Stat 19, Probability and Poker. Rick Paik Schoenberg

Outline for the day:

1. Discuss Addiction.
2. R.
3. Ly vs. Negreanu.
4. Counting and combinations.
5. $\mathrm{P}(\mathrm{A} \uparrow$ after first ace).

Read harrington1.pdf for next time.
Think of 2 questions or comments for next time.
The course website is http://www.stat.ucla.edu/~frederic/19/F18 .
BADDLEY, COOPERBARRERA, JACKBERGMAN-TURNBULL, LIANA
BUI, ALEXIS
CHENG, LU
GONG, LAURA
HUANG, STELLA
JACKSON, SOFIE
JONES, NOAH
LEE, EDDIE
LI, VINCENT
MARTINEZ, AARIN
NGUYEN, TIFFANY
REN, DIANA
SHARMA, DHRUV
SHOURYA, SHIVESH
VALDOVINOS, FELIPE
WORDLAW, ANDREA
ZHUO, MATTHEW
\boldsymbol{R}. To download and install R, go directly to cran.stat.ucla.edu, or you can start at www.r-project.org, in which case you click on "download R ", scroll down to UCLA, and click on cran.stat.ucla.edu.
From there, click on "download R for ...", and then get the latest version.

000											
4	\square	+	Q http://www.r-project.o							c	Q- Google
ω	[D]	\#\#	Graduate Ad... Committee	KeepVid.com	movies	Capital One	...redit Cards	Bleigiessen.html	Author Central	evite	

The R Project for Statistical Computing

About R
What is R?
Contributors
Screenshots
What's new?
Download, Packages CRAN

R Project
Foundation
Members \& Donors
Mailing Lists
Bug Tracking
Developer Page Conferences Search

Documentation
Manuals
FAQs
The R Journal
Wiki
Books
Certification
Other

Getting Started:

- R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. To download R, please choose your preferred CRAN mirror.
- If you have questions about R like how to download and install the software, or what the license terms are, please read our answers to frequently asked questions before you send an email.

To download and install R, go directly to cran.stat.ucla.edu, or you can start at www.r-project.org, in which case you click on "download R ", scroll down to UCLA, and click on cran.stat.ucla.edu.
From there, click on "download R for ...", and then get the latest version.

To download and install R, go directly to cran.stat.ucla.edu, or you can start at www.r-project.org, in which case you click on "download R ", scroll down to UCLA, and click on cran.stat.ucla.edu.
From there, click on "download R for ...", and then get the latest version.

CRAN

Mirrors
What's new?
Task Views
Search
About R
R Homepage
The R Journal

Software

R Sources
R Binaries
Packages
Other
Documentation
Manuals
FAQs
Contributed

The Comprehensive R Archive Network
Download and Install R
Precompiled binary distributions of the base system and contributed packages, Windows and Mac users most likely want one of these versions of R:

- Download R for Linux
- Download R for MacOS X
- Download R for Windows

Source Code for all Platforms
Windows and Mac users most likely want to download the precompiled binaries listed in the upper box, not the source code. The sources have to be compiled before you can use them. If you do not know what this means, you probably do not want to do it!

- The latest release (2011-12-22, December Snowflakes): R-2.14.1.tar.gz, read what's new in the latest version.
- Sources of R alpha and beta releases (daily snapshots, created only in time periods before a planned release).
- Daily snapshots of current patched and development versions are available here. Please read about new features and bug fixes before filing corresponding feature requests or bug reports.
- Source code of older versions of R is available here.
- Contributed extension packages

Questions About R

To download and install R, go directly to cran.stat.ucla.edu, or you can start at www.r-project.org, in which case you click on "download R ", scroll down to UCLA,

 and click on cran.stat.ucla.edu.
From there, click on "download R for ...", and then get the latest version.

The Comprehensive R Archive Network
CRAN

Ly vs. Negreanu.

Ex. Suppose you have two \&s, and there are exactly two \&s on the flop. Given this info, what is P (at least one more on turn or river)?

Answer: 52-5 = 47 cards left (nine \boldsymbol{q}^{2}, 38 others).
So $n=$ choose $(47,2)=1081$ combinations for next 2 cards.
Each equally likely (and obviously mutually exclusive).
Two-\& combos: choose $(9,2)=36$. One-\& combos: $9 \times 38=342$.
Total $=378$. So answer is $378 / 1081=35.0 \%$.

Answer \#2: Use the addition rule...

ADDITION RULE, revisited.....

