
Stat 13, Intro. to Statistical Methods for the Life and Health Sciences.

0. Sampling students, continued. 

1. Estimating the mean for a quantitative variable, t-test and song time example. 

2. Significance level, type I and type II errors. 
3. Power. 

4. Confidence Intervals for a proportion and the dog sniffing cancer example.

5. CIs for a proportion and the Affordable Care Act example.  

Reminder: lectures July 7 and 9 will be pre-recorded with links on course 
website.

The course website is http://www.stat.ucla.edu/~frederic/13/sum25

Start reading chapter 4.
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• What would happen if we took all possible random samples of 30 
students from this population?

– The averages of the statistics would match the parameters 
exactly

• Statistics computed from SRSs cluster around the parameter.  

• Why is this an unbiased sampling method?

– There is no tendency to over or underestimate the parameter.

• The sampling method and statistic you choose determine if a 
sampling method is biased. 

• A sample mean of a simple random sample is an unbiased estimate 
of the population mean. Same for proportions instead of means.

0. Sampling Students, continued. 



• We can generalize when we use simple random 
sampling because it creates:

– A sample that is representative of the population. 

– A sample statistic that is unbiased and thus close 
to the parameter for large n. 

Sampling Students



• If the researcher at the College of the Midwest uses 
75 students instead of 30 with the same early 
morning sampling method will it be less biased?

• No. Selecting more students in the same manner 
doesn’t fix the tendency to oversample students who 
live on campus.

• A smaller sample that is random is actually more 
accurate. 

Sampling Students



• What is an advantage of a larger sample size? 

– Less sample to sample variability. 

Sampling Students



1. Inference for a Single Quantitative 
Variable. 

t-test and song time example. 

Section 2.2 

https://www.youtube.com/watch?v=ho7796-au8U



Example 2.2: 
Estimating Elapsed Time

• Students in a stats class (for their final project) 
collected data on students’ perception of time  

• Subjects were told that they’d listen to music 
and be asked questions when it was over. 

• 10 seconds of the Jackson 5’s “ABC” and 
subjects were asked how long they thought it 
lasted  

• Can students accurately estimate the length?  



Hypotheses

Null Hypothesis: People will accurately estimate 
the length of a 10 second-song snippet, on 
average.     (μ = 10 seconds)

Alternative Hypothesis: People will not accurately 
estimate the length of a 10 second-song snippet, 
on average. (μ ≠ 10 seconds)



Estimating Time

• A sample of 48 students on campus were subjects 
and song length estimates were recorded.

• What does a single dot represent?

• What are the observational units? Variable?



Skewed, mean, median

• The distribution obtained is not symmetric, but is 
right skewed.

• When data are skewed right, the mean gets pulled 
out to the right while the median is more resistant to 
this.



Mean vs Median

• The mean is 13.71 and the median is 12.

• How would these numbers change if one of the 
people that gave an answer of 30 seconds actually 
said 300 seconds?

• The standard deviation is 6.5 sec.  Also not resistant 
to outliers.



Inference

• H0: μ = 10 seconds

• Ha: μ ≠ 10 seconds

• Our problem now is, how do we develop a null 
distribution? 

– Here we don’t have population data that 
reflects our null hypothesis where μ = 10 
seconds.

– All we have is our sample of 48.



Population?

• We need to come up with a large data set that we 
think our population of time estimates might look 
like under a true null.

• We might assume the population is skewed (like our 
sample) and has a standard deviation similar to what 
we found in our sample, but has a mean of 10 
seconds.

• The book recommends using an applet for this. We 
could use R, or do a (theory-based) t-test.



Theory-Based Test

• Using simulations to create a population each time 
we want to run a test of significance is extremely 
time consuming and cumbersome. 

• The null distribution that we developed can be 
predicted with theory-based methods.

• We know it will be centered on the mean given in the 
null hypothesis.

• We can also predict its shape and its standard 
deviation.



t-distribution

• The shape is very much like a normal distribution, but slightly wider in 
the tails and is called a t-distribution.

• The t-statistic is the standardized statistic we use with a single 
quantitative variable that looks approximately normal, when the 
sample size is small, and the statistic can be found using the formula:

𝑡 =
ҧ𝑥 − 𝜇 

ൗ
𝑠

𝑛
The ൗ

𝑠
𝑛

 (standard deviation of our sample divided by the square root of 
the sample size) is called the standard error and is an estimate for the 
standard deviation of the null distribution.

