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Chapter 33  Large datasets

Machine learning problems often involve datasets that are as large or larger than the MNIST
dataset. There is a variety of computational techniques and statistical concepts that are useful
for the analysis of large datasets. In this chapter we scratch the surface of these techniques and
concepts by describing matrix algebra, dimension reduction, regularization and matrix
factorization. We use recommendation systems related to movie ratings as a motivating
example.

33.1  Matrix algebra

In machine learning, situations in which all predictors are numeric, or can be converted to
numeric in a meaningful way, are common. The digits data set is an example: every pixel records
a number between 0 and 255. Let’s load the data:

In these cases, it is often convenient to save the predictors in a matrix and the outcome in a
vector rather than using a data frame. You can see that the predictors are saved as a matrix:

This matrix represents 60,000 digits, so for the examples in this chapter, we will take a more
manageable subset. We will take the first 1,000 predictors  x  and labels  y :

library(tidyverse)  

library(dslabs)  

if(!exists("mnist")) mnist <- read_mnist()

class(mnist$train$images)  

#> [1] "matrix" "array"

x <- mnist$train$images[1:1000,]  

y <- mnist$train$labels[1:1000]
Processing math: 52%
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The main reason for using matrices is that certain mathematical operations needed to develop
efficient code can be performed using techniques from a branch of mathematics called linear
algebra. In fact, linear algebra and matrix notation are key elements of the language used in
academic papers describing machine learning techniques. We will not cover linear algebra in
detail here, but will demonstrate how to use matrices in R so that you can apply the linear
algebra techniques already implemented in base R or other packages.

To motivate the use of matrices, we will pose five questions/challenges:

1. Do some digits require more ink than others? Study the distribution of the total pixel darkness
and how it varies by digits.

2. Are some pixels uninformative? Study the variation of each pixel and remove predictors
(columns) associated with pixels that don’t change much and thus can’t provide much
information for classification.

3. Can we remove smudges? First, look at the distribution of all pixel values. Use this to pick a
cutoff to define unwritten space. Then, set anything below that cutoff to 0.

4. Binarize the data. First, look at the distribution of all pixel values. Use this to pick a cutoff to
distinguish between writing and no writing. Then, convert all entries into either 1 or 0,
respectively.

5. Scale each of the predictors in each entry to have the same average and standard deviation.

To complete these, we will have to perform mathematical operations involving several variables.
The tidyverse is not developed to perform these types of mathematical operations. For this task,
it is convenient to use matrices.

Before we do this, we will introduce matrix notation and basic R code to define and operate on
matrices.

33.1.1  Notation

In matrix algebra, we have three main types of objects: scalars, vectors, and matrices. A scalar is
just one number, for example a = 1. To denote scalars in matrix notation, we usually use a lower
case letter and do not bold.

Vectors are like the numeric vectors we define in R: they include several scalar entries. For
example, the column containing the first pixel:Processing math: 52%
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has 1,000 entries. In matrix algebra, we use the following notation for a vector representing a
feature/predictor:

x1
 x2
 ⋮

 xN

Similarly, we can use math notation to represent different features mathematically by adding an
index:

X1 =

x1 , 1
⋮

xN , 1

 and X2 =

x1 , 2
⋮

xN , 2

If we are writing out a column, such as X1, in a sentence we often use the notation: 
X1 = (x1 , 1, …xN , 1)

⊤ with ⊤ the transpose operation that converts columns into rows and rows
into columns.

A matrix can be defined as a series of vectors of the same size joined together as columns:

length(x[,1])  

#> [1] 1000

( )
( ) ( )

x_1 <- 1:5  

x_2 <- 6:10  

cbind(x_1, x_2)  

#>      x_1 x_2 

#> [1,]   1   6 

#> [2,]   2   7 

#> [3,]   3   8 

#> [4,]   4   9 

#> [5,]   5  10

Processing math: 52%
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Mathematically, we represent them with bold upper case letters:

X = [X1X2] =

x1 , 1 x1 , 2
⋮

xN , 1 xN , 2

The dimension of a matrix is often an important characteristic needed to assure that certain
operations can be performed. The dimension is a two-number summary defined as the number
of rows ×  the number of columns. In R, we can extract the dimension of a matrix with the
function  dim :

Vectors can be thought of as N × 1 matrices. However, in R, a vector does not have dimensions:

Yet we explicitly convert a vector into a matrix using the function  as.matrix :

We can use this notation to denote an arbitrary number of predictors with the following N × p

matrix, for example, with p = 784:

X =

x1 , 1 … x1 , p
x2 , 1 … x2 , p

⋮

xN , 1 … xN , p

We stored this matrix in x:

( )

dim(x)  

#> [1] 1000  784

dim(x_1)  

#> NULL

dim(as.matrix(x_1))  

#> [1] 5 1

( )
Processing math: 52%
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We will now learn several useful operations related to matrix algebra. We use three of the
motivating questions listed above.

33.1.2  Converting a vector to a matrix

It is often useful to convert a vector to a matrix. For example, because the variables are pixels on
a grid, we can convert the rows of pixel intensities into a matrix representing this grid.

We can convert a vector into a matrix with the  matrix  function and specifying the number of
rows and columns that the resulting matrix should have. The matrix is filled in by column: the
first column is filled first, then the second and so on. This example helps illustrate:

We can fill by row by using the  byrow  argument. So, for example, to transpose the matrix
 mat , we can use:

dim(x)  

#> [1] 1000  784

my_vector <- 1:15 

mat <- matrix(my_vector, 5, 3)  

mat

#>      [,1] [,2] [,3] 

#> [1,]    1    6   11 

#> [2,]    2    7   12 

#> [3,]    3    8   13 

#> [4,]    4    9   14 

#> [5,]    5   10   15

mat_t <- matrix(my_vector, 3, 5, byrow = TRUE) 

mat_t

#>      [,1] [,2] [,3] [,4] [,5] 

#> [1,]    1    2    3    4    5 

#> [2,]    6    7    8    9   10 

#> [3,]   11   12   13   14   15
Processing math: 52%
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When we turn the columns into rows, we refer to the operations as transposing the matrix. The
function  t  can be used to directly transpose a matrix:

Warning: The  matrix  function recycles values in the vector without warning if the product of
columns and rows does not match the length of the vector:

To put the pixel intensities of our, say, 3rd entry, which is a 4 into grid, we can use:

To confirm that in fact we have done this correctly, we can use the function  image , which
shows an image of its third argument. The top of this plot is pixel 1, which is shown at the
bottom so the image is flipped. To code below includes code showing how to flip it back:

identical(t(mat), mat_t) 

#> [1] TRUE

matrix(my_vector, 4, 5)  

#> Warning in matrix(my_vector, 4, 5): data length [15] is not a sub- 

#> multiple or multiple of the number of rows [4] 

#>      [,1] [,2] [,3] [,4] [,5] 

#> [1,]    1    5    9   13    2 

#> [2,]    2    6   10   14    3 

#> [3,]    3    7   11   15    4 

#> [4,]    4    8   12    1    5

grid <- matrix(x[3,], 28, 28)

image(1:28, 1:28, grid)  

image(1:28, 1:28, grid[, 28:1])

Processing math: 52%
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33.1.3  Row and column summaries

For the first task, related to total pixel darkness, we want to sum the values of each row and then
visualize how these values vary by digit.

The function  rowSums  takes a matrix as input and computes the desired values:

We can also compute the averages with  rowMeans  if we want the values to remain between 0
and 255:

Once we have this, we can simply generate a boxplot:

sums <- rowSums(x)

avg <- rowMeans(x)

tibble(labels = as.factor(y), row_averages = avg) %>%  

  qplot(labels, row_averages, data = ., geom = "boxplot") 

Processing math: 52%
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From this plot we see that, not surprisingly, 1s use less ink than the other digits.

We can compute the column sums and averages using the function  colSums  and  colMeans ,
respectively.

The matrixStats package adds functions that performs operations on each row or column very
efficiently, including the functions  rowSds  and  colSds .

33.1.4   apply 

The functions just described are performing an operation similar to what  sapply  and the purrr
function  map  do: apply the same function to a part of your object. In this case, the function is
applied to either each row or each column. The  apply  function lets you apply any function, not
just  sum  or  mean , to a matrix. The first argument is the matrix, the second is the dimension, 1
for rows, 2 for columns, and the third is the function. So, for example,  rowMeans  can be written
as:

But notice that just like with  sapply  and  map , we can perform any function. So if we wanted
the standard deviation for each column, we could write:

avgs <- apply(x, 1, mean)

sds <- apply(x, 2, sd)

Processing math: 52%
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The tradeoff for this flexibility is that these operations are not as fast as dedicated functions such
as  rowMeans .

33.1.5  Filtering columns based on summaries

We now turn to task 2: studying the variation of each pixel and removing columns associated
with pixels that don’t change much and thus do not inform the classification. Although a
simplistic approach, we will quantify the variation of each pixel with its standard deviation across
all entries. Since each column represents a pixel, we use the  colSds  function from the
matrixStats package:

A quick look at the distribution of these values shows that some pixels have very low entry to
entry variability:

This makes sense since we don’t write in some parts of the box. Here is the variance plotted by
location:

library(matrixStats)  

sds <- colSds(x)

qplot(sds, bins = "30", color = I("black"))

Processing math: 52%
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We see that there is little variation in the corners.

We could remove features that have no variation since these can’t help us predict. In Section
2.4.7, we described the operations used to extract columns:

and rows:

We can also use logical indexes to determine which columns or rows to keep. So if we wanted to
remove uninformative predictors from our matrix, we could write this one line of code:

image(1:28, 1:28, matrix(sds, 28, 28)[, 28:1])

x[ ,c(351,352)]

x[c(2,3),]

new_x <- x[ ,colSds(x) > 60] 

dim(new_x)  

#> [1] 1000  314

Processing math: 52%
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Only the columns for which the standard deviation is above 60 are kept, which removes over half
the predictors.

Here we add an important warning related to subsetting matrices: if you select one column or
one row, the result is no longer a matrix but a vector.

