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Chapter 22  Joining tables
The information we need for a given analysis may not be just in one table. For example, when
forecasting elections we used the function  left_join  to combine the information from two
tables. Here we use a simpler example to illustrate the general challenge of combining tables.

Suppose we want to explore the relationship between population size for US states and electoral
votes. We have the population size in this table:

and electoral votes in this one:

library(tidyverse)

library(dslabs)

data(murders)

head(murders)

#>        state abb region population total

#> 1    Alabama  AL  South    4779736   135

#> 2     Alaska  AK   West     710231    19

#> 3    Arizona  AZ   West    6392017   232

#> 4   Arkansas  AR  South    2915918    93

#> 5 California  CA   West   37253956  1257

#> 6   Colorado  CO   West    5029196    65

data(polls_us_election_2016)

head(results_us_election_2016)

#>          state electoral_votes clinton trump others

#> 1   California              55    61.7  31.6    6.7

#> 2        Texas              38    43.2  52.2    4.5

#> 3      Florida              29    47.8  49.0    3.2

#> 4     New York              29    59.0  36.5    4.5

#> 5     Illinois              20    55.8  38.8    5.4

#> 6 Pennsylvania              20    47.9  48.6    3.6
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Just concatenating these two tables together will not work since the order of the states is not the
same.

The join functions, described below, are designed to handle this challenge.

22.1  Joins

The join functions in the dplyr package make sure that the tables are combined so that matching
rows are together. If you know SQL, you will see that the approach and syntax is very similar. The
general idea is that one needs to identify one or more columns that will serve to match the two
tables. Then a new table with the combined information is returned. Notice what happens if we
join the two tables above by state using  left_join  (we will remove the  others  column and
rename  electoral_votes  so that the tables fit on the page):

The data has been successfully joined and we can now, for example, make a plot to explore the
relationship:

identical(results_us_election_2016$state, murders$state)

#> [1] FALSE

tab <- left_join(murders, results_us_election_2016, by = "state") %>%

  select(-others) %>% rename(ev = electoral_votes)

head(tab)

#>        state abb region population total ev clinton trump

#> 1    Alabama  AL  South    4779736   135  9    34.4  62.1

#> 2     Alaska  AK   West     710231    19  3    36.6  51.3

#> 3    Arizona  AZ   West    6392017   232 11    45.1  48.7

#> 4   Arkansas  AR  South    2915918    93  6    33.7  60.6

#> 5 California  CA   West   37253956  1257 55    61.7  31.6

#> 6   Colorado  CO   West    5029196    65  9    48.2  43.3
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We see the relationship is close to linear with about 2 electoral votes for every million persons,
but with very small states getting higher ratios.

In practice, it is not always the case that each row in one table has a matching row in the other.
For this reason, we have several versions of join. To illustrate this challenge, we will take subsets
of the tables above. We create the tables  tab1  and  tab2  so that they have some states in
common but not all:

library(ggrepel)

tab %>% ggplot(aes(population/10^6, ev, label = abb)) +

  geom_point() +

  geom_text_repel() + 

  scale_x_continuous(trans = "log2") +

  scale_y_continuous(trans = "log2") +

  geom_smooth(method = "lm", se = FALSE)
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We will use these two tables as examples in the next sections.

22.1.1  Left join

Suppose we want a table like  tab_1 , but adding electoral votes to whatever states we have
available. For this, we use  left_join  with  tab_1  as the first argument. We specify which
column to use to match with the  by  argument.

tab_1 <- slice(murders, 1:6) %>% select(state, population)

tab_1

#>        state population

#> 1    Alabama    4779736

#> 2     Alaska     710231

#> 3    Arizona    6392017

#> 4   Arkansas    2915918

#> 5 California   37253956

#> 6   Colorado    5029196

tab_2 <- results_us_election_2016 %>% 

  filter(state%in%c("Alabama", "Alaska", "Arizona", 

                    "California", "Connecticut", "Delaware")) %>% 

  select(state, electoral_votes) %>% rename(ev = electoral_votes)

tab_2

#>         state ev

#> 1  California 55

#> 2     Arizona 11

#> 3     Alabama  9

#> 4 Connecticut  7

#> 5      Alaska  3

#> 6    Delaware  3
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Note that  NA s are added to the two states not appearing in  tab_2 . Also, notice that this
function, as well as all the other joins, can receive the first arguments through the pipe:

22.1.2  Right join

If instead of a table with the same rows as first table, we want one with the same rows as
second table, we can use  right_join :

Now the NAs are in the column coming from  tab_1 .

