
Overview Before building S3 classes Packaging Wrap-up

Building R Packages
An Introduction

David Diez
Biostatistics Dept

Harvard SPH

Overview Before building S3 classes Packaging Wrap-up

Original version and source

Original author: David M Diez

The production of these slides was funded by

NIH/NCI P01CA134294 (Lin): Statistical Informatics for Cancer
Research. This project was supported by Award Number P01
CA134294 from the National Cancer Institute. The content is solely
the responsibility of the authors and does not necessarily represent
the official views of the National Cancer Institute.

These slides are under a Creative Commons license. Please see
creativecommons.org/licenses/by-nc-sa/3.0/ for details.

Retaining this slide fulfills the attribution component of the license

Modifications are permitted on all other pages

Overview Before building S3 classes Packaging Wrap-up

Why build an R package?

Accessible

Functions and objects contained in a package and installed on a machine
can be easily loaded:
> library(myPackage)

Many R users develop their own functions that they use regularly

Even for a sole user, putting code into a package can be worthwhile

Reliable

Documentation structure is familiar, and it is pretty easy to edit

Testing can be built into the package itself

Clarity

The process of organizing code and data into a package requires a project
to become organized

The result is less ambiguity about project goals and greater clarity about
how the project will be completed

Overview Before building S3 classes Packaging Wrap-up

Why every grad student should build a package

Three important blocks of modern statistics

Math: methodological development

Science: applications to real world problems

Computing: make statistical methods accessible

Fulfilling the computing block

Traditional research focuses more on methods and applications

Building an R package suggests competence in computing

Employability

Not many grad students build an R package

Display an ability to generalize code and make it user-friendly

Potential employers can better understand what you’ve worked on

Overview Before building S3 classes Packaging Wrap-up

Important software principles

Goal or mission

The process of organizing code and data into a package requires a project
to become organized

The result is less ambiguity about project goals and greater clarity about
how the project will be completed

Coding principles

Make high-quality software

Implement clean coding practices so the code can be adequately reviewed
and verified

Provide helpful documentation

Overview Before building S3 classes Packaging Wrap-up

Sharing data, functions, and an analysis online

Currently, CRAN features 3282 available packages (as of 9/15/2011, up

from 2564 on 10/5/2010).

Overview Before building S3 classes Packaging Wrap-up

What are all these packages?

Statistical and other methods

Many R packages make accessible previously or newly developed
statistical methods

Graphical functions, complex numerical techniques, making it easier
to work with big data sets, etc.

Open research

Publishing a paper for a new method does not make the technique
open and accessible

Ideally, researchers could try out a new method without prohibitive
effort, i.e. not have to code it themselves

Data

Sharing old, new, simulated, or research data sets

Many of the best packages have both methods and data

Overview Before building S3 classes Packaging Wrap-up

3282 packages and counting

Initially daunting

If there are already so many packages, is there room for one more?

Some might say the same about research: There are so many
statistical methods, so can I really develop something both novel
and helpful?

The answer to each question better be yes for the sake of anyone
wanting a PhD

Overview Before building S3 classes Packaging Wrap-up

Keep an eye out

If you are performing raw coding in R, one of the following is true:

You are ignoring prebuilt functions in R or in an available package

The method is too user-specific to have a general function

This may be a place for a new R package

Ultimate goal

Build a package to fulfill a need

Considerations

The span of R users is wide: applied, software development,
visualization, teaching, etc.

Even if a method is already available, it doesn’t mean it was written
well or is accurate

Some R user groups are ignored: find a niche

Overview Before building S3 classes Packaging Wrap-up

Create a mission

Ask important questions from the start

What are you good at?

What is needed?

What part of that gap can you fill?

Identify a target audience

Beginner or advanced?

Researcher, student, or teacher?

Do your target users have lots of data or none at all?

