
9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 1/31

Chapter 4 The tidyverse
Up to now we have been manipulating vectors by reordering and subsetting them through
indexing. However, once we start more advanced analyses, the preferred unit for data storage is
not the vector but the data frame. In this chapter we learn to work directly with data frames,
which greatly facilitate the organization of information. We will be using data frames for the
majority of this book. We will focus on a specific data format referred to as tidy and on specific
collection of packages that are particularly helpful for working with tidy data referred to as the
tidyverse.

We can load all the tidyverse packages at once by installing and loading the tidyverse package:

We will learn how to implement the tidyverse approach throughout the book, but before delving
into the details, in this chapter we introduce some of the most widely used tidyverse
functionality, starting with the dplyr package for manipulating data frames and the purrr
package for working with functions. Note that the tidyverse also includes a graphing package,
ggplot2, which we introduce later in Chapter 7 in the Data Visualization part of the book; the
readr package discussed in Chapter 5; and many others. In this chapter, we first introduce the
concept of tidy data and then demonstrate how we use the tidyverse to work with data frames in
this format.

4.1 Tidy data
We say that a data table is in tidy format if each row represents one observation and columns
represent the different variables available for each of these observations. The murders dataset
is an example of a tidy data frame.

library(tidyverse)

https://rafalab.github.io/dsbook/ggplot2.html#ggplot2
https://rafalab.github.io/dsbook/importing-data.html#importing-data

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 2/31

#> state abb region population total

#> 1 Alabama AL South 4779736 135

#> 2 Alaska AK West 710231 19

#> 3 Arizona AZ West 6392017 232

#> 4 Arkansas AR South 2915918 93

#> 5 California CA West 37253956 1257

#> 6 Colorado CO West 5029196 65

Each row represent a state with each of the five columns providing a different variable related to
these states: name, abbreviation, region, population, and total murders.

To see how the same information can be provided in different formats, consider the following
example:

#> country year fertility

#> 1 Germany 1960 2.41

#> 2 South Korea 1960 6.16

#> 3 Germany 1961 2.44

#> 4 South Korea 1961 5.99

#> 5 Germany 1962 2.47

#> 6 South Korea 1962 5.79

This tidy dataset provides fertility rates for two countries across the years. This is a tidy dataset
because each row presents one observation with the three variables being country, year, and
fertility rate. However, this dataset originally came in another format and was reshaped for the
dslabs package. Originally, the data was in the following format:

#> country 1960 1961 1962

#> 1 Germany 2.41 2.44 2.47

#> 2 South Korea 6.16 5.99 5.79

The same information is provided, but there are two important differences in the format: 1) each
row includes several observations and 2) one of the variables, year, is stored in the header. For
the tidyverse packages to be optimally used, data need to be reshaped into tidy format,

This is a great example.
See below and consider the difference.

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 3/31

which you will learn to do in the Data Wrangling part of the book. Until then, we will use example
datasets that are already in tidy format.

Although not immediately obvious, as you go through the book you will start to appreciate the
advantages of working in a framework in which functions use tidy formats for both inputs and
outputs. You will see how this permits the data analyst to focus on more important aspects of
the analysis rather than the format of the data.

4.2 Exercises
1. Examine the built-in dataset co2 . Which of the following is true:

a. co2 is tidy data: it has one year for each row.
b. co2 is not tidy: we need at least one column with a character vector.
c. co2 is not tidy: it is a matrix instead of a data frame.
d. co2 is not tidy: to be tidy we would have to wrangle it to have three columns (year, month

and value), then each co2 observation would have a row.

2. Examine the built-in dataset ChickWeight . Which of the following is true:

a. ChickWeight is not tidy: each chick has more than one row.
b. ChickWeight is tidy: each observation (a weight) is represented by one row. The chick from

which this measurement came is one of the variables.
c. ChickWeight is not tidy: we are missing the year column.
d. ChickWeight is tidy: it is stored in a data frame.

3. Examine the built-in dataset BOD . Which of the following is true:

a. BOD is not tidy: it only has six rows.
b. BOD is not tidy: the first column is just an index.
c. BOD is tidy: each row is an observation with two values (time and demand)
d. BOD is tidy: all small datasets are tidy by definition.