22.1.3  Inner join

If we want to keep only the rows that have information in both tables, we use  inner_join . You
can think of this as an intersection:

left_join(tab_1, tab_2, by = "state")

#>        state population ev

#> 1    Alabama    4779736  9

#> 2     Alaska     710231  3

#> 3    Arizona    6392017 11

#> 4   Arkansas    2915918 NA

#> 5 California   37253956 55

#> 6   Colorado    5029196 NA

tab_1 %>% left_join(tab_2, by = "state")

tab_1 %>% right_join(tab_2, by = "state")

#>         state population ev

#> 1     Alabama    4779736  9

#> 2      Alaska     710231  3

#> 3     Arizona    6392017 11

#> 4  California   37253956 55

#> 5 Connecticut         NA  7

#> 6    Delaware         NA  3
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22.1.4  Full join

If we want to keep all the rows and fill the missing parts with NAs, we can use  full_join . You
can think of this as a union:

22.1.5  Semi join

The  semi_join  function lets us keep the part of first table for which we have information in the
second. It does not add the columns of the second:

inner_join(tab_1, tab_2, by = "state")

#>        state population ev

#> 1    Alabama    4779736  9

#> 2     Alaska     710231  3

#> 3    Arizona    6392017 11

#> 4 California   37253956 55

full_join(tab_1, tab_2, by = "state")

#>         state population ev

#> 1     Alabama    4779736  9

#> 2      Alaska     710231  3

#> 3     Arizona    6392017 11

#> 4    Arkansas    2915918 NA

#> 5  California   37253956 55

#> 6    Colorado    5029196 NA

#> 7 Connecticut         NA  7

#> 8    Delaware         NA  3
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22.1.6  Anti join

The function  anti_join  is the opposite of  semi_join . It keeps the elements of the first table
for which there is no information in the second:

The following diagram summarizes the above joins:

(Image courtesy of RStudio . CC-BY-4.0 license . Cropped from original.)

semi_join(tab_1, tab_2, by = "state")

#>        state population

#> 1    Alabama    4779736

#> 2     Alaska     710231

#> 3    Arizona    6392017

#> 4 California   37253956

anti_join(tab_1, tab_2, by = "state")

#>      state population

#> 1 Arkansas    2915918

#> 2 Colorado    5029196

79 80
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22.2  Binding
Although we have yet to use it in this book, another common way in which datasets are
combined is by binding them. Unlike the join function, the binding functions do not try to match
by a variable, but instead simply combine datasets. If the datasets don’t match by the
appropriate dimensions, one obtains an error.

22.2.1  Binding columns

The dplyr function bind_cols binds two objects by making them columns in a tibble. For
example, we quickly want to make a data frame consisting of numbers we can use.

This function requires that we assign names to the columns. Here we chose  a  and  b .

Note that there is an R-base function  cbind  with the exact same functionality. An important
difference is that  cbind  can create different types of objects, while  bind_cols  always
produces a data frame.

 bind_cols  can also bind two different data frames. For example, here we break up the  tab 
data frame and then bind them back together:

bind_cols(a = 1:3, b = 4:6)

#> # A tibble: 3 x 2

#>       a     b

#>   <int> <int>

#> 1     1     4

#> 2     2     5

#> 3     3     6
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22.2.2  Binding by rows

The  bind_rows  function is similar to  bind_cols , but binds rows instead of columns:

This is based on an R-base function  rbind .

22.3  Set operators
Another set of commands useful for combining datasets are the set operators. When applied to
vectors, these behave as their names suggest. Examples are  intersect ,  union ,  setdiff ,
and  setequal . However, if the tidyverse, or more specifically dplyr, is loaded, these functions

tab_1 <- tab[, 1:3]

tab_2 <- tab[, 4:6]

tab_3 <- tab[, 7:8]

new_tab <- bind_cols(tab_1, tab_2, tab_3)

head(new_tab)

#>        state abb region population total ev clinton trump

#> 1    Alabama  AL  South    4779736   135  9    34.4  62.1

#> 2     Alaska  AK   West     710231    19  3    36.6  51.3

#> 3    Arizona  AZ   West    6392017   232 11    45.1  48.7

#> 4   Arkansas  AR  South    2915918    93  6    33.7  60.6

#> 5 California  CA   West   37253956  1257 55    61.7  31.6

#> 6   Colorado  CO   West    5029196    65  9    48.2  43.3

tab_1 <- tab[1:2,]

tab_2 <- tab[3:4,]

bind_rows(tab_1, tab_2)

#>      state abb region population total ev clinton trump

#> 1  Alabama  AL  South    4779736   135  9    34.4  62.1

#> 2   Alaska  AK   West     710231    19  3    36.6  51.3

#> 3  Arizona  AZ   West    6392017   232 11    45.1  48.7

#> 4 Arkansas  AR  South    2915918    93  6    33.7  60.6
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can be used on data frames as opposed to just on vectors.

