
Stat 13, Intro. to Statistical Methods for the Life and Health Sciences.

1. Causation and prediction. 
2. Comparing two proportions using formulas, smoking and gender example. 
3. Five number summary and IQR. 
4. t-test for comparing two means. 
5. t versus normal, and when to use what formula. 
6. Review list. 
7. Practice exam answers. 

Read ch5 and 6.  The midterm will be on ch 1-6. 

Midterm is Wed Jul16, 11am-12:50pm. 

A practice midterm is on the course website, 

http://www.stat.ucla.edu/~frederic/13/sum25 . 

HW3 is due Fri Jul18, 10pm. 4.CE.10, 5.3.28, 6.1.17, and 6.3.14. In 5.3.28d, 
use the theory-based formula. You do not need to use an applet. 

I will post the midterm on the course website. 
First see the file midtermInstructions.txt which will be posted there Wed 1015am. 

You also need to zoom in to the usual zoom while taking the exam. 

By 12:50pm you must email me your answers, to frederic@stat.UCLA.edu . 
After the exam there will be no lecture. 
Your email should just contain your answers, like 
ADDBC CDAAB BBCCA . 
If you forsee possible internet problems, submit your answers a few min early!!! 
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1. Causation and prediction. 

Note that for prediction, you sometimes do not 
care about confounding factors. 

* Forecasting wildfire activity using temperature.

  Warmer weather may directly cause wildfires via 
increased ease of ignition, or due to confounding with 
people choosing to go camping in warmer weather. It does 
not really matter for the purpose of merely predicting how 
many wildfires will occur in the coming month. 

* The same goes for predicting lifespan, or liver disease 
rates, etc., using smoking as a predictor variable. 



2. Comparing two 
proportions: Theory-
Based Approach, and 
smoking and gender 
example. 
Section 5.3



Introduction 

• Just as with a single proportion, we can often 
predict results of a simulation using a theory-
based approach. 

• The theory-based approach also gives a simpler 
way to generate a confidence intervals. 

• The main new mathematical fact to use is 
  the SE for the difference between two 

proportions is Ƹ𝑝(1 − Ƹ𝑝)
1

𝑛1
+

1

𝑛2
 .



Parents’ Smoking 
Status and their 
Babies’ Gender
Example 5.3



Smoking and Gender

• How does parents’ behavior affect the gender of their 
children?

• Fukuda et al. (2002) found the following in Japan. 

• Out of 565 births where both parents smoked more than a 
pack a day, 255 were boys. This is 45.1% boys.

• Out of 3602 births where both parents did not smoke, 
1975 were boys. This 54.8% boys. 

• In total, out of 4170 births, 2230 were boys, which is 
53.5%. 

• Other studies have shown a reduced male to female 
birth ratio where high concentrations of other 
environmental chemicals are present (e.g. industrial 
pollution, pesticides)



Smoking and Gender

• A segmented bar graph and 2-way table

• Let’s compare the proportions to see if the difference is 
statistically significantly.  

 

Both Smoked Neither Smoked

Boy 255 (45.1%) 1,975 (54.8%)

Girl 310 1,627

Total 565 3,602



Smoking and Gender

Null Hypothesis:  

• There is no association between smoking status of parents 
and sex of child. 

• The probability of having a boy is the same for parents who 
smoke and don’t smoke.  

• 𝜋smoking - 𝜋nonsmoking = 0



Smoking and Gender

Alternative Hypothesis:  

• There is an association between smoking status of parents 
and sex of child.  

• The probability of having a boy is not the same for parents 
who smoke and don’t smoke 

• 𝜋smoking - 𝜋nonsmoking ≠ 0



Smoking and Gender

• What are the observational units in the study?

• What are the variables in this study?

• Which variable should be considered the 
explanatory variable and which the response 
variable? 

• What is the parameter of interest?

• Can you draw cause-and-effect conclusions for 
this study? 



Smoking and Gender

Using the 3S Strategy to asses the strength

1. Statistic: 

• The proportion of boys born to nonsmokers 
minus the proportion of boys born to smokers is 

   0.548 – 0.451 = 0.097.