4. Which of the following built-in datasets is tidy (you can pick more than one):

a. BJsales
b. EuStockMarkets
c. DNase
d. Formaldehyde

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 4/31

e. Orange
f. UCBAdmissions

4.3 Manipulating data frames
The dplyr package from the tidyverse introduces functions that perform some of the most
common operations when working with data frames and uses names for these functions that are
relatively easy to remember. For instance, to change the data table by adding a new column, we
use mutate . To filter the data table to a subset of rows, we use filter . Finally, to subset the
data by selecting specific columns, we use select .

4.3.1 Adding a column with mutate

We want all the necessary information for our analysis to be included in the data table. So the
first task is to add the murder rates to our murders data frame. The function mutate takes the
data frame as a first argument and the name and values of the variable as a second argument
using the convention name = values . So, to add murder rates, we use:

Notice that here we used total and population inside the function, which are objects that
are not defined in our workspace. But why don’t we get an error?

This is one of dplyr’s main features. Functions in this package, such as mutate , know to look
for variables in the data frame provided in the first argument. In the call to mutate above, total
will have the values in murders$total . This approach makes the code much more readable.

We can see that the new column is added:

library(dslabs)

data("murders")

murders <- mutate(murders, rate = total / population * 100000)

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 5/31

Although we have overwritten the original murders object, this does not change the object that
loaded with data(murders) . If we load the murders data again, the original will overwrite our
mutated version.

4.3.2 Subsetting with filter

Now suppose that we want to filter the data table to only show the entries for which the murder
rate is lower than 0.71. To do this we use the filter function, which takes the data table as
the first argument and then the conditional statement as the second. Like mutate , we can use
the unquoted variable names from murders inside the function and it will know we mean the
columns and not objects in the workspace.

4.3.3 Selecting columns with select

Although our data table only has six columns, some data tables include hundreds. If we want to
view just a few, we can use the dplyr select function. In the code below we select three
columns, assign this to a new object and then filter the new object:

head(murders)

#> state abb region population total rate

#> 1 Alabama AL South 4779736 135 2.82

#> 2 Alaska AK West 710231 19 2.68

#> 3 Arizona AZ West 6392017 232 3.63

#> 4 Arkansas AR South 2915918 93 3.19

#> 5 California CA West 37253956 1257 3.37

#> 6 Colorado CO West 5029196 65 1.29

filter(murders, rate <= 0.71)

#> state abb region population total rate

#> 1 Hawaii HI West 1360301 7 0.515

#> 2 Iowa IA North Central 3046355 21 0.689

#> 3 New Hampshire NH Northeast 1316470 5 0.380

#> 4 North Dakota ND North Central 672591 4 0.595

#> 5 Vermont VT Northeast 625741 2 0.320

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 6/31

In the call to select , the first argument murders is an object, but state , region , and
 rate are variable names.

4.4 Exercises

1. Load the dplyr package and the murders dataset.

You can add columns using the dplyr function mutate . This function is aware of the column
names and inside the function you can call them unquoted:

We can write population rather than murders$population . The function mutate knows we
are grabbing columns from murders .

Use the function mutate to add a murders column named rate with the per 100,000 murder
rate as in the example code above. Make sure you redefine murders as done in the example
code above (murders <- [your code]) so we can keep using this variable.

2. If rank(x) gives you the ranks of x from lowest to highest, rank(-x) gives you the ranks
from highest to lowest. Use the function mutate to add a column rank containing the rank,
from highest to lowest murder rate. Make sure you redefine murders so we can keep using this

new_table <- select(murders, state, region, rate)

filter(new_table, rate <= 0.71)

#> state region rate

#> 1 Hawaii West 0.515

#> 2 Iowa North Central 0.689

#> 3 New Hampshire Northeast 0.380

#> 4 North Dakota North Central 0.595

#> 5 Vermont Northeast 0.320

library(dplyr)

library(dslabs)

data(murders)

murders <- mutate(murders, population_in_millions = population / 10^6)

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 7/31

variable.

3. With dplyr, we can use select to show only certain columns. For example, with this code
we would only show the states and population sizes:

Use select to show the state names and abbreviations in murders . Do not redefine
 murders , just show the results.

4. The dplyr function filter is used to choose specific rows of the data frame to keep. Unlike
 select which is for columns, filter is for rows. For example, you can show just the New
York row like this:

You can use other logical vectors to filter rows.

