
Stat 13, Intro. to Statistical Methods for the Life and Health Sciences.

1. Theory-based approach for paired data, and M&M example. 
2. Multiple testing and publication bias. 
3. Two variables and correlation. 
4. Linear regression. 
5. Calculating correlation. 
6. Slope of the regression line.
7. Goodness of fit. 

Read ch7 and 10. 
Hw4 is due Sep11, 10pm, again by email to statgrader or statgrader2, and is 
Problems 10.1.8, 10.3.14, 10.3.21, and 10.4.11. 
http://www.stat.ucla.edu/~frederic/13/sum24 . 

1



1. Theory based approach 
for Analyzing Data from 
Paired Samples, and M&Ms.
Section 7.3



How Many M&Ms 
Would You Like?
Example 7.3



How Many M&Ms Would You Like?

• Does your bowl size affect how much you eat?

• Brian Wansink studied this question with college 
students over several days. 

• At one session, the 17 participants were assigned to 
receive either a small bowl or a large bowl and were 
allowed to take as many M&Ms as they would like.

• At the following session, the bowl sizes were switched for 
each participant.



How Many M&Ms Would You Like?

• What are the observational units?

• What is the explanatory variable?

• What is the response variable?

• Is this an experiment or an observational 
study?

• Will the resulting data be paired?



How Many M&Ms Would You Like?

The hypotheses:

• H0: µd = 0 

• The long-run mean difference in number of 
M&Ms taken (small – large) is 0.

• Ha: µd < 0 

• The long-run mean difference in number of 
M&Ms taken (small – large) is less than 0.



How Many M&Ms Would You Like?

• Here are the results of a simulation-based test.

• The p-value is quite large at 0.1220.



How Many M&Ms Would You Like?

• Our null distribution was centered at zero and 
fairly bell-shaped.

• Theory-based methods using the t distribution 
should be valid if  is unknown and the population 
distribution of differences is normal (we can guess 
at this by looking at the sample distribution of 
differences). Alternatively, we can use the normal 
distribution if our sample size is at least 30.

• Our sample size was only 17, but this distribution 
of differences looks pretty normal, so we will 
proceed with a t-test. 



Theory-based test

𝑡 =
ҧ𝑥𝑑

Τ𝑠𝑑 𝑛

• This kind of test is called a paired t-test. 



Theory-based results



Conclusion

• The theory-based test gives slightly different results than 
simulation, 11.7% instead of 12.2% for the p-value, but we 
come to the same conclusion.  We do not have strong 
evidence that the bowl size affects the number of M&Ms 
taken.

• We can see this in the large p-value (0.1172) and the 
confidence interval that included zero (-29.5, 7.8).

• The confidence interval tells us that we are 95% confident 
that when given a small bowl, people will take somewhere 
between 29.5 fewer M&Ms to 7.8 more M&Ms on average 
than when given a large bowl.



Why wasn't the difference statistically 
significant?
• There could be a number of reasons we didn’t get 

significant results.

• Maybe bowl size doesn’t matter.

• Maybe bowl size does matter and the difference was too 
small to detect with our small sample size.

• Maybe bowl size does matter with some foods, like pasta 
or cereal, but not with a snack food like M&Ms. 



Strength of Evidence

• We will have stronger evidence against the null 
(smaller p-value) when:

• The sample size is increased.

• The variability of the data is reduced.

• The effect size, or mean difference, is farther from 0.

• We will get a narrower confidence interval when:

• The sample size is increased.

• The variability of the data is reduced.

• The confidence level is decreased.



2. Multiple testing and publication 
bias. 
A p-value is the probability, assuming the null hypothesis 
of no relationship is true, that you will see a difference as 
extreme as, or more extreme than, you observed. 

So, when you are looking at unrelated things, 5% of the 
time you will find a statistically significant relationship. 

This underscores the need for followup confirmation 
studies. If testing many explanatory variables 
simultaneously, it can become very likely to find something 
significant even if nothing is actually related to the 
response variable. 