Smoking and Gender

2. Simulate: 

• Many repetitions of shuffling the 2230 boys and 
1937 girls to the 565 smoking and 3602 
nonsmoking parents

• Calculate the difference in proportions of boys 
between the groups for each repetition. 

• Shuffling simulates the null hypothesis of no 
association



Smoking and Gender

3. Strength of evidence: 

• Nothing as extreme as 
our observed statistic    
(≥ 0.097 or ≤ −0.097) 
occurred in 5000 
repetitions, 

• How many SEs is 0.097 
above the mean? 
  Z = 
0.097/0.023 = 4.22 using 
simulations. What about 
using the theory-based 
approach?



Smoking and Gender

• Notice the null distribution is centered at zero 
and is bell-shaped.  

• This can be approximated by the normal 
distribution.



Formulas

• The theory-based approach yields z = 4.30.

𝑧 =
Ƹ𝑝1 − Ƹ𝑝2

Ƹ𝑝(1 − Ƹ𝑝)
1

𝑛1
+

1
𝑛2

• Here 𝑧 =
.548−.451

.535 (1−.535)
1

3602
+

1

565

 = 4.30.

• p-value is 2*(1-pnorm(4.30)) = 0.00171%. 



Smoking and Gender

• Fukuda et al. (2002) found the following in Japan. 

• Out of 3602 births where both parents did not smoke, 
1975 were boys. This 54.8% boys. 

• Out of 565 births where both parents smoked more than a 
pack a day, 255 were boys. This is 45.1% boys.

• In total, out of 4170 births, 2230 were boys, which is 53.5% 
boys. 



Formulas

• How do we find the margin of error for the difference in 
proportions?

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 ⨯
Ƹ𝑝1(1 − Ƹ𝑝1)

𝑛1
+

Ƹ𝑝2(1 − Ƹ𝑝2)

𝑛2

• The multiplier is from the normal distribution and is 
dependent upon the confidence level. 

• 1.645 for 90% confidence

• 1.96 for 95% confidence

• 2.576 for 99% confidence

• We can write the confidence interval in the form: 

• statistic ± margin of error.  



Smoking and Gender

• Our statistic is the observed sample difference in 
proportions, 0.097.  

• Plugging in 1.96 ⨯
ො𝑝1(1− ො𝑝1)

𝑛1
+

ො𝑝2(1− ො𝑝2)

𝑛2
 = 0.044,       

we get 0.097 ± 0.044 as our 95% CI.

• We could also write this interval as (0.053, 0.141). 

• We are 95% confident that the probability of a boy 
baby where neither family smokes minus the 
probability of a boy baby where both parents smoke is 
between 0.053 and 0.141. 



A clarification on the formulas

• The margin of error for the difference in proportions is 

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 ⨯ SE, where SE =
ො𝑝1(1− ො𝑝1)

𝑛1
+

ො𝑝2(1− ො𝑝2)

𝑛2

In testing, the null hypothesis is no difference between 
the two groups, so we used the SE

Ƹ𝑝(1 − Ƹ𝑝)

𝑛1
+

Ƹ𝑝(1 − Ƹ𝑝)

𝑛2

where Ƹ𝑝 is the proportion in both groups combined. But 

in CIs, we use the formula  
ො𝑝1(1− ො𝑝1)

𝑛1
+

ො𝑝2(1− ො𝑝2)

𝑛2
 

because we are not assuming Ƹ𝑝1 = Ƹ𝑝2 with CIs. 



Smoking and Gender

• How would the interval change if the confidence 
level was 99%?

• The SE = 
ො𝑝1(1− ො𝑝1)

𝑛1
+

ො𝑝2(1− ො𝑝2)

𝑛2
 = .0224.

• Previously, for a 95% CI, it was 0.097 ± 1.96 x .0224 
= 0.097 ± 0.044.

• For a 99% CI, it is 0.097 ± 2.576 x .0224             
= 0.097 ± 0.058.



Smoking and Gender
• Written as the statistic ± margin of error, the 

99% CI for the difference between the two 
proportions is 

0.097 ± 0.058.  

• Margin of error 

• 0.058 for the 99% confidence interval

• 0.044 for the 95% confidence interval



Smoking and Gender

• How would the 95% confidence interval change 
if we were estimating 

𝜋smoker – 𝜋nonsmoker

    instead of 

𝜋nonsmoker – 𝜋smoker ?