Use filter to show the top 5 states with the highest murder rates. After we add murder rate
and rank, do not change the murders dataset, just show the result. Remember that you can filter
based on the rank column.

5. We can remove rows using the != operator. For example, to remove Florida, we would do
this:

Create a new data frame called no_south that removes states from the South region. How
many states are in this category? You can use the function nrow for this.

6. We can also use %in% to filter with dplyr. You can therefore see the data from New York and
Texas like this:

Create a new data frame called murders_nw with only the states from the Northeast and the
West. How many states are in this category?

select(murders, state, population) %>% head()

filter(murders, state == "New York")

no_florida <- filter(murders, state != "Florida")

filter(murders, state %in% c("New York", "Texas"))

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 8/31

7. Suppose you want to live in the Northeast or West and want the murder rate to be less than 1.
We want to see the data for the states satisfying these options. Note that you can use logical
operators with filter . Here is an example in which we filter to keep only small states in the
Northeast region.

Make sure murders has been defined with rate and rank and still has all states. Create a
table called my_states that contains rows for states satisfying both the conditions: it is in the
Northeast or West and the murder rate is less than 1. Use select to show only the state name,
the rate, and the rank.

4.5 The pipe: %>%

With dplyr we can perform a series of operations, for example select and then filter , by
sending the results of one function to another using what is called the pipe operator: %>% .
Some details are included below.

We wrote code above to show three variables (state, region, rate) for states that have murder
rates below 0.71. To do this, we defined the intermediate object new_table . In dplyr we can
write code that looks more like a description of what we want to do without intermediate objects:

For such an operation, we can use the pipe %>% . The code looks like this:

This line of code is equivalent to the two lines of code above. What is going on here?

filter(murders, population < 5000000 & region == "Northeast")

murders %>% select(state, region, rate) %>% filter(rate <= 0.71)

#> state region rate

#> 1 Hawaii West 0.515

#> 2 Iowa North Central 0.689

#> 3 New Hampshire Northeast 0.380

#> 4 North Dakota North Central 0.595

#> 5 Vermont Northeast 0.320

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 9/31

In general, the pipe sends the result of the left side of the pipe to be the first argument of the
function on the right side of the pipe. Here is a very simple example:

We can continue to pipe values along:

The above statement is equivalent to log2(sqrt(16)) .

Remember that the pipe sends values to the first argument, so we can define other arguments as
if the first argument is already defined:

Therefore, when using the pipe with data frames and dplyr, we no longer need to specify the
required first argument since the dplyr functions we have described all take the data as the first
argument. In the code we wrote:

 murders is the first argument of the select function, and the new data frame (formerly
 new_table) is the first argument of the filter function.

Note that the pipe works well with functions where the first argument is the input data. Functions
in tidyverse packages like dplyr have this format and can be used easily with the pipe.

4.6 Exercises
1. The pipe %>% can be used to perform operations sequentially without having to define
intermediate objects. Start by redefining murder to include rate and rank.

16 %>% sqrt()

#> [1] 4

16 %>% sqrt() %>% log2()

#> [1] 2

16 %>% sqrt() %>% log(base = 2)

#> [1] 2

murders %>% select(state, region, rate) %>% filter(rate <= 0.71)

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 10/31

In the solution to the previous exercise, we did the following:

The pipe %>% permits us to perform both operations sequentially without having to define an
intermediate variable my_states . We therefore could have mutated and selected in the same
line like this:

Notice that select no longer has a data frame as the first argument. The first argument is
assumed to be the result of the operation conducted right before the %>% .

Repeat the previous exercise, but now instead of creating a new object, show the result and only
include the state, rate, and rank columns. Use a pipe %>% to do this in just one line.

2. Reset murders to the original table by using data(murders) . Use a pipe to create a new
data frame called my_states that considers only states in the Northeast or West which have a
murder rate lower than 1, and contains only the state, rate and rank columns. The pipe should
also have four components separated by three %>% . The code should look something like this:

murders <- mutate(murders, rate = total / population * 100000,

 rank = rank(-rate))

my_states <- filter(murders, region %in% c("Northeast", "West") &

 rate < 1)

select(my_states, state, rate, rank)

mutate(murders, rate = total / population * 100000,

 rank = rank(-rate)) %>%

 select(state, rate, rank)

my_states <- murders %>%

 mutate SOMETHING %>%

 filter SOMETHING %>%

 select SOMETHING

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 11/31

4.7 Summarizing data
An important part of exploratory data analysis is summarizing data. The average and standard
deviation are two examples of widely used summary statistics. More informative summaries can
often be achieved by first splitting data into groups. In this section, we cover two new dplyr
verbs that make these computations easier: summarize and group_by . We learn to access
resulting values using the pull function.