Here 𝑡 =
13.71 −10.0 

ൗ6.5
48

= 3.95. 

p-value = 2*(1-pt(3.95,df=47)) = 0.000261.



Validity Conditions

• The observations must be independent.

• The population must be normally distributed!

• The book says you need the sample size to be at least 
20 for the t-test, but this is not technically true. The 
whole point of the t-test is you can use it even when 
your sample size is small, provided the two 
assumptions above hold. 

But it is often hard to have any idea if the population is 
normal without having at least 20 observations.



Estimating Time

Formulate Conclusions.  

• Based on our small p-value, we can conclude that 
our subjects did not accurately estimate the length of 
a 10-second song snippet and in fact they 
significantly overestimated it. 

• How far can we generalize this?  



Summary

• When we test a single quantitative variable, our 
hypothesis has the following form:

– H0: μ = some number

– Ha: μ ≠ some number, µ < something or µ > something.

• We can get our data (or mean, sample size, and SD for 
our data) and use the Theory-Based Inference to 
determine the p-value.

• The p-value we get with this test has the same 
general meaning as from a test for a single 
proportion.



2. Significance level, type I and type 
II errors 

Section 2.3



Significance Level 

• We think of a p-value as telling us something 
about the strength of evidence from a test of 
significance.

• The lower the p-value the stronger the evidence.

• Sometimes it makes sense to think of this in 
more black and white terms. Either we reject the 
null or not.



Significance Level 

• The value that we use to determine how small a 
p-value needs to be to provide convincing 
evidence whether or not to reject the null 
hypothesis is called the significance level. 

• We reject the null when the p-value is less than 
or equal to the significance level.

• The significance level is often represented by the 
Greek letter alpha, α.



Significance Level 

• Typically we use 0.05 for our significance level.  
There is nothing magical about 0.05.  We could 
set up our test to make it  

– harder to reject the null (smaller significance 
level say 0.01) or

– easier (larger significance level say 0.10).



Type I and Type II errors

• In medical tests: 

– A type I error is a false positive. (conclude 
someone has a disease when they don’t.)

– A type II error is a false negative. (conclude 
someone does not have a disease when they 
actually do.)

• These types of errors can have very different 
consequences.



Type I and Type II Errors

•  



Type I and Type II errors



The probability of a Type I error

• The probability of a type I error, when the null 
hypothesis is true, is the significance level.  

• Suppose the significance level is 0.05.  If the null 
is true we would reject it 5% of the time and 
thus make a type I error 5% of the time.

• If you make the significance level lower, you 
have reduced the probability of making a type I 
error, but have increased the probability of 
making a type II error.



The probability of a Type II error

• The probability of a type II error is more difficult 
to calculate.

• In fact, the probability of a type II error is not 
even a fixed number.  It depends on the value of 
the true parameter. 

• The probability of a type II error can be very 
high if:

– The true value of the parameter and the 
value you are testing are close.

– The sample size is small.



3. Power. 

• Power is 1 – P(Type II error). Usually expressed as a 
function of µ.

• Recall Type I and Type II errors. 

– A type I error is a false positive. Rejecting the null 
when it is true. 

– A type II error is a false negative. Failing to reject 
the null when the null is false. 



Power

• The probability of rejecting the null hypothesis when 
it is false is called the power of a test.

• Power is 1 minus the probability of type II error.

• We want a test with high power and this is aided by 

– A large effect size, i.e. true µ far from the 
parameter in the null hypothesis.

– A large sample size.

– A small standard deviation. 

– Significance level. A higher sign. level means  
greater power. The downside is that you increase 
the chance of making a type I error.



4. Estimation and confidence 
intervals.

Chapter 3



Chapter Overview

• So far, we can only say things like 

– “We have strong evidence that the long-run 
frequency of death within 30 days after a heart 
transplant at St. George's Hospital is greater than 
15%.”  

– “We do not have strong evidence kids have a 
preference between candy and a toy when trick-
or-treating.”  

• We want a method that says 

– “I believe 68 to 75% of all elections can be 
correctly predicted by the competent face 
method.”



Confidence Intervals

• Interval estimates of a population parameter are 
called confidence intervals.

• We will find confidence intervals three ways.

– Through a series of tests of significance to see which 
proportions are plausible values for the parameter.

– Using the standard error (the standard deviation of 
the simulated null distribution) to help us determine 
the width of the interval.