However, we can preserve the matrix class by using the argument  drop=FALSE :

33.1.6  Indexing with matrices

We can quickly make a histogram of all the values in our dataset. We saw how we can turn
vectors into matrices. We can also undo this and turn matrices into vectors. The operation will
happen by row:

To see a histogram of all our predictor data, we can use:

class(x[,1])  

#> [1] "integer" 

dim(x[1,])  

#> NULL

class(x[ , 1, drop=FALSE])  

#> [1] "matrix" "array" 

dim(x[, 1, drop=FALSE])  

#> [1] 1000    1

mat <- matrix(1:15, 5, 3)  

as.vector(mat) 

#>  [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

qplot(as.vector(x), bins = 30, color = I("black"))

Processing math: 52%
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We notice a clear dichotomy which is explained as parts of the image with ink and parts without.
If we think that values below, say, 50 are smudges, we can quickly make them zero using:

To see what this does, we look at a smaller matrix:

We can also use logical operations with matrix logical:

new_x <- x 

new_x[new_x < 50] <- 0

mat <- matrix(1:15, 5, 3)  

mat[mat < 3] <- 0 

mat

#>      [,1] [,2] [,3] 

#> [1,]    0    6   11 

#> [2,]    0    7   12 

#> [3,]    3    8   13 

#> [4,]    4    9   14 

#> [5,]    5   10   15

Processing math: 52%
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33.1.7  Binarizing the data

The histogram above seems to suggest that this data is mostly binary. A pixel either has ink or
does not. Using what we have learned, we can binarize the data using just matrix operations:

We can also convert to a matrix of logicals and then coerce to numbers like this:

33.1.8  Vectorization for matrices

In R, if we subtract a vector from a matrix, the first element of the vector is subtracted from the
first row, the second element from the second row, and so on. Using mathematical notation, we
would write it as follows:

mat <- matrix(1:15, 5, 3)  

mat[mat > 6 & mat < 12] <- 0 

mat

#>      [,1] [,2] [,3] 

#> [1,]    1    6    0 

#> [2,]    2    0   12 

#> [3,]    3    0   13 

#> [4,]    4    0   14 

#> [5,]    5    0   15

bin_x <- x 

bin_x[bin_x < 255/2] <- 0  

bin_x[bin_x > 255/2] <- 1

bin_X <- (x > 255/2)*1

Processing math: 52%
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X1 , 1 … X1 , p
X2 , 1 … X2 , p

⋮

XN , 1 … XN , p

−

a1
 a2
 ⋮

 aN

=

X1 , 1 − a1 … X1 , p − a1
X2 , 1 − a2 … X2 , p − a2

⋮

XN , 1 − an … XN , p − an

The same holds true for other arithmetic operations. This implies that we can scale each row of a
matrix like this:

If you want to scale each column, be careful since this approach does not work for columns. To
perform a similar operation, we convert the columns to rows using the transpose  t , proceed as
above, and then transpose back:

We can also use a function called  sweep  that works similarly to  apply . It takes each entry of
a vector and subtracts it from the corresponding row or column.

The function  sweep  actually has another argument that lets you define the arithmetic operation.
So to divide by the standard deviation, we do the following:

33.1.9  Matrix algebra operations

Finally, although we do not cover matrix algebra operations such as matrix multiplication, we
share here the relevant commands for those that know the mathematics and want to learn the
code:

1. Matrix multiplication is done with  %*% . For example, the cross product is:

( ) ( ) ( )
(x - rowMeans(x)) / rowSds(x)

t(t(X) - colMeans(X))

X_mean_0 <- sweep(x, 2, colMeans(x))

x_mean_0 <- sweep(x, 2, colMeans(x))  

x_standardized <- sweep(x_mean_0, 2, colSds(x), FUN = "/")

Processing math: 52%
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2. We can compute the cross product directly with the function:

3. To compute the inverse of a function, we use  solve . Here it is applied to the cross product:

4. The QR decomposition is readily available by using the  qr  function:

33.2  Exercises

1. Create a 100 by 10 matrix of randomly generated normal numbers. Put the result in  x .

2. Apply the three R functions that give you the dimension of  x , the number of rows of  x , and
the number of columns of  x , respectively.

3. Add the scalar 1 to row 1, the scalar 2 to row 2, and so on, to the matrix  x .

4. Add the scalar 1 to column 1, the scalar 2 to column 2, and so on, to the matrix  x . Hint: use
 sweep  with  FUN = "+" .

5. Compute the average of each row of  x .

6. Compute the average of each column of  x .

7. For each digit in the MNIST training data, compute the proportion of pixels that are in a grey
area, defined as values between 50 and 205. Make boxplot by digit class. Hint: use logical
operators and  rowMeans .

33.3  Distance

t(x) %*% x

crossprod(x)

solve(crossprod(x))

qr(x)

Processing math: 52%
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Many of the analyses we perform with high-dimensional data relate directly or indirectly to
distance. Most clustering and machine learning techniques rely on being able to define distance
between observations, using features or predictors.

33.3.1  Euclidean distance

As a review, let’s define the distance between two points, A and B, on a Cartesian plane.

The Euclidean distance between A and B is simply:

dist(A, B) = (Ax − Bx)
2 + (Ay − By)

2

This definition applies to the case of one dimension, in which the distance between two numbers
is simply the absolute value of their difference. So if our two one-dimensional numbers are A and
B, the distance is:

dist(A, B) = √(A − B)2 = |A − B |

33.3.2  Distance in higher dimensions

Earlier we introduced a training dataset with feature matrix measurements for 784 features. For
illustrative purposes, we will look at a random sample of 2s and 7s.

√

Processing math: 52%
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The predictors are in  x  and the labels in  y .

For the purposes of, for example, smoothing, we are interested in describing distance between
observation; in this case, digits. Later, for the purposes of selecting features, we might also be
interested in finding pixels that behave similarly across samples.

To define distance, we need to know what points are since mathematical distance is computed
between points. With high dimensional data, points are no longer on the Cartesian plane.
Instead, points are in higher dimensions. We can no longer visualize them and need to think
abstractly. For example, predictors Xi are defined as a point in 784 dimensional space: 
Xi = (xi , 1, …, xi , 784)

⊤.

Once we define points this way, the Euclidean distance is defined very similarly as it was for two
dimensions. For example, the distance between the predictors for two observations, say
observations i = 1 and i = 2, is:

dist(1, 2) =
784

∑
j= 1

(x1 , j − x2 , j)
2

This is just one non-negative number, just as it is for two dimensions.

33.3.3  Euclidean distance example

The labels for the first three observations are:

library(tidyverse)  

library(dslabs)  

if(!exists("mnist")) mnist <- read_mnist()  

set.seed(1995) 

ind <- which(mnist$train$labels %in% c(2,7)) %>% sample(500)  

x <- mnist$train$images[ind,]  

y <- mnist$train$labels[ind]

√
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The vectors of predictors for each of these observations are:

The first and third numbers are sevens and the second one is a two. We expect the distances
between the same number:

to be smaller than between different numbers:

As expected, the 7s are closer to each other.

A faster way to compute this is using matrix algebra:

y[1:3]  

#> [1] 7 2 7

x_1 <- x[1,]  

x_2 <- x[2,]  

x_3 <- x[3,]

sqrt(sum((x_1 - x_2)^2))  

#> [1] 3273

sqrt(sum((x_1 - x_3)^2))  

#> [1] 2311 

sqrt(sum((x_2 - x_3)^2))  

#> [1] 2636

Processing math: 52%
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We can also compute all the distances at once relatively quickly using the function  dist ,
which computes the distance between each row and produces an object of class  dist :

There are several machine learning related functions in R that take objects of class  dist  as
input. To access the entries using row and column indices, we need to coerce it into a matrix. We
can see the distance we calculated above like this:

We can quickly see an image of these distances using this code:

If we order this distance by the labels, we can see that, in general, the twos are closer to each
other and the sevens are closer to each other:

sqrt(crossprod(x_1 - x_2))  

#>      [,1] 

#> [1,] 3273 

sqrt(crossprod(x_1 - x_3))  

#>      [,1] 

#> [1,] 2311 

sqrt(crossprod(x_2 - x_3))  

#>      [,1] 

#> [1,] 2636

d <- dist(x)  

class(d)  

#> [1] "dist"

as.matrix(d)[1:3,1:3] 

#>      1    2    3 

#> 1    0 3273 2311 

#> 2 3273    0 2636 

#> 3 2311 2636    0

image(as.matrix(d))

Processing math: 52%
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One thing we notice here is that there appears to be more uniformity in how the sevens are
drawn, since they appear to be closer (more red) to other sevens than twos are to other twos.

33.3.4  Predictor space

Predictor space is a concept that is often used to describe machine learning algorithms. The
term space refers to a mathematical definition that we don’t describe in detail here. Instead, we
provide a simplified explanation to help understand the term predictor space when used in the
context of machine learning algorithms.

The predictor space can be thought of as the collection of all possible vectors of predictors that
should be considered for the machine learning challenge in question. Each member of the space
is referred to as a point. For example, in the 2 or 7 dataset, the predictor space consists of all
pairs (x1, x2) such that both x1 and x2 are within 0 and 1. This particular space can be
represented graphically as a square. In the MNIST dataset the predictor space consists of all
784-th dimensional vectors with each vector element an integer between 0 and 256. An essential
element of a predictor space is that we need to define a function that provides the distance

image(as.matrix(d)[order(y), order(y)])

Processing math: 52%
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between any two points. In most cases we use Euclidean distance, but there are other
possibilities. A particular case in which we can’t simply use Euclidean distance is when we have
categorical predictors.

Defining a predictor space is useful in machine learning because we do things like define
neighborhoods of points, as required by many smoothing techniques. For example, we can
define a neighborhood as all the points that are within 2 units away from a predefined center. If
the points are two-dimensional and we use Euclidean distance, this neighborhood is graphically
represented as a circle with radius 2. In three dimensions the neighborhood is a sphere. We will
soon learn about algorithms that partition the space into non-overlapping regions and then make
different predictions for each region using the data in the region.

33.3.5  Distance between predictors

We can also compute distances between predictors. If N is the number of observations, the
distance between two predictors, say 1 and 2, is:

dist(1, 2) =
N

∑
i= 1

(xi , 1 − xi , 2)
2

To compute the distance between all pairs of the 784 predictors, we can transpose the matrix
first and then use  dist :

33.4  Exercises

1. Load the following dataset:

This dataset includes a matrix  x 

√

d <- dist(t(x))  

dim(as.matrix(d))  

#> [1] 784 784

data("tissue_gene_expression")

Processing math: 52%
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with the gene expression measured on 500 genes for 189 biological samples representing seven
different tissues. The tissue type is stored in  y 

Compute the distance between each observation and store it in an object  d .

2. Compare the distance between the first two observations (both cerebellums), the 39th and
40th (both colons), and the 73rd and 74th (both endometriums). See if the observations of the
same tissue type are closer to each other.

3. We see that indeed observations of the same tissue type are closer to each other in the six
tissue examples we just examined. Make a plot of all the distances using the  image  function to
see if this pattern is general. Hint: convert  d  to a matrix first.

33.5  Dimension reduction

A typical machine learning challenge will include a large number of predictors, which makes
visualization somewhat challenging. We have shown methods for visualizing univariate and
paired data, but plots that reveal relationships between many variables are more complicated in
higher dimensions. For example, to compare each of the 784 features in our predicting digits
example, we would have to create, for example, 306,936 scatterplots. Creating one single
scatter-plot of the data is impossible due to the high dimensionality.

Here we describe powerful techniques useful for exploratory data analysis, among other things,
generally referred to as dimension reduction. The general idea is to reduce the dimension of the
dataset while preserving important characteristics, such as the distance between features or
observations. With fewer dimensions, visualization then becomes more feasible. The technique
behind it all, the singular value decomposition, is also useful in other contexts. Principal
component analysis (PCA) is the approach we will be showing. Before applying PCA to high-
dimensional datasets, we will motivate the ideas behind with a simple example.

33.5.1  Preserving distance

dim(tissue_gene_expression$x)

table(tissue_gene_expression$y)
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We consider an example with twin heights. Some pairs are adults, the others are children. Here
we simulate 100 two-dimensional points that represent the number of standard deviations each
individual is from the mean height. Each point is a pair of twins. We use the  mvrnorm  function
from the MASS package to simulate bivariate normal data.

A scatterplot quickly reveals that the correlation is high and that there are two groups of twins,
the adults (upper right points) and the children (lower left points):

Our features are N two-dimensional points, the two heights, and, for illustrative purposes, we will
act as if visualizing two dimensions is too challenging. We therefore want to reduce the
dimensions from two to one, but still be able to understand important characteristics of the data,
for example that the observations cluster into two groups: adults and children.