Avoid wasted time

When a package isn’t needed, identify this early on

Sketch out what would be included in the ideal package that
accomplishes your mission

Identify at what stage the package (possibly preliminary) could
and/or should be released

Overview Before building S3 classes Packaging Wrap-up

Example: stockPortfolio

Offer a “starter” package for financial analysts who want to get
into statistical modeling with R but have little background in
statistical finance and/or R

What is needed: a logical procedure to familiarize the process of
collecting data, modeling, and obtaining results from models:

(1) Get the data

> tickers <- c(’C’,’BAC’, ’WFC’, ’GS’)

> financials <- getReturns(tickers, start=’2004-01-01’,

+ end=’2008-12-31’)

(2) Build the model

> sm <- stockModel(financials, model=’CCM’)

(3) Obtain the optimal portfolio

> opSM <- optimalPort(sm)

Overview Before building S3 classes Packaging Wrap-up

Example: openintro

Provide data and simple graphical functions for reproducing results
and figures in the OpenIntro Statistics textbook

> data(tips)

> par(mfrow=c(1,1))

> boxPlot(tips$tip, tips$day, horiz=TRUE,

+ key=c(’Tuesday’, ’Friday’))

> dotPlot(tips$tip, tips$day, add=TRUE,

+ at=1:2+0.05, key=c(’Tuesday’, ’Friday’))

Overview Before building S3 classes Packaging Wrap-up

Example: ppMeasures

Provide basic functions for implementing new methods and
reproducing major results from dissertation work

> data(pattEx2)

> x <- pattEx2[pattEx2[,1] == 1,c(2,3)]

> y <- pattEx2[pattEx2[,1] == 2,c(2,3)]

> (hold2 <- stDist(x, y, 2))

[1] 5.54

> summary(hold2)

Algorithm: IMA

Max branch: 4

9 points were matched

Distance: 5.54

> plot(hold2)

Overview Before building S3 classes Packaging Wrap-up

Find what already exists

Examine CRAN

cran.r-project.org

Look for similar topics

Identify the audience of other packages

Check if overlapping packages are adequate

Other repositories to check/consider

R Forge: rforge.net

Bioconductor: bioconductor.org

This list is not exhaustive!

Overview Before building S3 classes Packaging Wrap-up

Writing and generalizing code

Balance simplicity with complexity

Want to offer diverse set of options

It should be in a form that it will not be too complex

Target audience is a guide to the right balance

Offer many arguments and choose appropriate defaults

Example: stockPortfolio

The models implemented are generally basic

Intended for folks breaking into stock modeling, i.e may not be
familiar with R

Result: 3-step procedure for implementing any of the models from
only a few functions

Advanced options are made available for users who are interested in
learning more

Overview Before building S3 classes Packaging Wrap-up

General R coding advice

Performance

Initialize an entire object rather than grow it slowly

Compute unchanging values only once

Functionality

Choose variable and function names carefully

Create default values and use ... in functions when it’s helpful

Outputting a list? Give each list item a name

Aesthetics

Align assignment characters

Use tabs and white space for alignment or when it is meaningful

If including comments, do so in a style that is not obstructive

Avoid all caps

No more than one assignment per line of code

Overview Before building S3 classes Packaging Wrap-up

Evaluating and re-evaluating

Build a foundation of diverse examples

Look for ways to improve speed, accuracy, and usability

Sufficiently general

Have a colleague/friend look at the function

Does it work well for the original problem?

Is it easy to apply to similar problems?

Can it be further generalized, or would that be too confusing?

Example

///////Rome glm wasn’t built in a day

Developers could have made one function for each scenario

Instead they simplified everything: different scenarios are addressed
by modifying arguments, and these arguments have good defaults

Overview Before building S3 classes Packaging Wrap-up

Picking data sets

Which examples highlight the package?

If the package is function-centric, choose examples that highlight
the performance and graphics

If your method might be known to be a poor choice in some
instances, it would be helpful to point this out to researchers,
possibly with an example

For data-centric packages, use basic functions to show off the data

Be clear if data are not real or were collected in a haphazard fashion

Real data are strongly preferred

Common knowledge worth repeating

Don’t release data unless you have permissions to or the data are
public

Overview Before building S3 classes Packaging Wrap-up

Why use classes?

