Stat 19:Fiat Lux, Holdem or Foldem, Probability and Poker

Outline for the day:

1. Addiction
2. Syllabus, etc.
3. Wasicka/Gold/Binger example.
4. Meaning of probability.
5. Axioms of probability.

ค \&

GUILAR, CHRISTIAN CHEN, ASHLEY CHEN, JEFFREY L
CIELO, JOSH
DENG, DAVID
FENG, BENJAMIN
GUPTA, ABHIJAAT
HERNANDEZ, JUAN
HEROLD, PETER
KAPLER, CHASE
KIM, LUCY (KWANHYO)
KOZIOL, MATTHEW
LEMIEUX, KATELYN
MITTMAN, SARA
MO, WENJIE
NICOLAOU, GIORGIA
SAKAGUCHI, KELLI
SMITH, ROBERT

VAID, FILZA
WU, JACK.

For next class,
(i) Learn the rules of Texas Hold'em.
(https://www.cardplayer.com/rules-of-poker/how-to-play-poker/games/texas-holdem . There are tons of sites explaining this.)
(ii) Read addiction handout and legality handout at course website http://www.stat.ucla.edu/~frederic/19/S20 .

Sometime in the next few weeks
(iii) Download R and try it out. (http://cran.stat.ucla.edu)

Wasicka/Gold/Binger Example

Wasicka/Gold/Binger Example, Continued

Gold: 4^3\&. \quad Binger: $A>10 \downarrow$. Wasicka: $8 \uparrow 7 \uparrow$.
Flop: 10\& 64 54. (Turn: 7\&. River: Q4.)

Wasicka folded?!?

He had 84 74 and the flop was 10\& 6^ 54. Worst case scenario: suppose he were up against
94 49 and 9×9. How could Wasicka win?

77
(3)
44
(3)
[Let "X" = non-49, "Y" = A2378JQK, and "n" = non- $\boldsymbol{\text { " }}$]
4 n Xn (3x 32)
9\& 4n (3)
9\% Yn (24). Total: $\mathbf{1 3 2}$ out of $\mathbf{9 0 3}=\mathbf{1 4 . 6 2 \%}$.

Meaning of Probability.

Notation: " $\mathrm{P}(\mathrm{A})=60 \%$ ". A is an event.
Not "P(60\%)".

Definition of probability:

Frequentist: If repeated independently under the same conditions millions and millions of times, A would happen 60% of the times.

Bayesian: Subjective feeling about how likely something seems.
$\mathrm{P}(\mathrm{A}$ or B$)$ means $\mathrm{P}(\mathrm{A}$ or B or both $)$ Mutually exclusive: $\mathrm{P}(\mathrm{A}$ and B$)=0$. Independent: $\mathrm{P}(\mathrm{A}$ given B$)$ [written " $\mathrm{P}(\mathrm{A} \mid \mathrm{B}) "]=\mathrm{P}(\mathrm{A})$. $P\left(A^{c}\right)$ means $\mathrm{P}($ not A$)$.
2. Axioms (initial assumptions/rules) of probability:

1) $\mathrm{P}(\mathrm{A}) \geq 0$.
2) $\mathrm{P}(\mathrm{A})+\mathrm{P}\left(\mathrm{A}^{\mathrm{c}}\right)=1$.
3) If $A_{1}, A_{2}, A_{3}, \ldots$ are mutually exclusive, then $\mathrm{P}\left(\mathrm{A}_{1}\right.$ or A_{2} or A_{3} or $\left.\ldots\right)=\mathrm{P}\left(\mathrm{A}_{1}\right)+\mathrm{P}\left(\mathrm{A}_{2}\right)+\mathrm{P}\left(\mathrm{A}_{3}\right)+\ldots$
(\#3 is sometimes called the addition rule)
Probability $<=>$ Area. Measure theory, Venn diagrams

$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$.