Let’s consider a specific challenge: we want a one-dimensional summary of our predictors from
which we can approximate the distance between any two observations. In the figure above we
show the distance between observation 1 and 2 (blue), and observation 1 and 51 (red). Note that
the blue line is shorter, which implies 1 and 2 are closer.

We can compute these distances using  dist :

set.seed(1988) 

library(MASS)  

n <- 100  

Sigma <- matrix(c(9, 9 * 0.9, 9 * 0.92, 9 * 1), 2, 2) 

x <- rbind(mvrnorm(n / 2, c(69, 69), Sigma),  

           mvrnorm(n / 2, c(55, 55), Sigma))
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This distance is based on two dimensions and we need a distance approximation based on just
one.

Let’s start with the naive approach of simply removing one of the two dimensions. Let’s compare
the actual distances to the distance computed with just the first dimension:

Here are the approximate distances versus the original distances:

The plot looks about the same if we use the second dimension. We obtain a general
underestimation. This is to be expected because we are adding more positive quantities in the
distance calculation as we increase the number of dimensions. If instead we use an average, like
this

1
2

2

∑
j= 1

(X1 , j − X2 , j)
2,

then the underestimation goes away. We divide the distance by √2 to achieve the correction.

d <- dist(x)  

as.matrix(d)[1, 2] 

#> [1] 1.98 

as.matrix(d)[2, 51] 

#> [1] 18.7

z <- x[,1]

√
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This actually works pretty well and we get a typical difference of:

Now, can we pick a one-dimensional summary that makes this approximation even better?

If we look back at the previous scatterplot and visualize a line between any pair of points, the
length of this line is the distance between the two points. These lines tend to go along the
direction of the diagonal. Notice that if we instead plot the difference versus the average:

we can see how the distance between points is mostly explained by the first dimension: the
average.

sd(dist(x) - dist(z)*sqrt(2))  

#> [1] 1.21

z  <- cbind((x[,2] + x[,1])/2,  x[,2] - x[,1])
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This means that we can ignore the second dimension and not lose too much information. If the
line is completely flat, we lose no information at all. Using the first dimension of this transformed
matrix we obtain an even better approximation:

with the typical difference improved by about 35%:

Later we learn that  z[,1]  is the first principal component of the matrix  x .

33.5.2  Linear transformations (advanced)

sd(dist(x) - dist(z[,1])*sqrt(2))  

#> [1] 0.315
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Note that each row of X was transformed using a linear transformation. For any row i, the first
entry was:

Zi , 1 = a1 , 1Xi , 1 + a2 , 1Xi , 2

with a1 , 1 = 0.5 and a2 , 1 = 0.5.

The second entry was also a linear transformation:

Zi , 2 = a1 , 2Xi , 1 + a2 , 2Xi , 2

with a1 , 2 = 1 and a2 , 2 = − 1.

We can also use linear transformation to get X back from Z:

Xi , 1 = b1 , 1Zi , 1 + b2 , 1Zi , 2

with b1 , 2 = 1 and b2 , 1 = 0.5 and

Xi , 2 = b2 , 1Zi , 1 + b2 , 2Zi , 2

with b2 , 1 = 1 and a1 , 2 = − 0.5.

If you are familiar with linear algebra, we can write the operation we just performed like this:

Z = XA with A =
1 /2 1
1 /2 −1

.

And that we can transform back by simply multiplying by A − 1 as follows:

X = ZA − 1 with A − 1 =
1 1

1 /2 −1 /2
.

Dimension reduction can often be described as applying a transformation A to a matrix X with
many columns that moves the information contained in X to the first few columns of Z = AX, then
keeping just these few informative columns, thus reducing the dimension of the vectors
contained in the rows.

33.5.3  Orthogonal transformations (advanced)

( )

( )
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Note that we divided the above by √2 to account for the differences in dimensions when
comparing a 2 dimension distance to a 1 dimension distance. We can actually guarantee that the
distance scales remain the same if we re-scale the columns of A to assure that the sum of
squares is 1

a21 , 1 + a22 , 1 = 1 and a21 , 2 + a22 , 2 = 1,

and that the correlation of the columns is 0:

a1 , 1a1 , 2 + a2 , 1a2 , 2 = 0.

Remember that if the columns are centered to have average 0, then the sum of squares is
equivalent to the variance or standard deviation squared.

In our example, to achieve orthogonality, we multiply the first set of coefficients (first column of A
) by √2 and the second by 1 /√2, then we get the same exact distance if we use both
dimensions:

This gives us a transformation that preserves the distance between any two points:

and an improved approximation if we use just the first dimension:

In this case Z is called an orthogonal rotation of X: it preserves the distances between rows.

Note that by using the transformation above we can summarize the distance between any two
pairs of twins with just one dimension. For example, one-dimensional data exploration of the first
dimension of Z clearly shows that there are two groups, adults and children:

z[,1] <- (x[,1] + x[,2]) / sqrt(2)  

z[,2] <- (x[,2] - x[,1]) / sqrt(2)

max(dist(z) - dist(x))  

#> [1] 3.24e-14

sd(dist(x) - dist(z[,1]))  

#> [1] 0.315

Processing math: 52%



11/17/2020 Chapter 33 Large datasets | Introduction to Data Science

https://rafalab.github.io/dsbook/large-datasets.html 29/81

We successfully reduced the number of dimensions from two to one with very little loss of
information.

The reason we were able to do this is because the columns of X were very correlated:

and the transformation produced uncorrelated columns with “independent” information in each
column:

One way this insight may be useful in a machine learning application is that we can reduce the
complexity of a model by using just Z1 rather than both X1 and X2.

It is actually common to obtain data with several highly correlated predictors. In these cases
PCA, which we describe next, can be quite useful for reducing the complexity of the model being
fit.

library(tidyverse)  

qplot(z[,1], bins = 20, color = I("black"))

cor(x[,1], x[,2])  

#> [1] 0.988

cor(z[,1], z[,2])  

#> [1] 0.0876
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33.5.4  Principal component analysis

In the computation above, the total variability in our data can be defined as the sum of the sum
of squares of the columns. We assume the columns are centered, so this sum is equivalent to
the sum of the variances of each column:

v1 + v2,  with v1 =
1
N

N

∑
i= 1

X2i , 1 and v2 =
1
N

N

∑
i= 1

X2i , 2

We can compute v1 and v2 using:

and we can show mathematically that if we apply an orthogonal transformation as above, then
the total variation remains the same:

However, while the variability in the two columns of  X  is about the same, in the transformed
version Z 99% of the variability is included in just the first dimension:

The first principal component (PC) of a matrix X is the linear orthogonal transformation of X that
maximizes this variability. The function  prcomp  provides this info:

colMeans(x^2)  

#> [1] 3904 3902

sum(colMeans(x^2))  

#> [1] 7806 

sum(colMeans(z^2))  

#> [1] 7806

v <- colMeans(z^2)  

v/sum(v)  

#> [1] 1.00e+00 9.93e-05
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Note that the first PC is almost the same as that provided by the (X1 + X2) /√2 we used earlier
(except perhaps for a sign change that is arbitrary).

The function PCA returns both the rotation needed to transform X so that the variability of the
columns is decreasing from most variable to least (accessed with  $rotation ) as well as the
resulting new matrix (accessed with  $x ). By default the columns of X are first centered.

So, using the matrix multiplication shown above, we have that the following are the same
(demonstrated by a difference between elements of essentially zero):

The rotation is orthogonal which means that the inverse is its transpose. So we also have that
these two are identical:

We can visualize these to see how the first component summarizes the data. In the plot below
red represents high values and blue negative values (later we learn why we call these weights
and patterns):

pca <- prcomp(x)  

pca$rotation  

#>         PC1    PC2 

#> [1,] -0.702  0.712 

#> [2,] -0.712 -0.702

a <- sweep(x, 2, colMeans(x))  

b <- pca$x %*% t(pca$rotation)  

max(abs(a - b))  

#> [1] 3.55e-15

a <- sweep(x, 2, colMeans(x)) %*% pca$rotation  

b <- pca$x  

max(abs(a - b))  

#> [1] 0

Processing math: 52%



11/17/2020 Chapter 33 Large datasets | Introduction to Data Science

https://rafalab.github.io/dsbook/large-datasets.html 32/81

It turns out that we can find this linear transformation not just for two dimensions but for
matrices of any dimension p.

For a multidimensional matrix with X with p columns, we can find a transformation that creates Z
that preserves distance between rows, but with the variance of the columns in decreasing order.
The second column is the second principal component, the third column is the third principal
component, and so on. As in our example, if after a certain number of columns, say k, the
variances of the columns of Zj, j > k are very small, it means these dimensions have little to
contribute to the distance and we can approximate distance between any two points with just k
dimensions. If k is much smaller than p, then we can achieve a very efficient summary of our
data.

33.5.5  Iris example

The iris data is a widely used example in data analysis courses. It includes four botanical
measurements related to three flower species:

If you print  iris$Species  you will see that the data is ordered by the species.

names(iris)  

#> [1] "Sepal.Length" "Sepal.Width"  "Petal.Length" "Petal.Width"  

#> [5] "Species"
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Let’s compute the distance between each observation. You can clearly see the three species
with one species very different from the other two:

Our predictors here have four dimensions, but three are very correlated:

If we apply PCA, we should be able to approximate this distance with just two dimensions,
compressing the highly correlated dimensions. Using the  summary  function we can see the
variability explained by each PC:

x <- iris[,1:4] %>% as.matrix()  

d <- dist(x)  

image(as.matrix(d), col = rev(RColorBrewer::brewer.pal(9, "RdBu")))

cor(x)  

#>              Sepal.Length Sepal.Width Petal.Length Petal.Width 

#> Sepal.Length        1.000      -0.118        0.872       0.818 

#> Sepal.Width        -0.118       1.000       -0.428      -0.366 

#> Petal.Length        0.872      -0.428        1.000       0.963 

#> Petal.Width         0.818      -0.366        0.963       1.000
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The first two dimensions account for 97% of the variability. Thus we should be able to
approximate the distance very well with two dimensions. We can visualize the results of PCA:

And see that the first pattern is sepal length, petal length, and petal width (red) in one direction
and sepal width (blue) in the other. The second pattern is the sepal length and petal width in one
direction (blue) and petal length and petal width in the other (red). You can see from the weights
that the first PC1 drives most of the variability and it clearly separates the first third of samples
(setosa) from the second two thirds (versicolor and virginica). If you look at the second column of
the weights, you notice that it somewhat separates versicolor (red) from virginica (blue).

pca <- prcomp(x)  

summary(pca)  

#> Importance of components: 

#>                          PC1    PC2    PC3     PC4 

#> Standard deviation     2.056 0.4926 0.2797 0.15439 

#> Proportion of Variance 0.925 0.0531 0.0171 0.00521 

#> Cumulative Proportion  0.925 0.9777 0.9948 1.00000
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We can see this better by plotting the first two PCs with color representing the species:

We see that the first two dimensions preserve the distance:

data.frame(pca$x[,1:2], Species=iris$Species) %>%  

  ggplot(aes(PC1,PC2, fill = Species))+  

  geom_point(cex=3, pch=21) +  

  coord_fixed(ratio = 1)

d_approx <- dist(pca$x[, 1:2]) 

qplot(d, d_approx) + geom_abline(color="red")
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This example is more realistic than the first artificial example we used, since we showed how we
can visualize the data using two dimensions when the data was four-dimensional.

33.5.6  MNIST example

The written digits example has 784 features. Is there any room for data reduction? Can we create
simple machine learning algorithms using fewer features?