4.7.1 summarize

The summarize function in dplyr provides a way to compute summary statistics with intuitive
and readable code. We start with a simple example based on heights. The heights dataset
includes heights and sex reported by students in an in-class survey.

The following code computes the average and standard deviation for females:

This takes our original data table as input, filters it to keep only females, and then produces a
new summarized table with just the average and the standard deviation of heights. We get to
choose the names of the columns of the resulting table. For example, above we decided to use
 average and standard_deviation , but we could have used other names just the same.

Because the resulting table stored in s is a data frame, we can access the components with
the accessor $:

library(dplyr)

library(dslabs)

data(heights)

s <- heights %>%

 filter(sex == "Female") %>%

 summarize(average = mean(height), standard_deviation = sd(height))

s

#> average standard_deviation

#> 1 64.9 3.76

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 12/31

As with most other dplyr functions, summarize is aware of the variable names and we can use
them directly. So when inside the call to the summarize function we write mean(height) , the
function is accessing the column with the name “height” and then computing the average of the
resulting numeric vector. We can compute any other summary that operates on vectors and
returns a single value. For example, we can add the median, minimum, and maximum heights
like this:

We can obtain these three values with just one line using the quantile function: for example,
 quantile(x, c(0,0.5,1)) returns the min (0th percentile), median (50th percentile), and max
(100th percentile) of the vector x . However, if we attempt to use a function like this that returns
two or more values inside summarize :

we will receive an error: Error: expecting result of length one, got : 2 . With the
function summarize , we can only call functions that return a single value. In Section 4.12, we
will learn how to deal with functions that return more than one value.

For another example of how we can use the summarize function, let’s compute the average
murder rate for the United States. Remember our data table includes total murders and
population size for each state and we have already used dplyr to add a murder rate column:

s$average

#> [1] 64.9

s$standard_deviation

#> [1] 3.76

heights %>%

 filter(sex == "Female") %>%

 summarize(median = median(height), minimum = min(height),

 maximum = max(height))

#> median minimum maximum

#> 1 65 51 79

heights %>%

 filter(sex == "Female") %>%

 summarize(range = quantile(height, c(0, 0.5, 1)))

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 13/31

Remember that the US murder rate is not the average of the state murder rates:

This is because in the computation above the small states are given the same weight as the large
ones. The US murder rate is the total number of murders in the US divided by the total US
population. So the correct computation is:

This computation counts larger states proportionally to their size which results in a larger value.

4.7.2 pull

The us_murder_rate object defined above represents just one number. Yet we are storing it in
a data frame:

since, as most dplyr functions, summarize always returns a data frame.

This might be problematic if we want to use this result with functions that require a numeric
value. Here we show a useful trick for accessing values stored in data when using pipes: when a
data object is piped that object and its columns can be accessed using the pull function. To
understand what we mean take a look at this line of code:

murders <- murders %>% mutate(rate = total/population*100000)

summarize(murders, mean(rate))

#> mean(rate)

#> 1 2.78

us_murder_rate <- murders %>%

 summarize(rate = sum(total) / sum(population) * 100000)

us_murder_rate

#> rate

#> 1 3.03

class(us_murder_rate)

#> [1] "data.frame"

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 14/31

This returns the value in the rate column of us_murder_rate making it equivalent to
 us_murder_rate$rate .

To get a number from the original data table with one line of code we can type:

which is now a numeric:

4.7.3 Group then summarize with group_by

A common operation in data exploration is to first split data into groups and then compute
summaries for each group. For example, we may want to compute the average and standard
deviation for men’s and women’s heights separately. The group_by function helps us do this.