– Through traditional theory-based methods, i.e. 
formulas. 



Statistical Inference: Confidence 
Intervals

Section 3.1



Can Dogs Sniff Out Cancer?

Section 3.1



Can Dogs Sniff Out Cancer?

Sonoda et al. (2011). Marine, a dog originally 
trained for water rescues, was tested to see if she 
could detect if a patient had colorectal cancer by 
smelling a sample of their breath.

• She first smells a bag from a patient with 
colorectal cancer.

• Then she smells 5 other samples;  4 from normal 
patients and 1 from a person with colorectal 
cancer

• She is trained to sit next to the bag that matches 
the scent of the initial bag (the “cancer scent”) 
by being rewarded with a tennis ball.



Can Dogs Sniff Out Cancer?

In Sonoda et al. (2011). Marine was tested in 33 
trials.

• Null hypothesis:  Marine is randomly guessing  
which bag is the cancer specimen (𝜋 = 0.20)

• Alternative hypothesis:  Marine can detect cancer 
better than guessing (𝜋 > 0.20)

𝜋 represents her long-run probability of 
identifying the cancer specimen.



Can Dogs Sniff Out Cancer?

• 30 out of 33 trials resulted in Marine correctly 
identifying the bag from the cancer patient

• So our sample proportion is 

Ƹ𝑝 =
30

33
≈ 0.909 

• Do you think Marine can detect cancer?

• What sort of p-value will we get?



Can Dogs Sniff Out Cancer?

Our sample proportion lies more than 10 standard 
deviations above the mean and hence our p-value ~ 0. 



Can Dogs Sniff Out Cancer?

• Can we estimate Marine’s long run frequency of 
picking the correct specimen?

• Since our sample proportion is about 0.909, it is 
plausible that 0.909 is a value for this frequency.  
What about other values?  

• Is it plausible that Marine’s frequency is actually 
0.70 and she had a lucky day? 

• Is a sample proportion of 0.909 unlikely if  

     𝜋 = 0.70?



Can Dogs Sniff Out Cancer?

• H0: 𝜋 = 0.70    Ha: 𝜋 ≠ 0.70

• We get a small p-value (0.0090) so we can 
essentially rule out 0.70 as her long run frequency. 



Can Dogs Sniff Out Cancer?

• What about 0.80? 

• Is 0.909 unlikely if 𝜋 = 0.80?



Can Dogs Sniff Out Cancer?

• H0: 𝜋 = 0.80    Ha: 𝜋 ≠ 0.80

• We get a large p-value (0.1470) so 0.80 is a 
plausible value for Marine’s long-run frequency. 



Developing a range of plausible values

• If we get a small p-value (like we did with 
0.70) we will conclude that the value under 
the null is not plausible.  This is when we 
reject the null hypothesis.

• If we get a large p-value (like we did with 0.80) 
we will conclude the value under the null is 
plausible.  This is when we can’t reject the 
null. 



Developing a range of plausible values

• One could use software (like the one-proportion 
applet the book recommends) to find a range of 
plausible values for Marine’s long term probability 
of choosing the correct specimen. 

• We will keep the sample proportion the same and 
change the possible values of 𝜋.

• We will use 0.05 as our cutoff value for if a p-value 
is small or large. (Recall that this is called the 
significance level.)



Can Dogs Sniff Out Cancer?

• It turns out values between 0.761 and 0.974 are 
plausible values for Marine’s probability of picking 
the correct specimen.

Probability 
under null

0.759 0.760 0.761 0.762

……

0.973 0.974 0.975 0.976

p-value
0.042 0.043 0.063 0.063 0.059 0.054 0.049 0.044

Plausible?
No No Yes Yes

……… 
Yes

Yes Yes No No



Can Dogs Sniff Out Cancer?

• (0.761, 0.974) is called a confidence interval.

• Since we used 5% as our significance level, this is 
a 95% confidence interval.  (100% − 5%)

• 95% is the confidence level associated with the 
interval of plausible values. 



Can Dogs Sniff Out Cancer?

• We would say we are 95% confident that Marine’s 
probability of correctly picking the bag with breath 
from the cancer patient from among 5 bags is 
between 0.761 and 0.974. 

• This is a more precise statement than our initial 
significance test which concluded Marine’s 
probability was more than 0.20.

• Sidenote: We do not say P{π is in (.761, .974)} = 95%, 

because π is not random. The interval is random, and would 

change with a different sample. If we calculate an interval this 

way, then P(interval contains π) = 95%. 