Let’s load the data:

Because the pixels are so small, we expect pixels close to each other on the grid to be
correlated, meaning that dimension reduction should be possible.

Let’s try PCA and explore the variance of the PCs. This will take a few seconds as it is a rather
large matrix.

library(dslabs)  

if(!exists("mnist")) mnist <- read_mnist()

col_means <- colMeans(mnist$test$images) 

pca <- prcomp(mnist$train$images)
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We can see that the first few PCs already explain a large percent of the variability:

And just by looking at the first two PCs we see information about the class. Here is a random
sample of 2,000 digits:

pc <- 1:ncol(mnist$test$images)  

qplot(pc, pca$sdev)

summary(pca)$importance[,1:5]  

#>                            PC1     PC2      PC3      PC4      PC5 

#> Standard deviation     576.823 493.238 459.8993 429.8562 408.5668 

#> Proportion of Variance   0.097   0.071   0.0617   0.0539   0.0487 

#> Cumulative Proportion    0.097   0.168   0.2297   0.2836   0.3323

data.frame(PC1 = pca$x[,1], PC2 = pca$x[,2], 

           label=factor(mnist$train$label)) %>% 

  sample_n(2000) %>%  

  ggplot(aes(PC1, PC2, fill=label))+  

  geom_point(cex=3, pch=21)
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We can also see the linear combinations on the grid to get an idea of what is getting weighted:

The lower variance PCs appear related to unimportant variability in the corners:

Now let’s apply the transformation we learned with the training data to the test data, reduce the
dimension and run knn on just a small number of dimensions.

We try 36 dimensions since this explains about 80% of the data. First fit the model:
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Now transform the test set:

And we are ready to predict and see how we do:

With just 36 dimensions we get an accuracy well above 0.95.

33.6  Exercises

1. We want to explore the  tissue_gene_expression  predictors by plotting them.

We want to get an idea of which observations are close to each other, but the predictors are 500-
dimensional so plotting is difficult. Plot the first two principal components with color representing
tissue type.

2. The predictors for each observation are measured on the same device and experimental
procedure. This introduces biases that can affect all the predictors from one observation. For
each observation, compute the average across all predictors and then plot this against the first

library(caret)  

k <- 36  

x_train <- pca$x[,1:k] 

y <- factor(mnist$train$labels)  

fit <- knn3(x_train, y)

x_test <- sweep(mnist$test$images, 2, col_means) %*% pca$rotation 

x_test <- x_test[,1:k]

y_hat <- predict(fit, x_test, type = "class") 

confusionMatrix(y_hat, factor(mnist$test$labels))$overall["Accuracy"] 

#> Accuracy  

#>    0.975

data("tissue_gene_expression")  

dim(tissue_gene_expression$x)
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PC with color representing tissue. Report the correlation.

3. We see an association with the first PC and the observation averages. Redo the PCA but only
after removing the center.

4. For the first 10 PCs, make a boxplot showing the values for each tissue.

5. Plot the percent variance explained by PC number. Hint: use the  summary  function.

33.7  Recommendation systems

Recommendation systems use ratings that users have given items to make specific
recommendations. Companies that sell many products to many customers and permit these
customers to rate their products, like Amazon, are able to collect massive datasets that can be
used to predict what rating a particular user will give a specific item. Items for which a high
rating is predicted for a given user are then recommended to that user.

Netflix uses a recommendation system to predict how many stars a user will give a specific
movie. One star suggests it is not a good movie, whereas five stars suggests it is an excellent
movie. Here, we provide the basics of how these recommendations are made, motivated by
some of the approaches taken by the winners of the Netflix challenges.

In October 2006, Netflix offered a challenge to the data science community: improve our
recommendation algorithm by 10% and win a million dollars. In September 2009, the winners
were announced . You can read a good summary of how the winning algorithm was put
together here: http://blog.echen.me/2011/10/24/winning-the-netflix-prize-a-summary/ and a
more detailed explanation here:
http://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf. We will now show you
some of the data analysis strategies used by the winning team.

33.7.1  Movielens data

The Netflix data is not publicly available, but the GroupLens research lab  generated their own
database with over 20 million ratings for over 27,000 movies by more than 138,000 users. We
make a small subset of this data available via the dslabs package:

113

114
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We can see this table is in tidy format with thousands of rows:

Each row represents a rating given by one user to one movie.

We can see the number of unique users that provided ratings and how many unique movies were
rated:

If we multiply those two numbers, we get a number larger than 5 million, yet our data table has
about 100,000 rows. This implies that not every user rated every movie. So we can think of these
data as a very large matrix, with users on the rows and movies on the columns, with many empty
cells. The  gather  function permits us to convert it to this format, but if we try it for the entire
matrix, it will crash R. Let’s show the matrix for seven users and four movies.

library(tidyverse)  

library(dslabs)  

data("movielens")

movielens %>% as_tibble() 

#> # A tibble: 100,004 x 7 

#>   movieId title              year genres         userId rating timestamp 

#>     <int> <chr>             <int> <fct>           <int>  <dbl>     <int> 

#> 1      31 Dangerous Minds    1995 Drama               1    2.5    1.26e9 

#> 2    1029 Dumbo              1941 Animation|Chi…      1    3      1.26e9 

#> 3    1061 Sleepers           1996 Thriller            1    3      1.26e9 

#> 4    1129 Escape from New …  1981 Action|Advent…      1    2      1.26e9 

#> 5    1172 Cinema Paradiso …  1989 Drama               1    4      1.26e9 

#> # … with 99,999 more rows

movielens %>%  

  summarize(n_users = n_distinct(userId),  

            n_movies = n_distinct(movieId)) 

#>   n_users n_movies 

#> 1     671     9066
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userId
Forrest

Gump
Pulp

Fiction
Shawshank

Redemption
Silence of the

Lambs

13 5.0 3.5 4.5 NA

15 1.0 5.0 2.0 5.0

16 NA NA 4.0 NA

17 2.5 5.0 5.0 4.5

19 5.0 5.0 4.0 3.0

20 2.0 0.5 4.5 0.5

You can think of the task of a recommendation system as filling in the  NA s in the table above.
To see how sparse the matrix is, here is the matrix for a random sample of 100 movies and 100
users with yellow indicating a user/movie combination for which we have a rating.

This machine learning challenge is more complicated than what we have studied up to now
because each outcome Y has a different set of predictors. To see this, note that if we are
predicting the rating for movie i by user u, in principle, all other ratings related to movie i and by
user u may be used as predictors, but different users rate different movies and a different
number of movies. Furthermore, we may be able to use information from other movies that we
have determined are similar to movie i or from users determined to be similar to user u. In
essence, the entire matrix can be used as predictors for each cell.

Let’s look at some of the general properties of the data to better understand the challenges.
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The first thing we notice is that some movies get rated more than others. Below is the
distribution. This should not surprise us given that there are blockbuster movies watched by
millions and artsy, independent movies watched by just a few. Our second observation is that
some users are more active than others at rating movies:

33.7.2  Recommendation systems as a machine learning
challenge

To see how this is a type of machine learning, notice that we need to build an algorithm with data
we have collected that will then be applied outside our control, as users look for movie
recommendations. So let’s create a test set to assess the accuracy of the models we implement.

To make sure we don’t include users and movies in the test set that do not appear in the training
set, we remove these entries using the  semi_join  function:

library(caret)  

set.seed(755) 

test_index <- createDataPartition(y = movielens$rating, times = 1, p = 0.2,  

                                  list = FALSE) 

train_set <- movielens[-test_index,] 

test_set <- movielens[test_index,]
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33.7.3  Loss function

The Netflix challenge used the typical error loss: they decided on a winner based on the residual
mean squared error (RMSE) on a test set. We define yu , i as the rating for movie i by user u and
denote our prediction with ŷu , i. The RMSE is then defined as:

RMSE =
1
N
∑
u , i

ŷu , i − yu , i
2

with N being the number of user/movie combinations and the sum occurring over all these
combinations.

Remember that we can interpret the RMSE similarly to a standard deviation: it is the typical error
we make when predicting a movie rating. If this number is larger than 1, it means our typical error
is larger than one star, which is not good.

Let’s write a function that computes the RMSE for vectors of ratings and their corresponding
predictors:

33.7.4  A first model

Let’s start by building the simplest possible recommendation system: we predict the same rating
for all movies regardless of user. What number should this prediction be? We can use a model
based approach to answer this. A model that assumes the same rating for all movies and users
with all the differences explained by random variation would look like this:

Yu , i = μ + εu , i

test_set <- test_set %>%  

  semi_join(train_set, by = "movieId") %>%  

  semi_join(train_set, by = "userId")

√ ( )

RMSE <- function(true_ratings, predicted_ratings){  

    sqrt(mean((true_ratings - predicted_ratings)^2))  

  }
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with εi , u independent errors sampled from the same distribution centered at 0 and μ the “true”
rating for all movies. We know that the estimate that minimizes the RMSE is the least squares
estimate of μ and, in this case, is the average of all ratings:

If we predict all unknown ratings with μ̂ we obtain the following RMSE:

Keep in mind that if you plug in any other number, you get a higher RMSE. For example:

From looking at the distribution of ratings, we can visualize that this is the standard deviation of
that distribution. We get a RMSE of about 1. To win the grand prize of $1,000,000, a participating
team had to get an RMSE of about 0.857. So we can definitely do better!

As we go along, we will be comparing different approaches. Let’s start by creating a results table
with this naive approach:

33.7.5  Modeling movie effects

We know from experience that some movies are just generally rated higher than others. This
intuition, that different movies are rated differently, is confirmed by data. We can augment our
previous model by adding the term bi to represent average ranking for movie i:

mu_hat <- mean(train_set$rating) 

mu_hat

#> [1] 3.54

naive_rmse <- RMSE(test_set$rating, mu_hat) 

naive_rmse 

#> [1] 1.05

predictions <- rep(3, nrow(test_set)) 

RMSE(test_set$rating, predictions)  

#> [1] 1.19

rmse_results <- tibble(method = "Just the average", RMSE = naive_rmse)
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Yu , i = μ + bi + εu , i

Statistics textbooks refer to the bs as effects. However, in the Netflix challenge papers, they refer
to them as “bias”, thus the b notation.

We can again use least squares to estimate the bi in the following way:

Because there are thousands of bi as each movie gets one, the  lm()  function will be very slow
here. We therefore don’t recommend running the code above. But in this particular situation, we
know that the least squares estimate b̂ i is just the average of Yu , i − μ̂ for each movie i. So we
can compute them this way (we will drop the  hat  notation in the code to represent estimates
going forward):

We can see that these estimates vary substantially:

fit <- lm(rating ~ as.factor(movieId), data = movielens)

mu <- mean(train_set$rating)  

movie_avgs <- train_set %>%  

  group_by(movieId) %>%  

  summarize(b_i = mean(rating - mu))  

#> `summarise()` ungrouping output (override with `.groups` argument)

qplot(b_i, data = movie_avgs, bins = 10, color = I("black"))
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Remember μ̂ = 3.5 so a bi = 1.5 implies a perfect five star rating.

Let’s see how much our prediction improves once we use ŷu , i = μ̂ + b̂ i:

We already see an improvement. But can we make it better?