Classes make it easy to apply general R functions

We can change the class of an object in R to be ’ourClass’:
class(myObject) <- ’ourClass’

Next we build special methods, e.g.

print.ourClass

summary.ourClass

plot.ourClass

When we apply plot to a function of class ’ourClass’, R actually
applies the function plot.ourClass

Classes are useful for communication and experimentation

Allowing the user to connect new functions with old functions is
helpful

Downside: classes can mask what is actually contained in an object

Overview Before building S3 classes Packaging Wrap-up

How to create classes

An object’s class can be assigned:

stockModel <- function (stockReturns, # other args omitted

){

some code omitted

tM <- list() # tM = The Model to be returned

class(tM) <- "stockModel" # assign the class !

tM$model <- model[1]

lots of amazing R code

return(tM)

}

Overview Before building S3 classes Packaging Wrap-up

Building methods

print.stockModel <- function (x, ...){

cat("Model:", x$model, "\n")

cat(x$n, "observations, each one", x$period, "apart\n")

some code omitted

colnames(hold) <- theNames

temp <- format(hold, digits = 2, scientific = FALSE)

print(temp)

}

plot.stockModel <- function (x, xlab = "Risk", # some args omitted

){

code for plotting a stockModel object, x

...

want to return some object?

invisible(objectToReturn)

}

Overview Before building S3 classes Packaging Wrap-up

Considerations

Pros of classes

Users can apply familiar R functions to new objects

Allows output to be formatted for user digestion

Saves the user time in finding or visualizing important information

Cons of classes

Using methods for classes – especially for print – takes the user
one step away from the true R object

Some users are unsure how to explore all the attributes of new
objects

General tip: see what’s in a list object via subsetting or str:
> objName[1:5] # prints first five list items

> str(objName) # prints summary information

Overview Before building S3 classes Packaging Wrap-up

Overview

Step 1: Create the package files

Package all data and objects from an R session:
> package.skeleton(’packageName’)

See ?package.skeleton for additional options

Step 2: Edit the package files

The DESCRIPTION and help files (man > .Rd) need to be filled in

Changes to functions should be done directly to the package files

C or other non-R source code is placed in its own src folder

Step 3: Build, check, and install the package

Run a few Unix commands to build, check, and install the package

Usually errors arise when checking the package, so return to step 2
as needed

Overview Before building S3 classes Packaging Wrap-up

Step 1: The package files

Create the package files:

> myFunc1 <- function(x){ }

> myFunc2 <- function(xy, o5){ }

>

> goats <- data.frame(beards = rexp(50),

+ tails = rnorm(50, 10))

>

> package.skeleton("myPackageName")

Creating directories ...

Creating DESCRIPTION ...

Creating Read-and-delete-me ...

Saving functions and data ...

Making help files ...

Done.

Further steps are described in ’./myPackageName/Read-and-delete-me’.

>

Overview Before building S3 classes Packaging Wrap-up

Step 1: The package files

Folders within the newly created myPackageName folder

data – Contains .rda files of each data object

R – Contains .R files for each function

man – Help files for each function, data set, and the function

src – Create this folder for any C or FORTRAN source code

tests – Create this folder for any test code

Other folders with special meanings: demo, exec, inst, po

Overview Before building S3 classes Packaging Wrap-up

Step 2: Edit the package files

Edit the DESCRIPTION file

Update all information

Choose your license (e.g. GPL-3)

Overview Before building S3 classes Packaging Wrap-up

Step 2: Edit the package files

Edit each help file in the man folder
Use \code{ } to write in Courier
Link to other help files via \link{ }: \code{\link{myFunc2}}
May create new help files via prompt function in R

Overview Before building S3 classes Packaging Wrap-up

Step 2: If documentation is not important

DESCRIPTION file

Choose your license (e.g. GPL-2)

In the man folder

Make sure all help files have some title that is not commented out

In the package help file (man > myPackageName-package.Rd),
leave the examples section empty or put in only working R code

Caution: If you don’t build adequate help files...

Will the package be clear when you return to it in a year?

