Stat 19, Probability and Poker. Rick Paik Schoenberg

Outline for the day:

1. Discuss Addiction.
2. R.
3. Greenstein and Farha.
4. Axioms of probability.
5. Counting and combinations.
6. $\mathrm{P}(\mathrm{A} \uparrow$ after first ace $)$.

Read harrington1.pdf for next time.
Think of 1-2 questions or comments for next time.
The course website is http://www.stat.ucla.edu/~frederic/19/S24 .

2. \boldsymbol{R}. To download and install R, start at www.r-project.org, click on "download R ", scroll down and click on one of the mirrors closest to you.

From there, click on "download R for ...", and then get the latest version.

About R
What is R?
Contributors
Screenshots
What's new?
Download, Packages
CRAN
R Project
Foundation
Members \& Donors
Mailing Lists
Bug Tracking
Developer Page Conferences Search

Documentation
Manuals
FAQs
The R Journal
Wiki
Books
Certification
Other

The R Project for Statistical Computing

Getting Started:

- R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. To download R, please choose your preferred CRAN mirror.
- If you have questions about R like how to download and install the software, or what the license terms are, please read our answers to frequently asked questions before you send an email.

2. \boldsymbol{R}. To download and install R, start at www.r-project.org, click on "download R ", scroll down and click on one of the mirrors closest to you.

From there, click on "download R for ...", and then get the latest version.

2. \boldsymbol{R}. To download and install R, start at www.r-project.org, click on "download R ", scroll down and click on one of the mirrors closest to you.

From there, click on "download R for ...", and then get the latest version.

CRAN

Mirrors
What's new?
Task Views
Search

About R

R Homepage
The R Journal

Software

R Sources
R Binaries
Packages
Other
Documentation
Manuals
FAQs
Contributed

The Comprehensive R Archive Network
Download and Install R
Precompiled binary distributions of the base system and contributed packages, Windows and Mac users most likely want one of these versions of R:

- Download R for Linux
- Download R for MacOS X
- Download R for Windows

Source Code for all Platforms
Windows and Mac users most likely want to download the precompiled binaries listed in the upper box, not the source code. The sources have to be compiled before you can use them. If you do not know what this means, you probably do not want to do it!

- The latest release (2011-12-22, December Snowflakes): R-2.14.1.tar.gz, read what's new in the latest version.
- Sources of R alpha and beta releases (daily snapshots, created only in time periods before a planned release).
- Daily snapshots of current patched and development versions are available here. Please read about new features and bug fixes before filing corresponding feature requests or bug reports.
- Source code of older versions of R is available here.
- Contributed extension packages

Questions About R

2. \boldsymbol{R}. To download and install R, start at www.r-project.org, click on "download R ", scroll down and click on one of the mirrors closest to you.
 From there, click on "download R for ...", and then get the latest version.

The Comprehensive R Archive Network
Qhttp://cran.stat.ucla.edu/
C
Q- Google
GO ID G I

R for Mac OS X

This directory contains binaries for a base distribution and packages to run on Mac OS X (release 10.5 and above). Mac OS 8.6 to 9.2 (and Mac OS X 10.1) are no longer supported but you can find the last supported release of R for these systems (which is R 1.7.1) here. Releases for old Mac OS X systems (through Mac OS X 10.4) can be found in the old directory.

Mirrors
What's new?
Task Views
Search
About R
R Homepage
The R Journal

Software

R Sources
R Binaries
Packages
Other
Documentation
Manuals
FAQs
Contributed

CRAN
Mirrors \quad Note: CRAN does not have Mac OS X systems and cannot check these binaries for viruses. Although we take precautions when assembling binaries, please use the normal precautions with downloaded executables.

Universal R 2.14.1 released on 2012/01/04
This binary distribution of R and the GUI supports PowerPC (32-bit) and Intel (32-bit and 64-bit) based Macs on Mac OS X 10.5 (Leopard), 10.6 (Snow Leopard) and 10.7 (Lion). It is possibly the last distribution supporting Mac OS X 10.5 (Leopard) and PowerPC architecture.

Please check the MD5 checksum of the downloaded image to ensure that it has not been tampered with or corrupted during the mirroring process. For example type
md5 R-2.14.1.pkg
in the Terminal application to print the MD5 checksum for the R-2.14.1.pkg image.
Files:
R-2.14.1.pkg (latest version) Three-way universal binary of R $\mathbf{2} .14 .1$ for Mac OS X 10.5 (Leopard) MD5-haxh: af880add766331/65136db5bed79d883 and higher. Contains R 2.14 .1 framework, R.app GUI 1.43 in 32 -bit and
(ca. 62 MB) (ca. 62 MB)

64 -bit. The above file is an Installer package which can be installed by double-clicking. Depending on your browser, you may need to press the control key and click on this link to download the file.