33.7.6  User effects

Let’s compute the average rating for user u for those that have rated over 100 movies:

predicted_ratings <- mu + test_set %>%  

  left_join(movie_avgs, by='movieId') %>%  

  pull(b_i)  

RMSE(predicted_ratings, test_set$rating)  

#> [1] 0.989

train_set %>%  

  group_by(userId) %>%  

  summarize(b_u = mean(rating)) %>%  

  filter(n()>=100) %>%  

  ggplot(aes(b_u)) +  

  geom_histogram(bins = 30, color = "black")  

#> `summarise()` ungrouping output (override with `.groups` argument)
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Notice that there is substantial variability across users as well: some users are very cranky and
others love every movie. This implies that a further improvement to our model may be:

Yu , i = μ + bi + bu + εu , i

where bu is a user-specific effect. Now if a cranky user (negative bu) rates a great movie (positive 
bi), the effects counter each other and we may be able to correctly predict that this user gave
this great movie a 3 rather than a 5.

To fit this model, we could again use  lm  like this:

but, for the reasons described earlier, we won’t. Instead, we will compute an approximation by
computing μ̂ and b̂ i and estimating b̂u as the average of yu , i − μ̂ − b̂ i:

We can now construct predictors and see how much the RMSE improves:

33.8  Exercises

1. Load the  movielens  data.

lm(rating ~ as.factor(movieId) + as.factor(userId))

user_avgs <- train_set %>%  

  left_join(movie_avgs, by='movieId') %>%  

  group_by(userId) %>%  

  summarize(b_u = mean(rating - mu - b_i))  

#> `summarise()` ungrouping output (override with `.groups` argument)

predicted_ratings <- test_set %>%  

  left_join(movie_avgs, by='movieId') %>%  

  left_join(user_avgs, by='userId') %>%  

  mutate(pred = mu + b_i + b_u) %>%  

  pull(pred)  

RMSE(predicted_ratings, test_set$rating)  

#> [1] 0.905
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Compute the number of ratings for each movie and then plot it against the year the movie came
out. Use the square root transformation on the counts.

2. We see that, on average, movies that came out after 1993 get more ratings. We also see that
with newer movies, starting in 1993, the number of ratings decreases with year: the more recent
a movie is, the less time users have had to rate it.

Among movies that came out in 1993 or later, what are the 25 movies with the most ratings per
year? Also report their average rating.

3. From the table constructed in the previous example, we see that the most rated movies tend
to have above average ratings. This is not surprising: more people watch popular movies. To
confirm this, stratify the post 1993 movies by ratings per year and compute their average ratings.
Make a plot of average rating versus ratings per year and show an estimate of the trend.

4. In the previous exercise, we see that the more a movie is rated, the higher the rating. Suppose
you are doing a predictive analysis in which you need to fill in the missing ratings with some
value. Which of the following strategies would you use?

a. Fill in the missing values with average rating of all movies.
b. Fill in the missing values with 0.
c. Fill in the value with a lower value than the average since lack of rating is associated with

lower ratings. Try out different values and evaluate prediction in a test set.
d. None of the above.

5. The  movielens  dataset also includes a time stamp. This variable represents the time and
data in which the rating was provided. The units are seconds since January 1, 1970. Create a
new column  date  with the date. Hint: use the  as_datetime  function in the lubridate
package.

6. Compute the average rating for each week and plot this average against day. Hint: use the
 round_date  function before you  group_by .

7. The plot shows some evidence of a time effect. If we define du , i as the day for user’s u rating
of movie i, which of the following models is most appropriate:

a. Yu , i = μ + bi + bu + du , i + εu , i.

data("movielens")
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b. Yu , i = μ + bi + bu + du , iβ + εu , i.
c. Yu , i = μ + bi + bu + du , iβi + εu , i.
d. Yu , i = μ + bi + bu + f(du , i) + εu , i, with f a smooth function of du , i.

8. The  movielens  data also has a  genres  column. This column includes every genre that
applies to the movie. Some movies fall under several genres. Define a category as whatever
combination appears in this column. Keep only categories with more than 1,000 ratings. Then
compute the average and standard error for each category. Plot these as error bar plots.

9. The plot shows strong evidence of a genre effect. If we define gu , i as the genre for user’s u
rating of movie i, which of the following models is most appropriate:

a. Yu , i = μ + bi + bu + du , i + εu , i.
b. Yu , i = μ + bi + bu + du , iβ + εu , i.
c. Yu , i = μ + bi + bu + ∑K

k= 1xu , iβk + εu , i, with xku , i = 1 if gu , i is genre k.
d. Yu , i = μ + bi + bu + f(du , i) + εu , i, with f a smooth function of du , i.

33.9  Regularization

33.9.1  Motivation

Despite the large movie to movie variation, our improvement in RMSE was only about 5%. Let’s
explore where we made mistakes in our first model, using only movie effects bi. Here are the 10
largest mistakes:
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These all seem like obscure movies. Many of them have large predictions. Let’s look at the top
10 worst and best movies based on b̂ i. First, let’s create a database that connects  movieId  to
movie title:

Here are the 10 best movies according to our estimate:

test_set %>%  

  left_join(movie_avgs, by='movieId') %>%  

  mutate(residual = rating - (mu + b_i)) %>%  

  arrange(desc(abs(residual))) %>%   

  slice(1:10) %>%  

  pull(title)  

#>  [1] "Kingdom, The (Riget)"            "Heaven Knows, Mr. Allison"       

#>  [3] "American Pimp"                   "Chinatown"                       

#>  [5] "American Beauty"                 "Apocalypse Now"                  

#>  [7] "Taxi Driver"                     "Wallace & Gromit: A Close Shave" 

#>  [9] "Down in the Delta"               "Stalag 17"

movie_titles <- movielens %>%  

  select(movieId, title) %>%  

  distinct()
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And here are the 10 worst:

They all seem to be quite obscure. Let’s look at how often they are rated.

movie_avgs %>% left_join(movie_titles, by="movieId") %>% 

  arrange(desc(b_i)) %>%  

  slice(1:10)  %>%  

  pull(title)  

#>  [1] "When Night Is Falling"                                   

#>  [2] "Lamerica"                                                

#>  [3] "Mute Witness"                                            

#>  [4] "Picture Bride (Bijo photo)"                              

#>  [5] "Red Firecracker, Green Firecracker (Pao Da Shuang Deng)" 

#>  [6] "Paris, France"                                           

#>  [7] "Faces"                                                   

#>  [8] "Maya Lin: A Strong Clear Vision"                         

#>  [9] "Heavy"                                                   

#> [10] "Gate of Heavenly Peace, The"

movie_avgs %>% left_join(movie_titles, by="movieId") %>% 

  arrange(b_i) %>%  

  slice(1:10)  %>%  

  pull(title)  

#>  [1] "Children of the Corn IV: The Gathering"            

#>  [2] "Barney's Great Adventure"                          

#>  [3] "Merry War, A"                                      

#>  [4] "Whiteboyz"                                         

#>  [5] "Catfish in Black Bean Sauce"                       

#>  [6] "Killer Shrews, The"                                

#>  [7] "Horrors of Spider Island (Ein Toter Hing im Netz)" 

#>  [8] "Monkeybone"                                        

#>  [9] "Arthur 2: On the Rocks"                            

#> [10] "Red Heat"
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The supposed “best” and “worst” movies were rated by very few users, in most cases just 1.
These movies were mostly obscure ones. This is because with just a few users, we have more
uncertainty. Therefore, larger estimates of bi, negative or positive, are more likely.

These are noisy estimates that we should not trust, especially when it comes to prediction. Large
errors can increase our RMSE, so we would rather be conservative when unsure.

In previous sections, we computed standard error and constructed confidence intervals to
account for different levels of uncertainty. However, when making predictions, we need one
number, one prediction, not an interval. For this, we introduce the concept of regularization.

Regularization permits us to penalize large estimates that are formed using small sample sizes. It
has commonalities with the Bayesian approach that shrunk predictions described in Section
16.4.

33.9.2  Penalized least squares

train_set %>% count(movieId) %>%  

  left_join(movie_avgs, by="movieId") %>%  

  left_join(movie_titles, by="movieId") %>%  

  arrange(desc(b_i)) %>%  

  slice(1:10) %>%  

  pull(n)  

#>  [1] 1 1 1 1 3 1 1 2 1 1 

 

train_set %>% count(movieId) %>%  

  left_join(movie_avgs) %>%  

  left_join(movie_titles, by="movieId") %>%  

  arrange(b_i) %>%  

  slice(1:10) %>%  

  pull(n)  

#> Joining, by = "movieId" 

#>  [1] 1 1 1 1 1 1 1 1 1 1
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The general idea behind regularization is to constrain the total variability of the effect sizes. Why
does this help? Consider a case in which we have movie i = 1 with 100 user ratings and 4
movies i = 2, 3, 4, 5 with just one user rating. We intend to fit the model

Yu , i = μ + bi + εu , i

Suppose we know the average rating is, say, μ = 3. If we use least squares, the estimate for the
first movie effect b1 is the average of the 100 user ratings, 1 / 100∑100

i= 1(Yi , 1 − μ), which we expect
to be a quite precise. However, the estimate for movies 2, 3, 4, and 5 will simply be the observed
deviation from the average rating b̂ i = Yu , i − μ̂ which is an estimate based on just one number so
it won’t be precise at all. Note these estimates make the error Yu , i − μ + b̂ i equal to 0 for
i=2,3,4,5, but this is a case of over-training. In fact, ignoring the one user and guessing that
movies 2,3,4, and 5 are just average movies (b_i = 0) might provide a better prediction. The
general idea of penalized regression is to control the total variability of the movie effects:
\sum_{i=1}^5 b_i^2. Specifically, instead of minimizing the least squares equation, we minimize
an equation that adds a penalty:

\sum_{u,i} \left(y_{u,i} - \mu - b_i\right)^2 + \lambda \sum_{i} b_i^2 The first term is just the sum
of squares and the second is a penalty that gets larger when many b_i are large. Using calculus
we can actually show that the values of b_i that minimize this equation are:

\hat{b}_i(\lambda) = \frac{1}{\lambda + n_i} \sum_{u=1}^{n_i} \left(Y_{u,i} - \hat{\mu}\right)

where n_i is the number of ratings made for movie i. This approach will have our desired effect:
when our sample size n_i is very large, a case which will give us a stable estimate, then the
penalty \lambda is effectively ignored since n_i+\lambda \approx n_i. However, when the n_i is
small, then the estimate \hat{b}_i(\lambda) is shrunken towards 0. The larger \lambda, the more
we shrink.

Let’s compute these regularized estimates of b_i using \lambda=3. Later, we will see why we
picked 3.

lambda <- 3 

mu <- mean(train_set$rating)  

movie_reg_avgs <- train_set %>%  

  group_by(movieId) %>%  

  summarize(b_i = sum(rating - mu)/(n()+lambda), n_i = n())  

#> `summarise()` ungrouping output (override with `.groups` argument)
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To see how the estimates shrink, let’s make a plot of the regularized estimates versus the least
squares estimates.