If we type this:

us_murder_rate %>% pull(rate)

#> [1] 3.03

us_murder_rate <- murders %>%

 summarize(rate = sum(total) / sum(population) * 100000) %>%

 pull(rate)

us_murder_rate

#> [1] 3.03

class(us_murder_rate)

#> [1] "numeric"

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 15/31

The result does not look very different from heights , except we see Groups: sex [2] when
we print the object. Although not immediately obvious from its appearance, this is now a special
data frame called a grouped data frame, and dplyr functions, in particular summarize , will
behave differently when acting on this object. Conceptually, you can think of this table as many
tables, with the same columns but not necessarily the same number of rows, stacked together in
one object. When we summarize the data after grouping, this is what happens:

The summarize function applies the summarization to each group separately.

For another example, let’s compute the median murder rate in the four regions of the country:

heights %>% group_by(sex)

#> # A tibble: 1,050 x 2

#> # Groups: sex [2]

#> sex height

#> <fct> <dbl>

#> 1 Male 75

#> 2 Male 70

#> 3 Male 68

#> 4 Male 74

#> 5 Male 61

#> # … with 1,045 more rows

heights %>%

 group_by(sex) %>%

 summarize(average = mean(height), standard_deviation = sd(height))

#> `summarise()` ungrouping output (override with `.groups` argument)

#> # A tibble: 2 x 3

#> sex average standard_deviation

#> <fct> <dbl> <dbl>

#> 1 Female 64.9 3.76

#> 2 Male 69.3 3.61

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 16/31

4.8 Sorting data frames
When examining a dataset, it is often convenient to sort the table by the different columns. We
know about the order and sort function, but for ordering entire tables, the dplyr function
 arrange is useful. For example, here we order the states by population size:

With arrange we get to decide which column to sort by. To see the states by murder rate, from
lowest to highest, we arrange by rate instead:

murders %>%

 group_by(region) %>%

 summarize(median_rate = median(rate))

#> `summarise()` ungrouping output (override with `.groups` argument)

#> # A tibble: 4 x 2

#> region median_rate

#> <fct> <dbl>

#> 1 Northeast 1.80

#> 2 South 3.40

#> 3 North Central 1.97

#> 4 West 1.29

murders %>%

 arrange(population) %>%

 head()

#> state abb region population total rate

#> 1 Wyoming WY West 563626 5 0.887

#> 2 District of Columbia DC South 601723 99 16.453

#> 3 Vermont VT Northeast 625741 2 0.320

#> 4 North Dakota ND North Central 672591 4 0.595

#> 5 Alaska AK West 710231 19 2.675

#> 6 South Dakota SD North Central 814180 8 0.983

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 17/31

Note that the default behavior is to order in ascending order. In dplyr, the function desc
transforms a vector so that it is in descending order. To sort the table in descending order, we
can type:

4.8.1 Nested sorting

If we are ordering by a column with ties, we can use a second column to break the tie. Similarly,
a third column can be used to break ties between first and second and so on. Here we order by
 region , then within region we order by murder rate:

murders %>%

 arrange(rate) %>%

 head()

#> state abb region population total rate

#> 1 Vermont VT Northeast 625741 2 0.320

#> 2 New Hampshire NH Northeast 1316470 5 0.380

#> 3 Hawaii HI West 1360301 7 0.515

#> 4 North Dakota ND North Central 672591 4 0.595

#> 5 Iowa IA North Central 3046355 21 0.689

#> 6 Idaho ID West 1567582 12 0.766

murders %>%

 arrange(desc(rate))

murders %>%

 arrange(region, rate) %>%

 head()

#> state abb region population total rate

#> 1 Vermont VT Northeast 625741 2 0.320

#> 2 New Hampshire NH Northeast 1316470 5 0.380

#> 3 Maine ME Northeast 1328361 11 0.828

#> 4 Rhode Island RI Northeast 1052567 16 1.520

#> 5 Massachusetts MA Northeast 6547629 118 1.802

#> 6 New York NY Northeast 19378102 517 2.668

weird syntax!
Seems like it should be
arrange(rate, increasing=F) or
desc(arrange(rate))
but this is just how
desc() works I guess.

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 18/31

4.8.2 The top

In the code above, we have used the function head to avoid having the page fill up with the
entire dataset. If we want to see a larger proportion, we can use the top_n function. This
function takes a data frame as it’s first argument, the number of rows to show in the second, and
the variable to filter by in the third. Here is an example of how to see the top 5 rows:

Note that rows are not sorted by rate , only filtered. If we want to sort, we need to use
 arrange . Note that if the third argument is left blank, top_n filters by the last column.