This package only contains the R framework, 32-bit GUI (R.app) and 64bit GUI (R64.app). For Tcl/Tk libraries (needed if you want to use tcltk) and GNU Fortran (needed if you want to compile packages from sources that contain FORTRAN code) please see the tools

3. Greenstein and Farha.

4. Axioms (initial assumptions/rules) of probability:
1) $\mathrm{P}(\mathrm{A}) \geq 0$.
2) $\mathrm{P}(\mathrm{A})+\mathrm{P}\left(\mathrm{A}^{\mathrm{c}}\right)=1$.
3) If $A_{1}, A_{2}, A_{3}, \ldots$ are mutually exclusive, then $\mathrm{P}\left(\mathrm{A}_{1}\right.$ or A_{2} or A_{3} or $\left.\ldots\right)=\mathrm{P}\left(\mathrm{A}_{1}\right)+\mathrm{P}\left(\mathrm{A}_{2}\right)+\mathrm{P}\left(\mathrm{A}_{3}\right)+\ldots$
(\#3 is sometimes called the addition rule)
Probability <=> Area. Measure theory, Venn diagrams

$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$.

Counting.

Fact: If $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}$ are equally likely \& mutually exclusive, and if $\mathrm{P}\left(\mathrm{A}_{1}\right.$ or A_{2} or \ldots or $\left.\mathrm{A}_{n}\right)=1$,

$$
\text { then } \mathrm{P}\left(\mathrm{~A}_{\mathrm{k}}\right)=1 / \mathrm{n} .
$$

[So, you can count: $\mathrm{P}\left(\mathrm{A}_{1}\right.$ or A_{2} or \ldots or $\left.\mathrm{A}_{\mathrm{k}}\right)=\mathrm{k} / \mathrm{n}$.]
Ex. You have 76, and the board is KQ54. P(straight)?
$[52-2-4=46$.] $\mathrm{P}($ straight $)=\mathrm{P}(8$ on river OR 3 on river $)$

$$
=P(8 \text { on river })+P(3 \text { on river })=4 / 46+4 / 46
$$

If there are a_{1} distinct possible outcomes on experiment \#1, and for each of them, there are a_{2} distinct possible outcomes on experiment \#2, then there are $\mathrm{a}_{1} \times \mathrm{a}_{2}$ distinct possible ordered outcomes on both.
In general, with j experiments, each with a_{i} possibilities, the \# of distinct outcomes where order matters is $a_{1} \times a_{2} \times \ldots \times a_{j}$.

Permutations and combinations.

e.g. you get 1 card, opp. gets 1 card. \# of distinct possibilities? 52×51. [ordered: $(\mathrm{A} \boldsymbol{*}, \mathrm{K}\rangle) \neq(\mathrm{K} \downarrow, \mathrm{A} \boldsymbol{*})$.]

Each such outcome, where order matters, is called a permutation. Number of permutations of the deck? $52 \times 51 \times \ldots \times 1=52$!

$$
\sim 8.1 \times 10^{67}
$$

A combination is a collection of outcomes, where order doesn't matter. e.g. in hold'em, how many distinct 2 -card hands are possible?
52×51 if order matters, but then you'd be double-counting each

$$
[\text { since now }(A \boldsymbol{*}, \mathrm{~K} \downarrow)=(\mathrm{K} \downarrow, \mathrm{~A} \boldsymbol{*})] \text {. }
$$

So, the number of distinct hands where order doesn't matter is

$$
52 \times 51 / 2
$$

In general, with n distinct objects, the \# of ways to choose k different ones, where order doesn't matter, is
"n choose $k "=\binom{\mathrm{n}}{\mathrm{k}}=\operatorname{choose}(\mathrm{n}, \mathrm{k})=\underline{\mathrm{n}!}$.

$$
\mathrm{k}!(\mathrm{n}-\mathrm{k})!
$$

$\mathrm{k}!=1 \times 2 \times \ldots \times \mathrm{k} . \quad[$ convention: $0!=1$.

Deal til first ace appears. Let $\mathrm{X}=$ the next card after the ace.

$$
\mathrm{P}(\mathrm{X}=\mathrm{A} \boldsymbol{\uparrow}) ? \mathrm{P}(\mathrm{X}=2 \boldsymbol{q}) ?
$$