Now, let’s look at the top 10 best movies based on the penalized estimates \hat{b}_i(\lambda):

tibble(original = movie_avgs$b_i,  

       regularlized = movie_reg_avgs$b_i,  

       n = movie_reg_avgs$n_i) %>%  

  ggplot(aes(original, regularlized, size=sqrt(n))) +  

  geom_point(shape=1, alpha=0.5)

train_set %>% 

  count(movieId) %>%  

  left_join(movie_reg_avgs, by = "movieId") %>%  

  left_join(movie_titles, by = "movieId") %>%  

  arrange(desc(b_i)) %>%  

  slice(1:10) %>%  

  pull(title)  

#>  [1] "Paris Is Burning"          "Shawshank Redemption, The" 

#>  [3] "Godfather, The"            "African Queen, The"        

#>  [5] "Band of Brothers"          "Paperman"                  

#>  [7] "On the Waterfront"         "All About Eve"             

#>  [9] "Usual Suspects, The"       "Ikiru"
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These make much more sense! These movies are watched more and have more ratings. Here are
the top 10 worst movies:

Do we improve our results?

train_set %>% 

  count(movieId) %>%  

  left_join(movie_reg_avgs, by = "movieId") %>%  

  left_join(movie_titles, by="movieId") %>%  

  arrange(b_i) %>%  

  select(title, b_i, n) %>%  

  slice(1:10) %>%  

  pull(title)  

#>  [1] "Battlefield Earth"                       

#>  [2] "Joe's Apartment"                         

#>  [3] "Super Mario Bros."                       

#>  [4] "Speed 2: Cruise Control"                 

#>  [5] "Dungeons & Dragons"                      

#>  [6] "Batman & Robin"                          

#>  [7] "Police Academy 6: City Under Siege"      

#>  [8] "Cats & Dogs"                             

#>  [9] "Disaster Movie"                          

#> [10] "Mighty Morphin Power Rangers: The Movie"

predicted_ratings <- test_set %>%  

  left_join(movie_reg_avgs, by = "movieId") %>%  

  mutate(pred = mu + b_i) %>%  

  pull(pred)  

RMSE(predicted_ratings, test_set$rating)  

#> [1] 0.97
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#> # A tibble: 4 x 2 

#>   method                          RMSE 

#>   <chr>                          <dbl> 

#> 1 Just the average               1.05  

#> 2 Movie Effect Model             0.989 

#> 3 Movie + User Effects Model     0.905 

#> 4 Regularized Movie Effect Model 0.970

The penalized estimates provide a large improvement over the least squares estimates.

33.9.3  Choosing the penalty terms

Note that \lambda is a tuning parameter. We can use cross-validation to choose it.

lambdas <- seq(0, 10, 0.25) 

mu <- mean(train_set$rating)  

just_the_sum <- train_set %>%  

  group_by(movieId) %>%  

  summarize(s = sum(rating - mu), n_i = n())  

#> `summarise()` ungrouping output (override with `.groups` argument) 

rmses <- sapply(lambdas, function(l){ 

  predicted_ratings <- test_set %>% 

    left_join(just_the_sum, by='movieId') %>%  

    mutate(b_i = s/(n_i+l)) %>%  

    mutate(pred = mu + b_i) %>%  

    pull(pred)  

  return(RMSE(predicted_ratings, test_set$rating))  

})

qplot(lambdas, rmses)   

lambdas[which.min(rmses)] 

#> [1] 3
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However, while we show this as an illustration, in practice we should be using full cross-
validation just on the train set, without using the test set until the final assessment. The test set
should never be used for tuning.

We can use regularization for the estimate user effects as well. We are minimizing:

\sum_{u,i} \left(y_{u,i} - \mu - b_i - b_u \right)^2 + \lambda \left(\sum_{i} b_i^2 + \sum_{u}
b_u^2\right)

The estimates that minimize this can be found similarly to what we did above. Here we use
cross-validation to pick a \lambda:
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lambdas <- seq(0, 10, 0.25) 

rmses <- sapply(lambdas, function(l){ 

  mu <- mean(train_set$rating)  

  

  b_i <- train_set %>%  

    group_by(movieId) %>%  

    summarize(b_i = sum(rating - mu)/(n()+l))  

  

  b_u <- train_set %>%  

    left_join(b_i, by="movieId") %>%  

    group_by(userId) %>%  

    summarize(b_u = sum(rating - b_i - mu)/(n()+l))  

  predicted_ratings <-  

    test_set %>%  

    left_join(b_i, by = "movieId") %>%  

    left_join(b_u, by = "userId") %>%  

    mutate(pred = mu + b_i + b_u) %>%  

    pull(pred)  

  

    return(RMSE(predicted_ratings, test_set$rating))  

})

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 
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#> `summarise()` ungrouping output (override with `.groups` argument) 
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#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) Processing math: 52%
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#> `summarise()` ungrouping output (override with `.groups` argument) 
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#> `summarise()` ungrouping output (override with `.groups` argument) 
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#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 

#> `summarise()` ungrouping output (override with `.groups` argument) 
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For the full model, the optimal \lambda is:

method RMSE

Just the average 1.053

Movie Effect Model 0.989

Movie + User Effects Model 0.905

Regularized Movie Effect Model 0.970

Regularized Movie + User Effect Model 0.881

33.10  Exercises

qplot(lambdas, rmses)  

lambda <- lambdas[which.min(rmses)] 

lambda

#> [1] 3.25
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An education expert is advocating for smaller schools. The expert bases this recommendation
on the fact that among the best performing schools, many are small schools. Let’s simulate a
dataset for 100 schools. First, let’s simulate the number of students in each school.

Now let’s assign a true quality for each school completely independent from size. This is the
parameter we want to estimate.

We can see that the top 10 schools are:

Now let’s have the students in the school take a test. There is random variability in test taking so
we will simulate the test scores as normally distributed with the average determined by the
school quality and standard deviations of 30 percentage points:

1. What are the top schools based on the average score? Show just the ID, size, and the average
score.

set.seed(1986) 

n <- round(2^rnorm(1000, 8, 1))

mu <- round(80 + 2 * rt(1000, 5))  

range(mu)  

schools <- data.frame(id = paste("PS",1:100),  

                      size = n,  

                      quality = mu, 

                      rank = rank(-mu))

schools %>% top_n(10, quality) %>% arrange(desc(quality))

scores <- sapply(1:nrow(schools), function(i){ 

  scores <- rnorm(schools$size[i], schools$quality[i], 30) 

  scores

})

schools <- schools %>% mutate(score = sapply(scores, mean))
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2. Compare the median school size to the median school size of the top 10 schools based on the
score.

3. According to this test, it appears small schools are better than large schools. Five out of the
top 10 schools have 100 or fewer students. But how can this be? We constructed the simulation
so that quality and size are independent. Repeat the exercise for the worst 10 schools.

4. The same is true for the worst schools! They are small as well. Plot the average score versus
school size to see what’s going on. Highlight the top 10 schools based on the true quality. Use
the log scale transform for the size.

5. We can see that the standard error of the score has larger variability when the school is
smaller. This is a basic statistical reality we learned in the probability and inference sections. In
fact, note that 4 of the top 10 schools are in the top 10 schools based on the exam score.

Let’s use regularization to pick the best schools. Remember regularization shrinks deviations
from the average towards 0. So to apply regularization here, we first need to define the overall
average for all schools:

and then define, for each school, how it deviates from that average. Write code that estimates
the score above average for each school but dividing by n + \lambda instead of n, with n the
school size and \lambda a regularization parameter. Try \lambda = 3.

6. Notice that this improves things a bit. The number of small schools that are not highly ranked
is now 4. Is there a better \lambda? Find the \lambda that minimizes the RMSE = 1/100
\sum_{i=1}^{100} (\mbox{quality} - \mbox{estimate})^2.

7. Rank the schools based on the average obtained with the best \alpha. Note that no small
school is incorrectly included.

8. A common mistake to make when using regularization is shrinking values towards 0 that are
not centered around 0. For example, if we don’t subtract the overall average before shrinking, we
actually obtain a very similar result. Confirm this by re-running the code from exercise 6 but
without removing the overall mean.

33.11  Matrix factorization

overall <- mean(sapply(scores, mean))

Processing math: 52%



11/17/2020 Chapter 33 Large datasets | Introduction to Data Science

https://rafalab.github.io/dsbook/large-datasets.html 65/81

Matrix factorization is a widely used concept in machine learning. It is very much related to
factor analysis, singular value decomposition (SVD), and principal component analysis (PCA).
Here we describe the concept in the context of movie recommendation systems.

We have described how the model:

Y_{u,i} = \mu + b_i + b_u + \varepsilon_{u,i}

accounts for movie to movie differences through the b_i and user to user differences through the
b_u. But this model leaves out an important source of variation related to the fact that groups of
movies have similar rating patterns and groups of users have similar rating patterns as well. We
will discover these patterns by studying the residuals:

r_{u,i} = y_{u,i} - \hat{b}_i - \hat{b}_u

To see this, we will convert the data into a matrix so that each user gets a row, each movie gets
a column, and y_{u,i} is the entry in row u and column i. For illustrative purposes, we will only
consider a small subset of movies with many ratings and users that have rated many movies. We
also keep Scent of a Woman ( movieId == 3252 ) because we use it for a specific example:

We add row names and column names:

train_small <- movielens %>%  

  group_by(movieId) %>%  

  filter(n() >= 50 | movieId == 3252) %>% ungroup() %>%  

  group_by(userId) %>%  

  filter(n() >= 50) %>% ungroup()  

y <- train_small %>%  

  select(userId, movieId, rating) %>%  

  spread(movieId, rating) %>%  

  as.matrix()
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and convert them to residuals by removing the column and row effects:

If the model above explains all the signals, and the \varepsilon are just noise, then the residuals
for different movies should be independent from each other. But they are not. Here are some
examples:

rownames(y)<- y[,1] 

y <- y[,-1]  

movie_titles <- movielens %>%  

  select(movieId, title) %>%  

  distinct()  

colnames(y) <- with(movie_titles, title[match(colnames(y), movieId)])

y <- sweep(y, 2, colMeans(y, na.rm=TRUE))  

y <- sweep(y, 1, rowMeans(y, na.rm=TRUE))

m_1 <- "Godfather, The"  

m_2 <- "Godfather: Part II, The"  

p1 <- qplot(y[ ,m_1], y[,m_2], xlab = m_1, ylab = m_2)  

m_1 <- "Godfather, The"  

m_3 <- "Goodfellas"  

p2 <- qplot(y[ ,m_1], y[,m_3], xlab = m_1, ylab = m_3)  

m_4 <- "You've Got Mail"  

m_5 <- "Sleepless in Seattle"  

p3 <- qplot(y[ ,m_4], y[,m_5], xlab = m_4, ylab = m_5)  

gridExtra::grid.arrange(p1, p2 ,p3, ncol = 3)
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This plot says that users that liked The Godfather more than what the model expects them to,
based on the movie and user effects, also liked The Godfather II more than expected. A similar
relationship is seen when comparing The Godfather and Goodfellas. Although not as strong,
there is still correlation. We see correlations between You’ve Got Mail and Sleepless in Seattle as
well

By looking at the correlation between movies, we can see a pattern (we rename the columns to
save print space):

There seems to be people that like romantic comedies more than expected, while others that like
gangster movies more than expected.

These results tell us that there is structure in the data. But how can we model this?