Axioms (initial assumptions/rules) of probability:

1) $\mathrm{P}(\mathrm{A}) \geq 0$.
2) $\mathrm{P}(\mathrm{A})+\mathrm{P}\left(\mathrm{A}^{\mathrm{c}}\right)=1$.
3) Addition rule:

If $A_{1}, A_{2}, A_{3}, \ldots$ are mutually exclusive, then $\mathrm{P}\left(\mathrm{A}_{1}\right.$ or A_{2} or A_{3} or $\left.\ldots\right)=\mathrm{P}\left(\mathrm{A}_{1}\right)+\mathrm{P}\left(\mathrm{A}_{2}\right)+\mathrm{P}\left(\mathrm{A}_{3}\right)+\ldots$

As a result, even if A and B might not be mutually exclusive, $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$.

Ex. You have two $\boldsymbol{*} s$, and there are exactly two \boldsymbol{q}^{s} on the flop. Given this info, what is P (at least one more \boldsymbol{q} on turn or river)?
Answer \#1: $52-5=47$ cards left (nine $\%$ s, 38 others).
So $\mathrm{n}=$ choose $(47,2)=1081$ combinations for next 2 cards.
Each equally likely (and obviously mutually exclusive).
Two- \& combos: choose $(9,2)=36$. One-\& combos: $9 \times 38=342$.
Total $=378$. So answer is $378 / 1081=35.0 \%$.

Answer \#2: Use the addition rule.
$\mathrm{P}(\geq 1$ more $\boldsymbol{\phi})=\mathrm{P}(\boldsymbol{\phi}$ on turn OR river $)$

$$
\begin{aligned}
& =P(\boldsymbol{P} \text { on turn })+\mathrm{P}(\boldsymbol{*} \text { on river })-\mathrm{P}(\text { both }) \\
& =9 / 47+9 / 47-\operatorname{choose}(9,2) / \text { choose }(47,2) \\
& =19.15 \%+19.15 \%-3.3 \%=35.0 \% .
\end{aligned}
$$

Counting.

Fact: If $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}$ are equally likely $\&$ mutually exclusive, and if $\mathrm{P}\left(\mathrm{A}_{1}\right.$ or A_{2} or \ldots or $\left.\mathrm{A}_{n}\right)=1$,
then $\mathrm{P}\left(\mathrm{A}_{\mathrm{k}}\right)=1 / \mathrm{n}$.
[So, you can count: $\mathrm{P}\left(\mathrm{A}_{1}\right.$ or A_{2} or \ldots or $\left.\mathrm{A}_{\mathrm{k}}\right)=\mathrm{k} / \mathrm{n}$.]

Ex. You have 76, and the board is KQ54. P(straight)?
$[52-2-4=46$.] $\mathrm{P}($ straight $)=\mathrm{P}(8$ on river OR 3 on river $)$
$=P(8$ on river $)+P(3$ on river $)=4 / 46+4 / 46$.
If there are a_{1} distinct possible outcomes on experiment $\# 1$, and for each of them, there are a_{2} distinct possible outcomes on experiment \#2, then there are $\mathrm{a}_{1} \times \mathrm{a}_{2}$ distinct possible ordered outcomes on both.
In general, with j experiments, each with a_{i} possibilities, the \# of distinct outcomes where order matters is $a_{1} \times a_{2} \times \ldots \times a_{j}$.

Permutations and combinations.

e.g. you get 1 card, opp. gets 1 card. \# of distinct possibilities? 52×51. [ordered: $(\mathrm{A} \boldsymbol{*}, \mathrm{K}\rangle) \neq(\mathrm{K}\rangle, \mathrm{A} \boldsymbol{*})$.]

Each such outcome, where order matters, is called a permutation.
Number of permutations of the deck? $52 \times 51 \times \ldots \times 1=52$!

$$
\sim 8.1 \times 10^{67}
$$

A combination is a collection of outcomes, where order doesn't matter. e.g. in hold'em, how many distinct 2 -card hands are possible?
52×51 if order matters, but then you'd be double-counting each

$$
[\text { since now }(A \star, K \diamond)=(K \star, A \star)] .
$$

So, the number of distinct hands where order doesn't matter is

$$
52 \times 51 / 2
$$

In general, with n distinct objects, the \# of ways to choose k different ones, where order doesn't matter, is
"n choose $\mathrm{k} "=\binom{\mathrm{n}}{\mathrm{k}}=\operatorname{choose}(\mathrm{n}, \mathrm{k})=\frac{\mathrm{n}!}{}$.

$$
\mathrm{k}!(\mathrm{n}-\mathrm{k})!
$$

$\mathrm{k}!=1 \times 2 \times \ldots \times \mathrm{k} . \quad[$ convention: $0!=1$.

Deal til first ace appears. Let $\mathrm{X}=$ the next card after the ace.

$$
\mathrm{P}(\mathrm{X}=\mathrm{A} \boldsymbol{\uparrow}) ? \mathrm{P}(\mathrm{X}=2 \boldsymbol{q}) ?
$$