Smoking and Gender

• (−0.141, −0.053) or −0.097 ± 0.044  

   instead of 

• (0.053, 0.141) or 0.097 ± 0.044.

• The negative signs indicate the probability of a 
boy born to smoking parents is lower than that 
for nonsmoking parents.



Smoking and Gender

Validity Conditions of Theory-Based 

• Same as with a single proportion.

• Should have at least 10 observations in each of 
the cells of the 2 x 2 table.

Smoking Parents Non-

smoking 

Parents

Total

Male 255 1975 2230

Female 310 1627 1937

Total 565 3602 4167



Smoking and Gender
• The strong significant result in this study yielded 

quite a bit of press when it came out.

• Soon other studies came out which found no 
relationship between smoking and gender 
(Parazinni et al. 2004, Obel et al. 2003). 

• James (2004) argued that confounding variables 
like social factors, diet, environmental exposure 
or stress were the reason for the association 
between smoking and gender of the baby.  These 
are all confounded since it was an observational 
study. Different studies could easily have had 
different levels of these confounding factors. 



3. Five number 
summary, IQR, and 

geysers.

6.1: Comparing Two Groups: Quantitative Response
6.2: Comparing Two Means: Simulation-Based Approach
6.3: Comparing Two Means: Theory-Based Approach



Section 6.1

Exploring Quantitative Data



Quantitative vs. Categorical Variables

• Categorical

• Values for which arithmetic does not make 
sense. 

• Gender, ethnicity, eye color…

• Quantitative

• You can add or subtract the values, etc.

• Age, height, weight, distance, time…  



Graphs for a Single Variable

Categorical

Quantitative

Bar Graph Dot Plot



Comparing Two Groups Graphically

Categorical

Quantitative



Notation Check

Statistics
 ҧ𝑥  Sample mean 

 Ƹ𝑝 Sample proportion. 

Parameters
 𝜇 Population mean  

 𝜋 Population 
proportion or 
probability. 

Statistics summarize a sample and 

parameters summarize a population



Quartiles

• Suppose 25% of the observations lie below a 
certain value x. Then x is called the lower quartile 
(or 25th percentile). 

• Similarly, if 25% of the observations are greater 
than x, then x is called the upper quartile (or 75th 
percentile). 

• The lower quartile can be calculated by finding the 
median, and then determining the median of the 
values below the overall median. Similarly the 
upper quartile is median{xi : xi > overall median}. 



IQR and Five-Number Summary

• The difference between the quartiles is called the inter-
quartile range (IQR), another measure of variability along 
with standard deviation. 

• The five-number summary for the distribution of a 
quantitative variable consists of the minimum, lower quartile, 
median, upper quartile, and maximum.

• Technically the IQR is not the interval (25th percentile, 75th 
percentile), but the difference 75th percentile – 25th .

• Different software use different conventions, but we will use 
the convention that, if there is a range of possible quantiles, 
you take the middle of that range.

• For example, suppose data are 1, 3, 7, 7, 8, 9, 12, 14.      

• M  = 7.5, 25th percentile = 5, 75th percentile = 10.5. IQR = 5.5.



IQR and Five-Number Summary
• For medians and quartiles, we will use the convention, if 

there is a range of possibilities, take the middle of the range. 

• In R, this is type = 2. type = 1 means take the minimum.

• x = c(1, 3, 7, 7, 8, 9, 12, 14)

• quantile(x,.25, type=2) ## 5.5

• IQR(x,type=2) ## 5.5

• IQR(x,type=1) ## 6. Can you see why?

• For example, suppose data are 1, 3, 7, 7, 8, 9, 12, 14.      

• M  = 7.5, 25th percentile = 5, 75th percentile = 10.5. IQR = 5.5.



Old Faithful Inter-Eruption Times

• How do the five-number summary and IQR differ 
for inter-eruption times between 1978 and 2003?