Multiple testing and publication 
bias. 
* For example, if the significance level is 5%, then for 100 
tests where all null hypotheses are true, the expected 
number of incorrect rejections (Type I errors) is 5. If the 
tests are independent, the probability of at least one Type I 
error would be 99.4%. P(no Type I errors) = .95100 = 0.6%.  

* To address this problem, scientists sometimes change the 
significance level so that, under the null hypothesis that 
none of the explanatory variables is related to the 
response variable, the probability of rejecting at least one 
of them is 5%. 

* One way is to use Bonferroni's correction: with m 
explanatory variables, use significance level 5%/m. 

P(at least 1 Type I error) will be ≤ m (5%/m) = 5%. 



P(Type I error on explanatory 1) = 5%/m.

P(Type I error on explanatory 2) = 5%/m.

P(Type 1 error on at least one explanatory) ≤

P(error on 1) + P(error on 2) + ... + P(error on m) = m x 5%/m.



Multiple testing and publication bias. 

Imagine a scenario where a drug is tested many 
times to see if it reduces the incidence of some 
response variable. If the drug is testes 100 times 
by 100 different researchers, the results will be 
stat. sig. about 5 times.

If only the stat. sig. results are published, then the 
published record will be very misleading. 



Multiple testing and publication bias. 

A drug called Reboxetine made by Pfizer was 
approved as a treatment for depression in Europe 
and the UK in 2001, based on positive trials. 

A meta-analysis in 2010 found that it was not only 
ineffective but also potentially harmful. The report 
found that 74% of the data on patients who took 
part in the trials of Reboxetine were not published 
because the findings were negative. Published 
data about reboxetine overestimated its benefits 
and underestimated its harm.

A subsequent 2011 analysis indicated Reboxetine 
might be effective for severe depression though. 



3. Two quantitative 
variables. 
Chapter 10



Two Quantitative 
Variables: Scatterplots 
and Correlation
Section 10.1



Scatterplots and Correlation

Time 30 41 41 43 47 48 51 54 54 56 56 56 57 58

Score 100 84 94 90 88 99 85 84 94 100 65 64 65 89

Time 58 60 61 61 62 63 64 66 66 69 72 78 79

Score 83 85 86 92 74 73 75 53 91 85 62 68 72

Suppose we collected data on the relationship between the 
time it takes a student to take a test and the resulting score.  



Scatterplot

Put explanatory  
variable on the 
horizontal axis.

Put response 
variable on the 
vertical axis.



Describing Scatterplots

• When we describe data in a scatterplot, 
we describe the 

• Direction  (positive or negative)

• Form  (linear or not)

• Strength  (strong-moderate-weak, we will let 
correlation help us decide)

• Unusual Observations

• How would you describe the time and test 
scatterplot?



Correlation

• Correlation measures the strength and direction of a 
linear association between two quantitative variables.

• Correlation is a number between -1 and 1.  

• With positive correlation one variable increases, on 
average, as the other increases.

• With negative correlation one variable decreases, on 
average, as the other increases.

• The closer it is to either -1 or 1 the closer the points fit to 
a line.

• The correlation for the test data is -0.56.



Correlation Guidelines

Correlation Value Strength of 
Association

What this means

0.7 to 1.0 Strong The points will appear to be nearly a 
straight line

0.3 to 0.7 Moderate When looking at the graph the 
increasing/decreasing pattern will be 
clear, but there is considerable 
scatter.

0.1 to 0.3 Weak With some effort you will be able to 
see a slightly increasing/decreasing 
pattern

0 to 0.1 None No discernible increasing/decreasing 
pattern

Same Strength Results with Negative Correlations



Back to the test data

Actually the last three people to finish the test had scores of 
93, 93, and 97.

What does this do 
to the correlation?



Influential Observations
• The correlation changed from -0.56 (a fairly moderate 

negative correlation) to -0.12 (a weak negative 
correlation).

• Points that are far to the left or right and not in the 
overall direction of the scatterplot can greatly change the 
correlation.  (influential observations)



Correlation

• Correlation measures the strength and direction of 
a linear association between two quantitative 
variables.

• -1 < r < 1

• Correlation makes no distinction between 
explanatory and response variables.

• Correlation has no units. 

• Correlation is not resistant to outliers. It is 
sensitive. 