Is saving time now worth the chance of spending more later?

Overview Before building S3 classes Packaging Wrap-up

Step 3: Build, check, and install the package

There are a few ways to do this. One way:

Drag/drop package file to the Desktop

Open Unix (e.g. Terminal in Mac OS X), navigate to the desktop,
and type
R CMD build myPackageName

R CMD check myPackageName

R CMD install myPackageName

Overview Before building S3 classes Packaging Wrap-up

Step 3: Build, check, and install the package

Remarks (for check)

Warnings and errors are very common in the check stage

Sometimes the package will install even if check returns an error

Package only for personal use? Consider skipping the check stage

CRAN will not accept a package that has warnings or errors from
check

Overview Before building S3 classes Packaging Wrap-up

Other useful UNIX commands

R CMD REMOVE packName

Remove a package

R CMD BUILD --binary packName

Creates a binary archive of a package

R CMD Rd2pdf packName

Make a PDF manual for a package

Overview Before building S3 classes Packaging Wrap-up

Recap on building the package

Step 1: Create the package files

Packaging all data and objects in an R session is easy:
> package.skeleton(’packageName’)

Step 2: Edit the package files

Fill in DESCRIPTION and man files

May edit functions, but make corresponding changes in help files

Step 3: Build, check, and install the package

If a package is being submitted to CRAN, it must pass check

Warning: installing a package will overwrite any previous version of
the package

Overview Before building S3 classes Packaging Wrap-up

Potential trouble

Packages A and B have different functions but these functions
share the same name, fcnName

One of your functions relies on fcnName from package A

If user loads your package (which also loads package A), that user
might also load package B

If your package doesn’t have a namespace but relies on fcnName,
the function from package B might be called instead of the function
from package A

Namespaces help prevent such errors

Overview Before building S3 classes Packaging Wrap-up

Namespaces

Namespaces manage how the user can interact with a package,
and it also facilitates high-level communication among packages

A NAMESPACE file is optional, but if added it goes in the main
directory of the package

Contains instructions for what is imported from other packages

Describes what files should be easily accessed by other packages

Most packages can get by without a namespace, but occasionally
trouble can arise

Tip: use a namespace when publishing a package to CRAN
whenever your package relies on another package

Tip: build your namespace after you have stopped adding or
removing functions from the package to be released

Overview Before building S3 classes Packaging Wrap-up

Submitting to CRAN

Verbatim from CRAN:

To “submit” to CRAN, simply upload to
ftp://cran.r-project.org/incoming and send email to
cran@r-project.org. Please do not attach submissions to
emails, because this will clutter up the mailboxes of half a dozen
people.

Note that we generally do not accept submissions of precompiled
binaries due to security reasons. All binary distribution listed above
are compiled by selected maintainers, who are in charge for all
binaries of their platform, respectively.

Overview Before building S3 classes Packaging Wrap-up

Submitting to CRAN

Before submitting

Install the package on your computer and ensure the help files and
examples look proper and run as expected

Verify one last time that R CMD check comes with no warnings
or errors

Uploading files

Use an FTP client to upload files

Keep in mind

CRAN personel post packages for free, so be especially considerate
of their time

Overview Before building S3 classes Packaging Wrap-up

Remarks

Packages can lead to papers

Initially a package may provide support for an applied and methodological
paper in the name of open research

A robust package can have its own paper

Two journals to consider, both with free access

Journal of Statistical Software – www.jstatsoft.org

R Journal – journal.r-project.org

Find the source of packages on their CRAN pages

Overview Before building S3 classes Packaging Wrap-up

Helpful references

Software for Data Analysis

John Chambers

Springer, 2008

Creating R Packages: A Tutorial

Friedrich Leisch

Department of Statistics
Ludwig-Maximilians-Universität München

R Development Core Team

http://cran.r-project.org/doc/contrib/Leisch-CreatingPackages.pdf

Friedrich.Leisch@R-project.org

	Overview and importance of R packages
	Before building an R package
	How to build S3 classes and methods in R
	How to package code
	Submitting to CRAN, references