Old Faithful Inter-Eruption Times

• 1978 IQR = 81 – 58 = 23

• 2003 IQR = 98 – 87 = 11



Boxplots

Min     Qlower    Med    Qupper     Max



Boxplots (Outliers)
• A data value that is more than 1.5 × IQR above the upper 

quartile or below the lower quartile is considered an outlier. 

• When these occur, the whiskers on a boxplot extend out to 
the farthest value not considered an outlier and outliers are 
represented by a dot or an asterisk.



Pamphlet Reading Levels

• Short et al. (1995) compared reading levels of 
cancer patients and readability levels of cancer 
pamphlets. What is the:

• Median reading level?

• Mean reading level?

• Are the data skewed one way or the other?



• Skewed a bit to the right 

• Mean to the right of median



4. t-test, t CIs, and 
breastfeeding and 
intelligence example. 
Example 6.3



Breastfeeding and Intelligence

• A 1999 study in Pediatrics examined if children who were 
breastfed during infancy differed from bottle-fed.

• 323 children recruited at birth in 1980-81 from four Western 
Michigan hospitals. 

• Researchers deemed the participants representative of the 
community in social class, maternal education, age,  marital 
status, and sex of infant. 

• Children were followed-up at age 4 and assessed using the 
General Cognitive Index (GCI) 

• A measure of the child’s intellectual functioning 

• Researchers surveyed parents and recorded if the child had 
been breastfed during infancy.



Breastfeeding and Intelligence

• Explanatory and response variables.

• Explanatory variable: Whether the baby was 
breastfed. (Categorical)

• Response variable: Baby’s GCI at age 4. (Quantitative)

• Is this an experiment or an observational study? 

• Can cause-and-effect conclusions be drawn in this study?  



Breastfeeding and Intelligence

• Null hypothesis: There is no relationship 
between breastfeeding during infancy and GCI at 
age 4.

• Alternative hypothesis: There is a relationship 
between breastfeeding during infancy and GCI at 
age 4.



Breastfeeding and Intelligence

• µbreastfed = Average GCI at age 4 for breastfed children

• µnot = Average GCI at age 4 for children not breastfed

• H0: µbreastfed = µnot

• Ha: µbreastfed ≠ µnot



Breastfeeding and Intelligence

Group Sample size, n Sample mean Sample SD

Breastfed 237 105.3 14.5

Not BF 85 100.9 14.0



Breastfeeding and Intelligence

The difference in means was 4.4. 

• If breastfeeding is not related to GCI at age 4: 

• Is it possible a difference this large could happen 
by chance alone?  Yes

• Is it plausible (believable, fairly likely) a difference 
this large could happen by chance alone?  

• We can investigate this with simulations.

• Alternatively, we can use a formula, or what your book 
calls a theory-based method. 



T-statistic
• To use theory-based methods when comparing multiple 

means, the t-statistic is often used. Here the sample sizes are 
large, but if they were small and the populations were 
normal, the t-test would be more appropriate than the z-test.

• the t-statistic is again simply the number of standard errors 
our statistic is above or below the mean under the null 
hypothesis. 

• 𝑡 =
𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐−ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑢𝑛𝑑𝑒𝑟 𝐻𝑜 

𝑆𝐸
=

ҧ𝑥1− ҧ𝑥2−0

𝑠1
2

𝑛1
+

𝑠2
2

𝑛2

• Here, t = 
105.3 −100.9 −0

(
14.52

237
 +

14.02

85
)

= 2.46.

• p-value ~ 1.4 or 1.5%.  [2 * (1-pnorm(2.46))], or use pt.



Breastfeeding and Intelligence

Meaning of the p-value:

• If breastfeeding were not related to GCI at age 4, 
then the probability of observing a difference of 
4.4 or more or -4.4 or less just by chance is 
about 1.4%. 

• A 95% CI can also be obtained using the t-

distribution. The SE is (
14.52

237
 +

14.02

85
) = 1.79. 

So the margin of error is multiplier x SE. 



Breastfeeding and Intelligence

• The SE is (
14.52

237
 +

14.02

85
) = 1.79. The margin of 

error is multiplier x SE. 

• The multiplier should technically be obtained 
using the t distribution, but for large sample 
sizes you get almost the same multiplier with t 
and normal. Use 1.96 for a 95% CI to get      
4.40 +/- 1.96 x 1.79 = 4.40 +/- 3.51 = (0.89, 7.91).