Learning Objectives for Section 10.1

• Summarize the characteristics of a scatterplot by 
describing its direction, form, strength and whether 
there are any unusual observations. 

• Recognize that the correlation coefficient is appropriate 
only for summarizing the strength and direction of a 
scatterplot that has linear form. 

• Recognize that a scatterplot is the appropriate graph for 
displaying the relationship between two quantitative 
variables and create a scatterplot from raw data.

• Recognize that a correlation coefficient of 0 means there 
is no linear association between the two variables and 
that a correlation coefficient of -1 or 1 means that the 
scatterplot is exactly a straight line.

• Understand that the correlation coefficient is influenced 
by extreme observations.



Note that correlation ≠ causation. 



Note that correlation ≠ causation. 



Note that correlation ≠ causation. 



Inference for the Correlation 
Coefficient: Simulation-Based 
Approach
Section 10.2



We will look at a small sample example to see if 
body temperature is associated with heart rate.

 



Temperature and Heart Rate

Hypotheses

• Null: There is no association between heart rate 
and body temperature. (ρ = 0)

• Alternative: There is a positive linear association 
between heart rate and body temperature. (ρ > 
0)

ρ = rho



Inference for Correlation with Simulation 
(Section 10.2)

1. Compute the observed statistic.  (Correlation) 

2. Scramble the response variable, compute the simulated 
statistic, and repeat this process many times.

3. Reject the null hypothesis if the observed statistic is in the tail 
of the null distribution.



Temperature and Heart Rate

Tmp 98.3 98.2 98.7 98.5 97.0 98.8 98.5 98.7 99.3 97.8

HR 72 69 72 71 80 81 68 82 68 65

Tmp 98.2 99.9 98.6 98.6 97.8 98.4 98.7 97.4 96.7 98.0

HR 71 79 86 82 58 84 73 57 62 89

Collect the Data



Temperature and Heart Rate

r = 0.378

Explore the Data



Temperature and Heart Rate

• If there was no association between heart rate and body 
temperature, what is the probability we would get a 
correlation as high as 0.378 just by chance?

• If there is no association, we can break apart the 
temperatures and their corresponding heart rates.  We 
will do this by shuffling one of the variables. 



Shuffling Cards

• Let’s remind ourselves what we did with cards to find our 
simulated statistics.

• With two proportions, we wrote the response on the 
cards, shuffled the cards and placed them into two piles 
corresponding to the two categories of the explanatory 
variable.

• With two means we did the same thing except this time 
the responses were numbers instead of words.
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Improvers

Dolphin Therapy              Control
Non-

improver

Improver

Improver

Improver

Improver

Improver

Improver

Improver

ImproverImprover

Improver

Improver

Improver

Improver
Non-

improver

Non-

improver

Non-

improver

Non-

improver

Non-

improver

Non-

improver

Non-

improver

Non-

improver

Non-

improver

Non-

improver

Non-

improver

Non-

improver

Non-

improver

Non-

improver

Non-

improver

Non-

improver

40.0% 
Improvers

46.7% 
Improvers0.400 – 0.467 = -0.067

Difference in Simulated Proportions



mean = 3.90mean = 19.82

Music         No music

14.5

25.2

11.6

12.6

18.6

12.1

30.534.5

-7.0

45.6 10.0

9.6

-10.7

7.2-14.7

21.3

2.2

4.5

-10.7

21.8

2.4

mean = 6.38 mean = 16.12

6.38 – 16.12 = -9.74

Difference in Simulated Means



Shuffling Cards

• Now how will this shuffling be different when 
both the response and the explanatory variable 
are quantitative? 

• We can’t put things in two piles anymore.

• We still shuffle values of the response variable, 
but this time place them next to two values of 
the explanatory variable. 



