Stat 19:Fiat Lux, Holdem or Foldem, Probability and Poker

Outline for the day:

1. Addiction.
2. Syllabus, etc.
3. Wasicka/Gold/Binger example.
4. Meaning of probability.
5. Axioms of probability.

A \& \downarrow

For next class,
(i) Learn the rules of Texas Hold'em.
(https://www.cardplayer.com/rules-of-poker/how-to-play-
poker/games/texas-holdem . There are tons of sites explaining this.)
(ii) Read addiction handout at course website
http://www.stat.ucla.edu/~frederic/19/S24 .
(iii) Read about legality of poker at
https://www.pokernews.com/us-poker-map/california.htm

Sometime in the next few weeks
(iii) Download R and try it out. (www.r-project.org)

Wasicka/Gold/Binger Example

Wasicka/Gold/Binger Example, Continued

Gold: 4^3\&. Binger: $A>10 \downarrow$. Wasicka: 8474.
Flop: 10\& 64 54. (Turn: 7\&. River: Q4.)

Wasicka folded?!? ค \& -

He had 84 74 and the flop was 10\& 64 54. Worst case scenario: suppose he were up against

94 49 and 9×9. How could Wasicka win?

77
(3)

44
(3)
[Let " X " = non-49, " Y " = A2378JQK, and " $n "=$ non- \star.]
$4 n \mathrm{Xn}$ (3x 32)
9\& 4n (3)
9\% Yn (24). Total: 132 out of $\mathbf{9 0 3}=\mathbf{1 4 . 6 2 \%}$.

Meaning of Probability.

Notation: " $\mathrm{P}(\mathrm{A})=60 \%$ ". A is an event.
Not "P(60\%)".

Definition of probability:

Frequentist: If repeated independently under the same conditions millions and millions of times, A would happen 60% of the times.

Bayesian: Subjective feeling about how likely something seems.
$\mathrm{P}(\mathrm{A}$ or B$)$ means $\mathrm{P}(\mathrm{A}$ or B or both $)$ Mutually exclusive: $\mathrm{P}(\mathrm{A}$ and B$)=0$. Independent: $\mathrm{P}(\mathrm{A}$ given B$)$ [written " $\mathrm{P}(\mathrm{A} \mid \mathrm{B}) "]=\mathrm{P}(\mathrm{A})$.
$P\left(A^{c}\right)$ means $\mathrm{P}($ not A$)$.
2. Axioms (initial assumptions/rules) of probability:

1) $\mathrm{P}(\mathrm{A}) \geq 0$.
2) $\mathrm{P}(\mathrm{A})+\mathrm{P}\left(\mathrm{A}^{\mathrm{c}}\right)=1$.
3) If $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \ldots$ are mutually exclusive, then $\mathrm{P}\left(\mathrm{A}_{1}\right.$ or A_{2} or A_{3} or $\left.\ldots\right)=\mathrm{P}\left(\mathrm{A}_{1}\right)+\mathrm{P}\left(\mathrm{A}_{2}\right)+\mathrm{P}\left(\mathrm{A}_{3}\right)+\ldots$
(\#3 is sometimes called the addition rule)
Probability <=> Area. Measure theory, Venn diagrams

$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$.
