Stat 19:Fiat Lux, Holdem or Foldem, Probability and Poker

Outline for the day:

1. Addiction
2. Syllabus, etc.
3. Wasicka/Gold/Binger example.
4. Meaning of probability.
5. Axioms of probability.

ค \&
BLASINGAME, MADELINE ELIZABETH BOAL, KYLE JAMES
BRILL, BEN-OHR ZVI
CHAVES MEYLES, LUCAS WILLEM
CHRISTON, JONATHAN ALEXANDER
EPINETTE, HAYDEN CHRISTOPHER
FENN, JEFFREY EDWIN, JR
GONZALES, SOPHIA LUZ DE VERA
GRAVER, MITCHEL RAYMOND
HASSAN, GIBRAN
HUANG, ARTHUR
HUANG, LIYANG CLEMENT
HYMAN, ABBY (ABIGAIL)
KANE, NEIL ATUL
KATZMAN, JESSICA ELIZABETH
POON, TIMOTHY CHENYEE
ROBBINS, RYAN MATTHEW WU
RONIS VON HELMS, GEORGIA CLAIR
SHELDON, SOPHIA TOQUERO
WU, RYAN THOMAS

For next class,
(i) Learn the rules of Texas Hold'em.
(see http://www.fulltiltpoker.net/holdem.php and http://www.fulltiltpoker.net/handRankHigh.php)
(ii) Read addiction handout and legality handout at course website http://www.stat.ucla.edu/~frederic/19/F19 .

Sometime in the next few weeks
(iii) Download R and try it out. (http://cran.stat.ucla.edu)

Wasicka/Gold/Binger Example

Wasicka/Gold/Binger Example, Continued

Gold: 4^3\&. \quad Binger: $A>10 \downarrow$. Wasicka: $8 \uparrow 7 \uparrow$.
Flop: 10\& 64 54. (Turn: 7\&. River: Q4.)

Wasicka folded?!?

He had 84 74 and the flop was 10\& 6^ 54. Worst case scenario: suppose he were up against
94 49 and 9×9. How could Wasicka win?

77
(3)
44
(3)
[Let "X" = non-49, "Y" = A2378JQK, and "n" = non- $\boldsymbol{\text { " }}$]
4 n Xn (3x 32)
9\& 4n (3)
9\% Yn (24). Total: $\mathbf{1 3 2}$ out of $\mathbf{9 0 3}=\mathbf{1 4 . 6 2 \%}$.

Meaning of Probability.

Notation: " $\mathrm{P}(\mathrm{A})=60 \%$ ". A is an event.
Not "P(60\%)".

Definition of probability:

Frequentist: If repeated independently under the same conditions millions and millions of times, A would happen 60% of the times.

Bayesian: Subjective feeling about how likely something seems.
$\mathrm{P}(\mathrm{A}$ or B$)$ means $\mathrm{P}(\mathrm{A}$ or B or both $)$ Mutually exclusive: $\mathrm{P}(\mathrm{A}$ and B$)=0$. Independent: $\mathrm{P}(\mathrm{A}$ given B$)$ [written " $\mathrm{P}(\mathrm{A} \mid \mathrm{B}) "]=\mathrm{P}(\mathrm{A})$. $P\left(A^{c}\right)$ means $\mathrm{P}($ not A$)$.
2. Axioms (initial assumptions/rules) of probability:

1) $\mathrm{P}(\mathrm{A}) \geq 0$.
2) $\mathrm{P}(\mathrm{A})+\mathrm{P}\left(\mathrm{A}^{\mathrm{c}}\right)=1$.
3) If $A_{1}, A_{2}, A_{3}, \ldots$ are mutually exclusive, then $\mathrm{P}\left(\mathrm{A}_{1}\right.$ or A_{2} or A_{3} or $\left.\ldots\right)=\mathrm{P}\left(\mathrm{A}_{1}\right)+\mathrm{P}\left(\mathrm{A}_{2}\right)+\mathrm{P}\left(\mathrm{A}_{3}\right)+\ldots$
(\#3 is sometimes called the addition rule)
Probability $<=>$ Area. Measure theory, Venn diagrams

$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$.