98.3° 98.2° 97.7° 98.5° 97.0° 98.8° 98.5° 98.7° 99.3° 97.8°

98.2° 99.9° 98.6° 98.6° 97.8° 98.4° 98.7° 97.4° 96.7° 98.0°

r = 0.378

6972 8180 82687172

r = 0.073

Simulated Correlations

Body Temperature and Heart Rate

68 65

7971 8458 57738286 62 89



More Simulations

0.054

-0.253 -0.345
0.062 0.259

0.339

0.447
-0.008

-0.229

-0.029
0.059 -0.006

-0.034

-0.327 0.100

0.067

0.212

0.097

0.447

0.034

0.167

0.329
0.020

-0.042

0.232

0.200

0.314
Only one simulated statistic out of 30 

was as large or larger than our 

observed correlation of 0.378, hence 
our p-value for this null distribution 

is 1/30 ≈ 0.03.

Simulated Correlations
0.378



Temperature and Heart Rate

• We can look at the output of 1000 shuffles with 
a distribution of 1000 simulated correlations. 



Temperature and Heart Rate

• Notice our null 
distribution is 
centered at 0 and 
somewhat symmetric.

• We found that 
530/10000 times we 
had a simulated 
correlation greater 
than or equal to 0.378.



Temperature and Heart Rate

• With a p-value of 0.053 = 5.3%, we almost but 
do not quite have statistical significance. We 
observe a positive linear association between 
body temperature and heart rate but this 
association is not statistically significant. Perhaps 
a larger sample should be investigated to get a 
better idea if the two variables are related or 
not. 



4. Linear Regression
Section 10.3



Introduction

• If we decide an association is linear, it is helpful 
to develop a mathematical model of that 
association. 

• Helps make predictions about the response 
variable. 

• The least-squares regression line is the most 
common way of doing this.  



Introduction

• Unless the points are perfectly linearly alligned, 
there will not be a single line that goes through 
every point. 



Introduction

• We want a line that minimizes the vertical distances 
between the line and the points 

• These distances are called residuals. 

• The line we will find actually minimizes the sum of the 
squares of the residuals.

• This is called a least-squares regression line. 



Are Dinner Plates Getting 
Larger?
Example 10.3



Growing Plates?

• There are many recent articles and TV reports 
about the obesity problem.  

• One reason some have given is that the size of 
dinner plates are increasing. 

• Are these black circles the same size, or is one 
larger than the other? 



Growing Plates?

• They appear to be the same size for many, but the 
one on the right is about 20% larger than the left.  

• This suggests that people will put more food on 
larger dinner plates without knowing it.  

• There is name for this phenomenon: Delboeuf 
illusion. 



Growing Plates?
• Researchers gathered data to investigate the claim that 

dinner plates are growing

• American dinner plates sold on ebay on March 30, 
2010 (Van Ittersum and Wansink, 2011)

• Year manufactured and diameter are given. 



Growing Plates?
• Both year (explanatory variable) and diameter in inches 

(response variable) are quantitative. 

• Each dot in this scatterplot represents one plate. 



Growing Plates?

• The association appears to be roughly linear. 

• The least squares regression line is added.  

• The line slopes upward, but is the slope significant? 



Regression Line

The regression equation is ො𝑦 = 𝑎 + 𝑏𝑥:  

• a is the y-intercept

• b is the slope

• x is a value of the explanatory variable

• ŷ is the predicted value for the response 
variable

• For a specific value of x, the corresponding 
distance y − ො𝑦 (or actual – predicted) is a 
residual



Regression Line

• The least squares line for the dinner plate data is 
ො𝑦 = −14.8 + 0.0128𝑥

• Or ෣diameter = −14.8 + 0.0128(year)

• This allows us to predict plate diameter for a 
particular year.  



Slope

ො𝑦 = −14.8 + 0.0128𝑥
• What is the predicted diameter for a plate 

manufactured in 2000? 
• -14.8 + 0.0128(2000) = 10.8 in.

• What is the predicted diameter for a plate 
manufactured in 2001? 
• -14.8 + 0.0128(2001) = 10.8128 in.

• How does this compare to our prediction for the 
year 2000?
• 0.0128 larger

• Slope b = 0.0128 means that diameters are predicted 
to increase by 0.0128 inches per year on average



Slope

• Slope is the predicted change in the response 
variable for one-unit change in the explanatory 
variable.

• Both the slope and the correlation coefficient for 
this study were positive.