22.3.1  Intersect

You can take intersections of vectors of any type, such as numeric:

or characters:

The dplyr package includes an  intersect  function that can be applied to tables with the same
column names. This function returns the rows in common between two tables. To make sure we
use the dplyr version of  intersect  rather than the base package version, we can use
 dplyr::intersect  like this:

22.3.2  Union

Similarly union takes the union of vectors. For example:

intersect(1:10, 6:15)

#> [1]  6  7  8  9 10

intersect(c("a","b","c"), c("b","c","d"))

#> [1] "b" "c"

tab_1 <- tab[1:5,]

tab_2 <- tab[3:7,]

dplyr::intersect(tab_1, tab_2)

#>        state abb region population total ev clinton trump

#> 1    Arizona  AZ   West    6392017   232 11    45.1  48.7

#> 2   Arkansas  AR  South    2915918    93  6    33.7  60.6

#> 3 California  CA   West   37253956  1257 55    61.7  31.6
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The dplyr package includes a version of  union  that combines all the rows of two tables with
the same column names.

22.3.3   setdiff 

The set difference between a first and second argument can be obtained with  setdiff . Unlike
 intersect  and  union , this function is not symmetric:

As with the functions shown above, dplyr has a version for data frames:

union(1:10, 6:15)

#>  [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

union(c("a","b","c"), c("b","c","d"))

#> [1] "a" "b" "c" "d"

tab_1 <- tab[1:5,]

tab_2 <- tab[3:7,]

dplyr::union(tab_1, tab_2) 

#>         state abb    region population total ev clinton trump

#> 1     Alabama  AL     South    4779736   135  9    34.4  62.1

#> 2      Alaska  AK      West     710231    19  3    36.6  51.3

#> 3     Arizona  AZ      West    6392017   232 11    45.1  48.7

#> 4    Arkansas  AR     South    2915918    93  6    33.7  60.6

#> 5  California  CA      West   37253956  1257 55    61.7  31.6

#> 6    Colorado  CO      West    5029196    65  9    48.2  43.3

#> 7 Connecticut  CT Northeast    3574097    97  7    54.6  40.9

setdiff(1:10, 6:15)

#> [1] 1 2 3 4 5

setdiff(6:15, 1:10)

#> [1] 11 12 13 14 15
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22.3.4   setequal 

Finally, the function  setequal  tells us if two sets are the same, regardless of order. So notice
that:

but:

When applied to data frames that are not equal, regardless of order, the dplyr version provides a
useful message letting us know how the sets are different:

22.4  Exercises

1. Install and load the Lahman library. This database includes data related to baseball teams. It
includes summary statistics about how the players performed on offense and defense for several
years. It also includes personal information about the players.

tab_1 <- tab[1:5,]

tab_2 <- tab[3:7,]

dplyr::setdiff(tab_1, tab_2)

#>     state abb region population total ev clinton trump

#> 1 Alabama  AL  South    4779736   135  9    34.4  62.1

#> 2  Alaska  AK   West     710231    19  3    36.6  51.3

setequal(1:5, 1:6)

#> [1] FALSE

setequal(1:5, 5:1)

#> [1] TRUE

dplyr::setequal(tab_1, tab_2)

#> [1] FALSE
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The  Batting  data frame contains the offensive statistics for all players for many years. You can
see, for example, the top 10 hitters by running this code:

But who are these players? We see an ID, but not the names. The player names are in this table

We can see column names  nameFirst  and  nameLast . Use the  left_join  function to create
a table of the top home run hitters. The table should have  playerID , first name, last name, and
number of home runs (HR). Rewrite the object  top  with this new table.

2. Now use the  Salaries  data frame to add each player’s salary to the table you created in
exercise 1. Note that salaries are different every year so make sure to filter for the year 2016,
then use  right_join . This time show first name, last name, team, HR, and salary.

3. In a previous exercise, we created a tidy version of the  co2  dataset:

We want to see if the monthly trend is changing so we are going to remove the year effects and
then plot the results. We will first compute the year averages. Use the  group_by  and
 summarize  to compute the average co2 for each year. Save in an object called  yearly_avg .

4. Now use the  left_join  function to add the yearly average to the  co2_wide  dataset. Then
compute the residuals: observed co2 measure - yearly average.

library(Lahman)

top <- Batting %>% 

  filter(yearID == 2016) %>%

  arrange(desc(HR)) %>%

  slice(1:10)

top %>% as_tibble()

Master %>% as_tibble()

co2_wide <- data.frame(matrix(co2, ncol = 12, byrow = TRUE)) %>% 

  setNames(1:12) %>%

  mutate(year = 1959:1997) %>%

  gather(month, co2, -year, convert = TRUE)
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5. Make a plot of the seasonal trends by year but only after removing the year effect.

79. https://github.com/rstudio/cheatsheets

80. https://github.com/rstudio/cheatsheets/blob/master/LICENSE
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