that	one	way	a	scatterplot	can	be	summarized	is	
by	fitting	the	best-fit	(least	squares	regression)	line.
• Be	able	to	interpret	both	the	slope	and	intercept	of	a	best-fit	
line	in	the	context	of	the	two	variables	on	the	scatterplot.	
• Find	the	predicted	value	of	the	response	variable	for	a	given	
value	of	the	explanatory	variable.
• Understand	the	concept	of	residual	and	find	and	interpret	
the	residual	for	an	observational	unit	given	the	raw	data	and	
the	equation	of	the	best	fit	(regression)	line.
• Understand	the	relationship	between	residuals	and	strength	
of	association	and	that	the	best-fit	(regression)	line	this	
minimizes	the	sum	of	the	squared	residuals.



Learning	Objectives	for	Section	10.3
• Find	and	interpret	the	coefficient	of	determination	(r2)	as	the	
squared	correlation	and	as	the	percent	of	total	variation	in	
the	response	variable	that	is	accounted	for	by	the	linear	
association	with	the	explanatory	variable.
• Understand	that	extrapolation	is	when	a	regression	line	is	
used	to	predict	values	outside	of	the	range	of	observed	
values	for	the	explanatory	variable.
• Understand	that	when	slope	=	0	means	no	association,	slope	
<	0	means	negative	association,	slope	>	0	means	positive	
association,	and	that	the	sign	of	the	slope	will	be	the	same	as	
the	sign	of	the	correlation	coefficient.
• Understand	that	influential	points	can	substantially	change	
the	equation	of	the	best-fit	line.


