Stat 19:Fiat Lux, Holdem or Foldem, Probability and Poker

Outline for the day:

1. Addiction
2. Syllabus, etc.
3. Wasicka/Gold/Binger Example
4. Meaning of Probability
5. Axioms of probability.

ค \&

ASAKI, JAMES
BADDLEY, COOPER
BARRERA, JACK
BUI, ALEXIS
CAI, SARAH
CHENG, LU
HUANG, STELLA
JACKSON, SOFIE
JONES, NOAH
LEE, EDDIE
LI, VINCENT
MARTIN, RICARDO
MARTINEZ, AARIN
NGUYEN, TIFFANY
REN, DIANA
SHOURYA, SHIVESH
VALDOVINOS, FELIPE
WORDLAW, ANDREA
ZHANG, JIAJING
ZHUO, MATTHEW

For next class,
(i) Learn the rules of Texas Hold'em.
(see http://www.fulltiltpoker.net/holdem.php and http://www.fulltiltpoker.net/handRankHigh.php)
(ii) Read addiction handout or legality handout at course website http://www.stat.ucla.edu/~frederic/19/F18 .

Sometime in the next few weeks
(iii) Download R and try it out. (http://cran.stat.ucla.edu)

Wasicka/Gold/Binger Example

Wasicka/Gold/Binger Example, Continued

Gold: 4^3\&. \quad Binger: $A>10 \downarrow$. Wasicka: $8 \uparrow 7 \uparrow$.
Flop: 10\& 64 54. (Turn: 7\&. River: Q4.)

Wasicka folded?!?

He had 84 74 and the flop was 10\& 6^ 54. Worst case scenario: suppose he were up against
94 49 and 9×9. How could Wasicka win?

77
(3)
44
(3)
[Let "X" = non-49, "Y" = A2378JQK, and "n" = non- $\boldsymbol{\text { " }}$]
4 n Xn (3x 32)
9\& 4n (3)
9\% Yn (24). Total: $\mathbf{1 3 2}$ out of $\mathbf{9 0 3}=\mathbf{1 4 . 6 2 \%}$.

Meaning of Probability.

Notation: " $\mathrm{P}(\mathrm{A})=60 \%$ ". A is an event.
Not "P(60\%)".

Definition of probability:

Frequentist: If repeated independently under the same conditions millions and millions of times, A would happen 60% of the times.

Bayesian: Subjective feeling about how likely something seems.
$\mathrm{P}(\mathrm{A}$ or B$)$ means $\mathrm{P}(\mathrm{A}$ or B or both $)$ Mutually exclusive: $\mathrm{P}(\mathrm{A}$ and B$)=0$. Independent: $\mathrm{P}(\mathrm{A}$ given B$)$ [written " $\mathrm{P}(\mathrm{A} \mid \mathrm{B}) "]=\mathrm{P}(\mathrm{A})$. $P\left(A^{c}\right)$ means $\mathrm{P}($ not A$)$.
2. Axioms (initial assumptions/rules) of probability:

1) $\mathrm{P}(\mathrm{A}) \geq 0$.
2) $\mathrm{P}(\mathrm{A})+\mathrm{P}\left(\mathrm{A}^{\mathrm{c}}\right)=1$.
3) If $A_{1}, A_{2}, A_{3}, \ldots$ are mutually exclusive, then $\mathrm{P}\left(\mathrm{A}_{1}\right.$ or A_{2} or A_{3} or $\left.\ldots\right)=\mathrm{P}\left(\mathrm{A}_{1}\right)+\mathrm{P}\left(\mathrm{A}_{2}\right)+\mathrm{P}\left(\mathrm{A}_{3}\right)+\ldots$
(\#3 is sometimes called the addition rule)
Probability $<=>$ Area. Measure theory, Venn diagrams

$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$.