• The book uses 2 instead of 1.96, and the applet 
uses 1.9756 from the t-distribution. Just use 1.96 
for 95% CIs for this class. 



Breastfeeding and Intelligence

• We have strong evidence against the null 
hypothesis and can conclude the association 
between breastfeeding and intelligence here is 
statistically significant. 

• Breastfed babies have statistically significantly  
higher average GCI scores at age 4.

• We can see this in both the small p-value (0.015) 
and the confidence interval that says the mean 
GCI for breastfed babies is 0.89 to 7.91 points 
higher than that for non-breastfed babies.



Breastfeeding and Intelligence

• Can you conclude that breastfeeding improves average 
GCI at age 4? 

• No.  The study was not a randomized experiment.

• We cannot conclude a cause-and-effect relationship. 

• There might be alternative explanations for the 
significant difference in average GCI values.

• What might some confounding factors be?



Breastfeeding and Intelligence

• Can you conclude that breastfeeding improves average 
GCI at age 4? 

• No.  The study was not a randomized experiment.

• We cannot conclude a cause-and-effect relationship. 

• There might be alternative explanations for the 
significant difference in average GCI values.

• Maybe better educated mothers are more likely to 
breastfeed their children 

• Maybe mothers that breastfeed spend more time with 
their children and interact with them more. 

• Some mothers who do not breastfeed are less healthy 
or their babies have weaker appetites and this might 
slow down development in general. 



Why do we sometimes use the t distribution and 
sometimes the normal distribution in testing and 
confidence intervals?

The central limit theorem states that, for any iid 
random variables X1, ..., Xn with mean µ and SD ,

( ҧ𝑥 - µ) ÷ (/√n) -> standard normal, as n -> ∞. 

iid means independent and identically distributed,

like draws from the same large population. 

standard means mean 0 and SD 1.

5. t versus normal, and 
when to use what formula. 



t versus normal and assumptions. 

CLT: ( ҧ𝑥 - µ) ÷ (/√n) -> standard normal.

If Z is std. normal, then P(|Z| < 1.96) = 95%.

So, if n is large, then

 P(|( ҧ𝑥 - µ) ÷ (/√n)| < 1.96) ~ 95%.

Mult. by (/√n) and get 

 P(| ҧ𝑥 - µ| < 1.96 /√n) ~ 95%.

 P(µ − ҧ𝑥 is in the range 0 +/- 1.96 /√n) ~ 95%.

 P(µ is in the range ҧ𝑥 +/- 1.96 /√n) ~ 95%. 

This all assumes n is large. What if n is small? 



t versus normal and assumptions. 

CLT: ( ҧ𝑥 - µ) ÷ (/√n) -> standard normal.

What about if n is small? 

A property of the normal distribution is that the 
sum of independent normals is also normal, and 
from this it follows that if X1, ..., Xn are iid and 
normal, then ( ҧ𝑥 - µ) ÷ (/√n) is standard normal.

So again P(µ is in the range ҧ𝑥 +/- 1.96 /√n) = 95%. 

This assumes you know . What if  is unknown? 



t versus normal and assumptions. 

Suppose X1, ..., Xn are iid with mean µ and SD .

CLT: ( ҧ𝑥 - µ) ÷ (/√n) ~ std. normal.

If X1, ..., Xn are normal, then ( ҧ𝑥 - µ)÷(/√n) is std. normal.

 is the SD of the population from which X1, ..., Xn  are 
drawn. s is the SD of the sample, X1, ..., Xn .

Gosset (1908) showed that replacing  with s, 

if X1, ..., Xn are normal, then ( ҧ𝑥 - µ)÷(s/√n) is t distributed. 

So we need the multiplier from the t distribution. 



t versus normal and assumptions. 

To sum up,

if the observations are iid and n is large, then 

  P(µ is in the range ҧ𝑥 +/- 1.96 /√n) ~ 95%. 

If the observations are iid and normal, then

  P(µ is in the range ҧ𝑥 +/- 1.96 /√n) ~ 95%. 