33.11.1  Factors analysis

x <- y[, c(m_1, m_2, m_3, m_4, m_5)]  

short_names <- c("Godfather", "Godfather2", "Goodfellas", 

                 "You've Got", "Sleepless") 

colnames(x) <- short_names

cor(x, use="pairwise.complete")  

#>            Godfather Godfather2 Goodfellas You've Got Sleepless 

#> Godfather      1.000      0.829      0.444     -0.440    -0.378 

#> Godfather2     0.829      1.000      0.521     -0.331    -0.358 

#> Goodfellas     0.444      0.521      1.000     -0.481    -0.402 

#> You've Got    -0.440     -0.331     -0.481      1.000     0.533 

#> Sleepless     -0.378     -0.358     -0.402      0.533     1.000

Processing math: 52%



11/17/2020 Chapter 33 Large datasets | Introduction to Data Science

https://rafalab.github.io/dsbook/large-datasets.html 68/81

Here is an illustration, using a simulation, of how we can use some structure to predict the r_{u,i}.
Suppose our residuals  r  look like this:

There seems to be a pattern here. In fact, we can see very strong correlation patterns:

We can create vectors  q  and  p , that can explain much of the structure we see. The  q 
would look like this:

round(r, 1)  

#>    Godfather Godfather2 Goodfellas You've Got Sleepless 

#> 1        2.0        2.3        2.2       -1.8      -1.9 

#> 2        2.0        1.7        2.0       -1.9      -1.7 

#> 3        1.9        2.4        2.1       -2.3      -2.0 

#> 4       -0.3        0.3        0.3       -0.4      -0.3 

#> 5       -0.3       -0.4        0.3        0.2       0.3 

#> 6       -0.1        0.1        0.2       -0.3       0.2 

#> 7       -0.1        0.0       -0.2       -0.2       0.3 

#> 8        0.2        0.2        0.1        0.0       0.4 

#> 9       -1.7       -2.1       -1.8        2.0       2.4 

#> 10      -2.3       -1.8       -1.7        1.8       1.7 

#> 11      -1.7       -2.0       -2.1        1.9       2.3 

#> 12      -1.8       -1.7       -2.1        2.3       2.0

cor(r)  

#>            Godfather Godfather2 Goodfellas You've Got Sleepless 

#> Godfather      1.000      0.980      0.978     -0.974    -0.966 

#> Godfather2     0.980      1.000      0.983     -0.987    -0.992 

#> Goodfellas     0.978      0.983      1.000     -0.986    -0.989 

#> You've Got    -0.974     -0.987     -0.986      1.000     0.986 

#> Sleepless     -0.966     -0.992     -0.989      0.986     1.000

t(q)  

#>      Godfather Godfather2 Goodfellas You've Got Sleepless 

#> [1,]         1          1          1         -1        -1
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and it narrows down movies to two groups: gangster (coded with 1) and romance (coded with
-1). We can also reduce the users to three groups:

those that like gangster movies and dislike romance movies (coded as 2), those that like
romance movies and dislike gangster movies (coded as -2), and those that don’t care (coded as
0). The main point here is that we can almost reconstruct r, which has 60 values, with a couple of
vectors totaling 17 values. If r contains the residuals for users u=1,\dots,12 for movies
i=1,\dots,5 we can write the following mathematical formula for our residuals r_{u,i}.

r_{u,i} \approx p_u q_i

This implies that we can explain more variability by modifying our previous model for movie
recommendations to:

Y_{u,i} = \mu + b_i + b_u + p_u q_i + \varepsilon_{u,i}

However, we motivated the need for the p_u q_i term with a simple simulation. The structure
found in data is usually more complex. For example, in this first simulation we assumed there
were was just one factor p_u that determined which of the two genres movie u belongs to. But
the structure in our movie data seems to be much more complicated than gangster movie versus
romance. We may have many other factors. Here we present a slightly more complex simulation.
We now add a sixth movie.

t(p)  

#>      1 2 3 4 5 6 7 8  9 10 11 12 

#> [1,] 2 2 2 0 0 0 0 0 -2 -2 -2 -2
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By exploring the correlation structure of this new dataset

We note that we perhaps need a second factor to account for the fact that some users like Al
Pacino, while others dislike him or don’t care. Notice that the overall structure of the correlation
obtained from the simulated data is not that far off the real correlation:

round(r, 1)  

#>    Godfather Godfather2 Goodfellas You've Got Sleepless Scent 

#> 1        0.5        0.6        1.6       -0.5      -0.5  -1.6 

#> 2        1.5        1.4        0.5       -1.5      -1.4  -0.4 

#> 3        1.5        1.6        0.5       -1.6      -1.5  -0.5 

#> 4       -0.1        0.1        0.1       -0.1      -0.1   0.1 

#> 5       -0.1       -0.1        0.1        0.0       0.1  -0.1 

#> 6        0.5        0.5       -0.4       -0.6      -0.5   0.5 

#> 7        0.5        0.5       -0.5       -0.6      -0.4   0.4 

#> 8        0.5        0.6       -0.5       -0.5      -0.4   0.4 

#> 9       -0.9       -1.0       -0.9        1.0       1.1   0.9 

#> 10      -1.6       -1.4       -0.4        1.5       1.4   0.5 

#> 11      -1.4       -1.5       -0.5        1.5       1.6   0.6 

#> 12      -1.4       -1.4       -0.5        1.6       1.5   0.6

colnames(r)[4:6] <- c("YGM", "SS", "SW") 

cor(r)  

#>            Godfather Godfather2 Goodfellas    YGM     SS     SW 

#> Godfather      1.000      0.997      0.562 -0.997 -0.996 -0.571 

#> Godfather2     0.997      1.000      0.577 -0.998 -0.999 -0.583 

#> Goodfellas     0.562      0.577      1.000 -0.552 -0.583 -0.994 

#> YGM           -0.997     -0.998     -0.552  1.000  0.998  0.558 

#> SS            -0.996     -0.999     -0.583  0.998  1.000  0.588 

#> SW            -0.571     -0.583     -0.994  0.558  0.588  1.000
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To explain this more complicated structure, we need two factors. For example something like
this:

With the first factor (the first row) used to code the gangster versus romance groups and a
second factor (the second row) to explain the Al Pacino versus no Al Pacino groups. We will also
need two sets of coefficients to explain the variability introduced by the 3\times 3 types of
groups:

The model with two factors has 36 parameters that can be used to explain much of the variability
in the 72 ratings:

Y_{u,i} = \mu + b_i + b_u + p_{u,1} q_{1,i} + p_{u,2} q_{2,i} + \varepsilon_{u,i}

six_movies <- c(m_1, m_2, m_3, m_4, m_5, m_6) 

x <- y[, six_movies]  

colnames(x) <- colnames(r)

cor(x, use="pairwise.complete")  

#>            Godfather Godfather2 Goodfellas    YGM     SS      SW

#> Godfather     1.0000      0.829      0.444 -0.440 -0.378  0.0589

#> Godfather2    0.8285      1.000      0.521 -0.331 -0.358  0.1186

#> Goodfellas    0.4441      0.521      1.000 -0.481 -0.402 -0.1230

#> YGM          -0.4397     -0.331     -0.481  1.000  0.533 -0.1699

#> SS           -0.3781     -0.358     -0.402  0.533  1.000 -0.1822

#> SW            0.0589      0.119     -0.123 -0.170 -0.182  1.0000

t(q)  

#>      Godfather Godfather2 Goodfellas You've Got Sleepless Scent 

#> [1,]         1          1          1         -1        -1    -1 

#> [2,]         1          1         -1         -1        -1     1

t(p)  

#>         1   2   3 4 5   6   7   8  9   10   11   12 

#> [1,]  1.0 1.0 1.0 0 0 0.0 0.0 0.0 -1 -1.0 -1.0 -1.0 

#> [2,] -0.5 0.5 0.5 0 0 0.5 0.5 0.5  0 -0.5 -0.5 -0.5
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Note that in an actual data application, we need to fit this model to data. To explain the complex
correlation we observe in real data, we usually permit the entries of p and q to be continuous
values, rather than discrete ones as we used in the simulation. For example, rather than dividing
movies into gangster or romance, we define a continuum. Also note that this is not a linear
model and to fit it we need to use an algorithm other than the one used by  lm  to find the
parameters that minimize the least squares. The winning algorithms for the Netflix challenge fit a
model similar to the above and used regularization to penalize for large values of p and q, rather
than using least squares. Implementing this approach is beyond the scope of this book.

33.11.2  Connection to SVD and PCA

The decomposition:

r_{u,i} \approx p_{u,1} q_{1,i} + p_{u,2} q_{2,i}

is very much related to SVD and PCA. SVD and PCA are complicated concepts, but one way to
understand them is that SVD is an algorithm that finds the vectors p and q that permit us to
rewrite the matrix \mbox{r} with m rows and n columns as:

r_{u,i} = p_{u,1} q_{1,i} + p_{u,2} q_{2,i} + \dots + p_{u,n} q_{n,i}

with the variability of each term decreasing and with the ps uncorrelated. The algorithm also
computes this variability so that we can know how much of the matrices, total variability is
explained as we add new terms. This may permit us to see that, with just a few terms, we can
explain most of the variability.

Let’s see an example with the movie data. To compute the decomposition, we will make the
residuals with NAs equal to 0:

The q vectors are called the principal components and they are stored in this matrix:

y[is.na(y)] <- 0  

pca <- prcomp(y)

dim(pca$rotation)  

#> [1] 454 292
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While the p, or the user effects, are here:

We can see the variability of each of the vectors:

We also notice that the first two principal components are related to the structure in opinions
about movies:

dim(pca$x)  

#> [1] 292 292

qplot(1:nrow(x), pca$sdev, xlab = "PC")
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Just by looking at the top 10 in each direction, we see a meaningful pattern. The first PC shows
the difference between critically acclaimed movies on one side:

#>  [1] "Pulp Fiction"              "Seven (a.k.a. Se7en)"      

#>  [3] "Fargo"                     "2001: A Space Odyssey"     

#>  [5] "Silence of the Lambs, The" "Clockwork Orange, A"       

#>  [7] "Taxi Driver"               "Being John Malkovich"      

#>  [9] "Royal Tenenbaums, The"     "Shining, The"

and Hollywood blockbusters on the other:

#>  [1] "Independence Day (a.k.a. ID4)"  "Shrek"                          

#>  [3] "Spider-Man"                     "Titanic"                        

#>  [5] "Twister"                        "Armageddon"                     

#>  [7] "Harry Potter and the Sorcer..." "Forrest Gump"                   

#>  [9] "Lord of the Rings: The Retu..." "Enemy of the State"

While the second PC seems to go from artsy, independent films:

#>  [1] "Shawshank Redemption, The"      "Truman Show, The"               

#>  [3] "Little Miss Sunshine"           "Slumdog Millionaire"            

#>  [5] "Amelie (Fabuleux destin d'A..." "Kill Bill: Vol. 1"              

#>  [7] "American Beauty"                "City of God (Cidade de Deus)"   

#>  [9] "Mars Attacks!"                  "Beautiful Mind, A"

to nerd favorites:

#>  [1] "Lord of the Rings: The Two ..." "Lord of the Rings: The Fell..." 

#>  [3] "Lord of the Rings: The Retu..." "Matrix, The"                    

#>  [5] "Star Wars: Episode IV - A N..." "Star Wars: Episode VI - Ret..." 

#>  [7] "Star Wars: Episode V - The ..." "Spider-Man 2"                   

#>  [9] "Dark Knight, The"               "Speed"
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Fitting a model that incorporates these estimates is complicated. For those interested in
implementing an approach that incorporates these ideas, we recommend trying the
recommenderlab package. The details are beyond the scope of this book.

33.12  Exercises

In this exercise set, we will be covering a topic useful for understanding matrix factorization: the
singular value decomposition (SVD). SVD is a mathematical result that is widely used in machine
learning, both in practice and to understand the mathematical properties of some algorithms.
This is a rather advanced topic and to complete this exercise set you will have to be familiar with
linear algebra concepts such as matrix multiplication, orthogonal matrices, and diagonal
matrices.

