Stat 19, Probability and Poker. Rick Paik Schoenberg

Outline for the day:

1. Discuss Harrington handouts.
2. Ly vs. Negreanu.
3. Addition rule.
4. $\mathrm{P}(\mathrm{A} \boldsymbol{\uparrow}$ after first ace).

Read harrington2.pdf for next time.
Think of at least 2 questions or comments, for each class.
The course website is http://www.stat.ucla.edu/~frederic/19/S24 .

Ly vs. Negreanu.

Ex. Suppose you have two \%s, and there are exactly two $\boldsymbol{\phi}$ s on the flop. Given this info, what is P (at least one more $\boldsymbol{\%}$ on turn or river)?
Answer: $52-5=47$ cards left (nine $\boldsymbol{q} \mathrm{s}$, 38 others).
So $\mathrm{n}=$ choose $(47,2)=1081$ combinations for next 2 cards.
Each equally likely (and obviously mutually exclusive).
Two-\& combos: choose $(9,2)=36$. One- $\boldsymbol{*}$ combos: $9 \times 38=342$.
Total $=378$. So answer is $378 / 1081=35.0 \%$.
Answer \#2: Use the addition rule...

ADDITION RULE, revisited.....

Axioms (initial assumptions/rules) of probability:

1) $\mathrm{P}(\mathrm{A}) \geq 0$.
2) $\mathrm{P}(\mathrm{A})+\mathrm{P}\left(\mathrm{A}^{\mathrm{c}}\right)=1$.
3) Addition rule:

If $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \ldots$ are mutually exclusive, then $\mathrm{P}\left(\mathrm{A}_{1}\right.$ or A_{2} or A_{3} or $\left.\ldots\right)=\mathrm{P}\left(\mathrm{A}_{1}\right)+\mathrm{P}\left(\mathrm{A}_{2}\right)+\mathrm{P}\left(\mathrm{A}_{3}\right)+\ldots$

As a result, even if A and B might not be mutually exclusive, $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$)$.

Ex. You have two $\boldsymbol{*} s$, and there are exactly two \boldsymbol{q}^{s} on the flop. Given this info, what is P (at least one more \boldsymbol{q} on turn or river)?
Answer \#1: $52-5=47$ cards left (nine $\boldsymbol{\phi} s, 38$ others).
So $\mathrm{n}=$ choose $(47,2)=1081$ combinations for next 2 cards.
Each equally likely (and obviously mutually exclusive).
Two- \& combos: choose $(9,2)=36$. One-\& combos: $9 \times 38=342$.
Total $=378$. So answer is $378 / 1081=35.0 \%$.

Answer \#2: Use the addition rule.
$\mathrm{P}(\geq 1$ more $\boldsymbol{\phi})=\mathrm{P}(\boldsymbol{\phi}$ on turn OR river $)$

$$
\begin{aligned}
& =P(\boldsymbol{P} \quad \text { on turn })+\mathrm{P}(\boldsymbol{\&} \text { on river })-\mathrm{P}(\text { both }) \\
& =9 / 47+9 / 47-\operatorname{choose}(9,2) / \text { choose }(47,2) \\
& =19.15 \%+19.15 \%-3.3 \%=35.0 \% .
\end{aligned}
$$

4. Deal til first ace appears. Let $\mathrm{X}=$ the next card after the ace.
$\mathrm{P}(\mathrm{X}=\mathrm{A} \boldsymbol{\uparrow}) ? \mathrm{P}(\mathrm{X}=2 \boldsymbol{q})$?
(a) How many permutations of the 52 cards are there?
$52!$
(b) How many of these perms. have A right after the 1 st ace?
(i) How many perms of the other 51 cards are there? 51!
(ii) For each of these, imagine putting the A right
after the 1st ace.
1:1 correspondence between permutations of the other 51 cards
\& permutations of 52 cards such that $\mathrm{A} \boldsymbol{A}$ is right after 1st ace.
So, the answer to question (b) is $51!$.
Answer to the overall question is $51!/ 52!=1 / 52$.
Obviously, same goes for 2\&.