If the obs. are iid and normal and  is unknown, then

  P(µ is in the range ҧ𝑥 +/- tmult s/√n) ~ 95%.

where tmult is the multiplier from the t distribution.

This multiplier depends on n. 



t versus normal and assumptions. 

0 10 20 30 40 50

2
4

6
8

1
0

1
2

n

tm
u
lt

1.96



When to use which formula. 
a. 1 sample numerical data, iid observations, want a 95% CI for µ. 

• If n is large and  is known, use ҧ𝑥 +/- 1.96 /√n. 

• If n is small, draws are normal, and  is known, use ҧ𝑥 +/- 1.96 /√n. 

• If n is small, draws are normal, and  is unknown, use ҧ𝑥 +/- tmult s/√n.

• If n is large and  is unknown, tmult ~ 1.96, so we can use ҧ𝑥 +/- 1.96 s/√n. 

n ≥ 30 is often considered large enough to use 1.96.

In practice, we typically do not know the draws are normal, but if the 
distribution looks roughly symmetrical without enormous outliers, the t 
formula may be reasonable. 

b. 1 sample binary data, iid observations, want a 95% CI for π.

View the data as 0 or 1, so sample percentage p = ҧ𝑥, and 

s = √[p(1-p)],  =  (−). 



When to use which formula. 

a. 1 sample numerical data, iid observations, want a 95% CI for µ. 

• If n is large and  is known, use ҧ𝑥 +/- 1.96 /√n. 

• If n is small, draws are normal, and  is known, use ҧ𝑥 +/- 1.96 /√n. 

• If n is small, draws ~ normal, and  is unknown, use ҧ𝑥 +/- tmult s/√n.

• If n is large and  is unknown, tmult ~ 1.96, so we can use ҧ𝑥 +/- 1.96 s/√n. 

b. 1 sample binary data,  iid observations, want a 95% CI for π.

View the data as 0 or 1, so sample percentage p = ഥ𝒙, 𝐚𝐧𝐝 

s = √[p(1-p)],  =  (−).

If n is large and π is unknown, use ഥ𝒙 +/- 1.96 s/√n. 

 Here large n means ≥ 10 of each type in the sample. 



When to use which formula. 

What if n is small and the draws are not normal, and you want 
a theory-based test or CI? 

How should you find the t multiplier for a CI or a p-value using 
the t-statistic, when n is small? 

These are questions outside the scope of this course, but some 
techniques have been developed, such as the bootstrap, which 
are sometimes useful in these situations. 



When to use which formula. 

c. Numerical data from 2 samples, iid observations, want a 95% 
CI for µ1 - µ2. 

If n is large and  is unknown, use ഥ𝑥1 - ҧ𝑥2+/- 1.96 
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2
 . 

As with one sample, if 1 is known, replace s1 with 1, and the same for 
2. And as with one sample, if 1 and 2 are unknown, the sample sizes 
are small, and the distributions are roughly normal, then use tmult instead 
of 1.96. If the sample sizes are small, the distributions are normal, and 1 
and 2 are known, then use 1.96. 

d. Binary data from 2 samples, iid observations, want a 95% CI 
for π1 - π2. 

same as in c above, with p1 = ഥ𝑥1, s1 = √[p1 (1-p1)], 1 =  1 (−1).

Large for binary data means sample has ≥ 10 of each type.  



6. Review list. 

1. Meaning of SD.   19. Random sampling and random
2. Parameters and statistics.      assignment.
3. Z statistic for proportions.   20. Two proportion CIs and testing.
4. Simulation and meaning of pvalues.  21. IQR and 5 number summaries. 
5. SE for proportions.    22. Testing and CIs for 2 means. 
6. What influences pvalues.  23. Placebo effect, adherer bias, 
7. CLT and validity conditions for tests.    and nonresponse bias.
8. 1-sided and 2-sided tests.    24. Prediction and causation. 
9. Reject the null vs. accept the alternative.  
10. Sampling and bias.    
11. Significance level.
12. Type I, type II errors, and power.
13. CIs for a proportion.
14. CIs for a mean.
15. Margin of error. 
16. Practical significance.
17. Confounding.
18. Observational studies and experiments.



Practice test answers. 

CADBA ADBCB BDABB ADCCB.
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