The SVD tells us that we can decompose an N\times p matrix Y with p < N as

Y = U D V^{\top}

With U and V orthogonal of dimensions N\times p and p\times p, respectively, and D a p \times p
diagonal matrix with the values of the diagonal decreasing:

d_{1,1} \geq d_{2,2} \geq \dots d_{p,p}.

In this exercise, we will see one of the ways that this decomposition can be useful. To do this, we
will construct a dataset that represents grade scores for 100 students in 24 different subjects.
The overall average has been removed so this data represents the percentage point each
student received above or below the average test score. So a 0 represents an average grade (C),
a 25 is a high grade (A+), and a -25 represents a low grade (F). You can simulate the data like
this:
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Our goal is to describe the student performances as succinctly as possible. For example, we
want to know if these test results are all just random independent numbers. Are all students just
about as good? Does being good in one subject imply you will be good in another? How does
the SVD help with all this? We will go step by step to show that with just three relatively small
pairs of vectors we can explain much of the variability in this 100 \times 24 dataset.

You can visualize the 24 test scores for the 100 students by plotting an image:

1. How would you describe the data based on this figure?

a. The test scores are all independent of each other.

set.seed(1987) 

n <- 100  

k <- 8  

Sigma <- 64  * matrix(c(1, .75, .5, .75, 1, .5, .5, .5, 1), 3, 3)  

m <- MASS::mvrnorm(n, rep(0, 3), Sigma)  

m <- m[order(rowMeans(m), decreasing = TRUE),]  

y <- m %x% matrix(rep(1, k), nrow = 1) +  

  matrix(rnorm(matrix(n * k * 3)), n, k * 3)  

colnames(y) <- c(paste(rep("Math",k), 1:k, sep="_"), 

                 paste(rep("Science",k), 1:k, sep="_"), 

                 paste(rep("Arts",k), 1:k, sep="_"))

my_image <- function(x, zlim = range(x), ...){ 

  colors = rev(RColorBrewer::brewer.pal(9, "RdBu")) 

  cols <- 1:ncol(x) 

  rows <- 1:nrow(x) 

  image(cols, rows, t(x[rev(rows),,drop=FALSE]), xaxt = "n", yaxt = "n",  

        xlab="", ylab="",  col = colors, zlim = zlim, ...) 

  abline(h=rows + 0.5, v = cols + 0.5)  

  axis(side = 1, cols, colnames(x), las = 2)  

}

my_image(y)
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b. The students that test well are at the top of the image and there seem to be three groupings
by subject.

c. The students that are good at math are not good at science.
d. The students that are good at math are not good at humanities.

2. You can examine the correlation between the test scores directly like this:

Which of the following best describes what you see?

a. The test scores are independent.
b. Math and science are highly correlated but the humanities are not.
c. There is high correlation between tests in the same subject but no correlation across

subjects.
d. There is a correlation among all tests, but higher if the tests are in science and math and

even higher within each subject.

3. Remember that orthogonality means that U^{\top}U and V^{\top}V are equal to the identity
matrix. This implies that we can also rewrite the decomposition as

Y V = U D \mbox{ or } U^{\top}Y = D V^{\top}

We can think of YV and U^{\top}V as two transformations of Y that preserve the total variability
of Y since U and V are orthogonal.

Use the function  svd  to compute the SVD of  y . This function will return U, V and the diagonal
entries of D.

You can check that the SVD works by typing:

my_image(cor(y), zlim = c(-1,1)) 

range(cor(y))  

axis(side = 2, 1:ncol(y), rev(colnames(y)), las = 2)

s <- svd(y)  

names(s)

y_svd <- s$u %*% diag(s$d) %*% t(s$v) 

max(abs(y - y_svd))Processing math: 52%
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Compute the sum of squares of the columns of Y and store them in  ss_y . Then compute the
sum of squares of columns of the transformed YV and store them in  ss_yv . Confirm that
 sum(ss_y)  is equal to  sum(ss_yv) .

4. We see that the total sum of squares is preserved. This is because V is orthogonal. Now to
start understanding how YV is useful, plot  ss_y  against the column number and then do the
same for  ss_yv . What do you observe?

5. We see that the variability of the columns of YV is decreasing. Furthermore, we see that,
relative to the first three, the variability of the columns beyond the third is almost 0. Now notice
that we didn’t have to compute  ss_yv  because we already have the answer. How? Remember
that YV = UD and because U is orthogonal, we know that the sum of squares of the columns of
UD are the diagonal entries of D squared. Confirm this by plotting the square root of  ss_yv 
versus the diagonal entries of D.

6. From the above we know that the sum of squares of the columns of Y (the total sum of
squares) add up to the sum of  s$d^2  and that the transformation YV gives us columns with
sums of squares equal to  s$d^2 . Now compute what percent of the total variability is explained
by just the first three columns of YV.

7. We see that almost 99% of the variability is explained by the first three columns of YV = UD.
So we get the sense that we should be able to explain much of the variability and structure we
found while exploring the data with a few columns. Before we continue, let’s show a useful
computational trick to avoid creating the matrix  diag(s$d) . To motivate this, we note that if we
write U out in its columns [U_1, U_2, \dots, U_p] then UD is equal to

UD = [U_1 d_{1,1}, U_2 d_{2,2}, \dots, U_p d_{p,p}]

Use the  sweep  function to compute UD without constructing  diag(s$d)  nor matrix
multiplication.

8. We know that U_1 d_{1,1}, the first column of UD, has the most variability of all the columns of
UD. Earlier we saw an image of Y:

in which we can see that the student to student variability is quite large and that it appears that
students that are good in one subject are good in all. This implies that the average (across all
subjects) for each student should explain a lot of the variability. Compute the average score for

my_image(y)

Processing math: 52%



11/17/2020 Chapter 33 Large datasets | Introduction to Data Science

https://rafalab.github.io/dsbook/large-datasets.html 79/81

each student and plot it against U_1 d_{1,1} and describe what you find.

9. We note that the signs in SVD are arbitrary because:

U D V^{\top} = (-U) D (-V)^{\top}

With this in mind we see that the first column of UD is almost identical to the average score for
each student except for the sign.

This implies that multiplying Y by the first column of V must be performing a similar operation to
taking the average. Make an image plot of V and describe the first column relative to others and
how this relates to taking an average.

10. We already saw that we can rewrite UD as

U_1 d_{1,1} + U_2 d_{2,2} + \dots + U_p d_{p,p}

with U_j the j-th column of U. This implies that we can rewrite the entire SVD as:

Y = U_1 d_{1,1} V_1 ^{\top} + U_2 d_{2,2} V_2 ^{\top} + \dots + U_p d_{p,p} V_p ^{\top}

with V_j the jth column of V. Plot U_1, then plot V_1^{\top} using the same range for the y-axis
limits, then make an image of U_1 d_{1,1} V_1 ^{\top} and compare it to the image of Y. Hint:
use the  my_image  function defined above and use the  drop=FALSE  argument to assure the
subsets of matrices are matrices.

11. We see that with just a vector of length 100, a scalar, and a vector of length 24, we actually
come close to reconstructing the original 100 \times 24 matrix. This is our first matrix
factorization:

Y \approx d_{1,1} U_1 V_1^{\top}

We know it explains  s$d[1]^2/sum(s$d^2) * 100  percent of the total variability. Our
approximation only explains the observation that good students tend to be good in all subjects.
But another aspect of the original data that our approximation does not explain was the higher
similarity we observed within subjects. We can see this by computing the difference between our
approximation and original data and then computing the correlations. You can see this by
running this code:
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Now that we have removed the overall student effect, the correlation plot reveals that we have
not yet explained the within subject correlation nor the fact that math and science are closer to
each other than to the arts. So let’s explore the second column of the SVD. Repeat the previous
exercise but for the second column: Plot U_2, then plot V_2^{\top} using the same range for the
y-axis limits, then make an image of U_2 d_{2,2} V_2 ^{\top} and compare it to the image of
 resid .

12. The second column clearly relates to a student’s difference in ability in math/science versus
the arts. We can see this most clearly from the plot of  s$v[,2] . Adding the matrix we obtain
with these two columns will help with our approximation:

Y \approx d_{1,1} U_1 V_1^{\top} + d_{2,2} U_2 V_2^{\top}

We know it will explain

percent of the total variability. We can compute new residuals like this:

and see that the structure that is left is driven by the differences between math and science.
Confirm this by plotting U_3, then plot V_3^{\top} using the same range for the y-axis limits, then
make an image of U_3 d_{3,3} V_3 ^{\top} and compare it to the image of  resid .

13. The third column clearly relates to a student’s difference in ability in math and science. We
can see this most clearly from the plot of  s$v[,3] . Adding the matrix we obtain with these two
columns will help with our approximation:

Y \approx d_{1,1} U_1 V_1^{\top} + d_{2,2} U_2 V_2^{\top} + d_{3,3} U_3 V_3^{\top}

We know it will explain:

resid <- y - with(s,(u[,1, drop=FALSE]*d[1]) %*% t(v[,1, drop=FALSE])) 

my_image(cor(resid), zlim = c(-1,1)) 

axis(side = 2, 1:ncol(y), rev(colnames(y)), las = 2)

sum(s$d[1:2]^2)/sum(s$d^2) * 100

resid <- y - with(s,sweep(u[,1:2], 2, d[1:2], FUN="*") %*% t(v[,1:2])) 

my_image(cor(resid), zlim = c(-1,1)) 

axis(side = 2, 1:ncol(y), rev(colnames(y)), las = 2)
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percent of the total variability. We can compute new residuals like this:

We no longer see structure in the residuals: they seem to be independent of each other. This
implies that we can describe the data with the following model:

Y = d_{1,1} U_1 V_1^{\top} + d_{2,2} U_2 V_2^{\top} + d_{3,3} U_3 V_3^{\top} + \varepsilon

with \varepsilon a matrix of independent identically distributed errors. This model is useful
because we summarize of 100 \times 24 observations with 3 \times (100+24+1) = 375 numbers.
Furthermore, the three components of the model have useful interpretations: 1) the overall ability
of a student, 2) the difference in ability between the math/sciences and arts, and 3) the remaining
differences between the three subjects. The sizes d_{1,1}, d_{2,2} and d_{3,3} tell us the
variability explained by each component. Finally, note that the components d_{j,j} U_j V_j^{\top}
are equivalent to the jth principal component.

Finish the exercise by plotting an image of Y, an image of d_{1,1} U_1 V_1^{\top} + d_{2,2} U_2
V_2^{\top} + d_{3,3} U_3 V_3^{\top} and an image of the residuals, all with the same  zlim .

14. Advanced. The  movielens  dataset included in the dslabs package is a small subset of a
larger dataset with millions of ratings. You can find the entire latest dataset here
https://grouplens.org/datasets/movielens/20m/. Create your own recommendation system using
all the tools we have shown you.

113. http://bits.blogs.nytimes.com/2009/09/21/netflix-awards-1-million-prize-and-starts-a-new-
contest/↩ 

114. https://grouplens.org/↩ 

sum(s$d[1:3]^2)/sum(s$d^2) * 100

resid <- y - with(s,sweep(u[,1:3], 2, d[1:3], FUN="*") %*% t(v[,1:3])) 

my_image(cor(resid), zlim = c(-1,1)) 

axis(side = 2, 1:ncol(y), rev(colnames(y)), las = 2)
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