Confidence Level

• If we increase the confidence level from 95% to 
99%, what will happen to the width of the 
confidence interval? 



Can Dogs Sniff Out Cancer?

• Since the confidence level gives an indication of 
how sure we are that we captured the actual 
value of the parameter in our interval,        
to be more sure our interval should be wider. 

• How would we obtain a wider interval of 
plausible values to represent a 99% confidence 
level?

– Use a 1% significance level in the tests.

– Values that correspond to 2-sided p-values 
larger than 0.01 should now be in our interval.



5. 1.96SE and Theory-Based 
Confidence Intervals for a Single 

Proportion and ACA example. 

Section 3.2



Introduction

• Section 3.1 found confidence intervals by doing 
repeated tests of significance (changing the 
value in the null hypothesis) to find a range of 
values that were plausible for the population 
parameter (long run probability or population 
proportion).

• This is a very tedious way to construct a 
confidence interval.

• We will now look at two others way to construct 
confidence intervals [1.96SE and Theory-Based].



The Affordable 
Care Act

Example 3.2



The Affordable Care Act

• A November 2013 Gallup poll based on a 
random sample of 1,034 adults asked whether 
the Affordable Care Act had affected the 
respondents or their family. 

• 69% of the sample responded that the act had 
no effect.  (This number went down to 59% in 
May 2014 and 54% in Oct 2014.)

• What can we say about the proportion of all 
adult Americans that would say the act had no 
effect?



The Affordable Care Act

• We could construct a confidence interval just 
like we did last time.

• We find we are 95% confident that the 
proportion of all adult Americans that felt 
unaffected by the ACA is between 0.661 and 
0.717.

Probability 
under null

0.659 0.660 0.661 ………… 0.717 0.718 0.719

Two-sided p-
value

0.0388 0.0453 0.0514 ………… 0.0517 0.0458 0.0365

Plausible 
value (0.05)?

No No Yes ………… Yes No No



Short cut?

• The method we used last time to find our 
interval of plausible values for the parameter is 
tedious and time consuming. 

• Might there be a short cut?

• Our sample proportion should be the middle of 
our confidence interval.

• We just need a way to find out how wide it 
should be.



1.96SE method

• When a statistic is normally distributed, about 
95% of the values fall within 1.96 standard 
errors of its mean with the other 5% outside 
this region



1.96SE method
• So we could say that a parameter value is 

plausible if it is within 1.96 standard errors 
from our best estimate of the parameter, our 
observed sample statistic.

• This gives us the simple formula for a 95% 
confidence interval of

ෝ𝒑 ± 𝟏. 𝟗𝟔𝑺𝑬

Note that your book calls this the 2SD method 
but it really should be called the 1.96SE 
method. 



Where do we get the SE?

• Null distribution for ACA with π = 0.5.



1.96SE method

• Using the 1.96SE method on our ACA data we 
get a 95% confidence interval

  0.69 ± 1.96(0.016)

  0.69 ± 0.031

• The ± part, like 0.031 in the above, is called the 
margin of error.

• The interval can also be written as we did 
before using just the endpoints; (0.659, 0.721)

• This is approximately what we got with our 
range of plausible values method (a bit wider).



Theory-Based Methods

• The 1.96SE method only gives us a 95% 
confidence interval

• If we want a different level of confidence, we 
can use the range of plausible values (hard) 
or theory-based methods (easy).

• The theory-based method is valid provided 
there are at least 10 successes and 10 
failures in your sample. 



Theory-Based Methods

• With theory-based methods we use normal 
distributions to approximate our simulated null 
distributions.

• Therefore we can develop a formula for 
confidence intervals.

ෝ𝑝 + multiplier × Ƹ𝑝 1 − Ƹ𝑝 /𝑛.

For a 95% CI, the book suggests a multiplier of 2. 
Actually people use 1.96, not 2. This comes from 
a property of the normal distribution. 

qnorm(.975) = 1.96. 

qnorm(.995) = 2.58. 



• Let’s check out this example using the theory-
based method.

• Remember 69% of 1034 respondents were not 
affected.  

ෝ𝑝 + multiplier × Ƹ𝑝 1 − Ƹ𝑝 /𝑛

= 69% + 1.96 x .69(1 − .69)/1034

= 69% + 2.82%. 

With 2 instead of 1.96 it would be 69% + 2.88%.
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