• The slope is 0.0128

• The correlation is 0.604 

• The slope and correlation coefficient will always 
have the same sign.



y-intercept

• The y-intercept is where the regression line crosses the 
y-axis. It is the predicted response when the explanatory 
variable equals 0.  

• We had a y-intercept of -14.8 in the dinner plate 
equation.  What does this tell us about our dinner plate 
example?
• Dinner plates in year 0 would be predicted to be -14.8 inches??? 

• How can it be negative? 
• The equation works well within the range of values given for the 

explanatory variable, but fails outside that range.  

• Our equation should only be used to predict the size of 
dinner plates from about 1950 to 2010. 



Extrapolation

• Predicting values for the response variable for 
values of the explanatory variable that are 
outside of the range of the original data is called 
extrapolation.



Coefficient of Determination

• While the intercept and slope have meaning in 
the context of year and diameter, remember that  
the correlation does not. It is just 0.604.

• However, the square of the correlation 
(coefficient of determination or r2) does have 
meaning.

• r2  = 0.6042 = 0.365 or 36.5%

• 36.5% of the variation in plate size (the response 
variable) can be explained by its linear 
association with the year (the explanatory 
variable).



Learning Objectives for Section 10.3

• Understand that one way a scatterplot can be summarized is 
by fitting the best-fit (least squares regression) line.

• Be able to interpret both the slope and intercept of a best-fit 
line in the context of the two variables on the scatterplot. 

• Find the predicted value of the response variable for a given 
value of the explanatory variable.

• Understand the concept of residual and find and interpret 
the residual for an observational unit given the raw data and 
the equation of the best fit (regression) line.

• Understand the relationship between residuals and strength 
of association and that the best-fit (regression) line this 
minimizes the sum of the squared residuals.



Learning Objectives for Section 10.3

• Find and interpret the coefficient of determination (r2) as the 
squared correlation and as the percent of total variation in 
the response variable that is accounted for by the linear 
association with the explanatory variable.

• Understand that extrapolation is when a regression line is 
used to predict values outside of the range of observed 
values for the explanatory variable.

• Understand that when slope = 0 means no association, slope 
< 0 means negative association, slope > 0 means positive 
association, and that the sign of the slope will be the same as 
the sign of the correlation coefficient.

• Understand that influential points can substantially change 
the equation of the best-fit line.



5. Calculating correlation, r.

ρ = rho = correlation of the population.
Suppose there are N people in the population, 
X = temperature, Y = heart rate,
the mean and sd of temp in the pop. are µ𝑥  and 𝜎𝑥 , 
and the pop. mean and sd of heart rate are µ𝑦 and 𝜎𝑦 .

ρ = 
1

𝑁
σ𝑖=1

𝑁 𝑥𝑖−µ𝑥

𝜎𝑥

𝑦𝑖− µ𝑦

𝜎𝑦
.

Given a sample of size n, we estimate ρ using

r = 
1

𝑛−1
σ𝑖=1

𝑛 𝑥𝑖 −
𝑥

𝑠𝑥

𝑦𝑖 −
𝑦

𝑠𝑦
.

This is in Appendix A. 
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6. Slope of regression line.

• Suppose ො𝑦 = a + bx is the regression line.

• The slope b of the regression line is b = r 
𝑠𝑦

𝑠𝑥
 . 

 This is usually the thing of primary interest to 
interpret, as the predicted increase in y for every unit 
increase in x. 

• Beware of assuming causation though, esp. with 
observational studies. Be wary of extrapolation too. 

• The intercept a =  𝑦  - b 𝑥  .

• The SD of the residuals is 1 − 𝑟2 𝑠𝑦 . 

This is a good estimate of how much the regression 
predictions will typically be off by.



7. How well does the line fit?

• 𝑟2 is a measure of fit. It indicates the amount of scatter 
around the best fitting line.

• 1 − 𝑟2 𝑠𝑦  is useful as a measure of how far off 

predictions would have been on average.

• Residual plots can indicate curvature, outliers, or 
heteroskedasticity. 

• Note that regression residuals have mean zero, whether 
the line fits well or poorly.
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• Heteroskedasticity: when the variability in y is 
not constant as x varies. 
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