4.9 Exercises
For these exercises, we will be using the data from the survey collected by the United States
National Center for Health Statistics (NCHS). This center has conducted a series of health and
nutrition surveys since the 1960’s. Starting in 1999, about 5,000 individuals of all ages have been
interviewed every year and they complete the health examination component of the survey. Part
of the data is made available via the NHANES package. Once you install the NHANES package,
you can load the data like this:

The NHANES data has many missing values. The mean and sd functions in R will return NA
if any of the entries of the input vector is an NA . Here is an example:

murders %>% top_n(5, rate)

#> state abb region population total rate

#> 1 District of Columbia DC South 601723 99 16.45

#> 2 Louisiana LA South 4533372 351 7.74

#> 3 Maryland MD South 5773552 293 5.07

#> 4 Missouri MO North Central 5988927 321 5.36

#> 5 South Carolina SC South 4625364 207 4.48

library(NHANES)

data(NHANES)

or top_n(murders, 5, rate)

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 19/31

To ignore the NA s we can use the na.rm argument:

Let’s now explore the NHANES data.

1. We will provide some basic facts about blood pressure. First let’s select a group to set the
standard. We will use 20-to-29-year-old females. AgeDecade is a categorical variable with these
ages. Note that the category is coded like " 20-29", with a space in front! What is the average
and standard deviation of systolic blood pressure as saved in the BPSysAve variable? Save it to
a variable called ref .

Hint: Use filter and summarize and use the na.rm = TRUE argument when computing the
average and standard deviation. You can also filter the NA values using filter .

2. Using a pipe, assign the average to a numeric variable ref_avg . Hint: Use the code similar
to above and then pull .

3. Now report the min and max values for the same group.

4. Compute the average and standard deviation for females, but for each age group separately
rather than a selected decade as in question 1. Note that the age groups are defined by
 AgeDecade . Hint: rather than filtering by age and gender, filter by Gender and then use
 group_by .

5. Repeat exercise 4 for males.

library(dslabs)

data(na_example)

mean(na_example)

#> [1] NA

sd(na_example)

#> [1] NA

mean(na_example, na.rm = TRUE)

#> [1] 2.3

sd(na_example, na.rm = TRUE)

#> [1] 1.22

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 20/31

6. We can actually combine both summaries for exercises 4 and 5 into one line of code. This is
because group_by permits us to group by more than one variable. Obtain one big summary
table using group_by(AgeDecade, Gender) .

7. For males between the ages of 40-49, compare systolic blood pressure across race as
reported in the Race1 variable. Order the resulting table from lowest to highest average systolic
blood pressure.

4.10 Tibbles
Tidy data must be stored in data frames. We introduced the data frame in Section 2.4.1 and have
been using the murders data frame throughout the book. In Section 4.7.3 we introduced the
 group_by function, which permits stratifying data before computing summary statistics. But
where is the group information stored in the data frame?

Notice that there are no columns with this information. But, if you look closely at the output
above, you see the line A tibble followd by dimensions. We can learn the class of the
returned object using:

murders %>% group_by(region)

#> # A tibble: 51 x 6

#> # Groups: region [4]

#> state abb region population total rate

#> <chr> <chr> <fct> <dbl> <dbl> <dbl>

#> 1 Alabama AL South 4779736 135 2.82

#> 2 Alaska AK West 710231 19 2.68

#> 3 Arizona AZ West 6392017 232 3.63

#> 4 Arkansas AR South 2915918 93 3.19

#> 5 California CA West 37253956 1257 3.37

#> # … with 46 more rows

murders %>% group_by(region) %>% class()

#> [1] "grouped_df" "tbl_df" "tbl" "data.frame"

https://rafalab.github.io/dsbook/r-basics.html#data-frames

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 21/31

The tbl , pronounced tibble, is a special kind of data frame. The functions group_by and
 summarize always return this type of data frame. The group_by function returns a special
kind of tbl , the grouped_df . We will say more about these later. For consistency, the dplyr
manipulation verbs (select , filter , mutate , and arrange) preserve the class of the
input: if they receive a regular data frame they return a regular data frame, while if they receive a
tibble they return a tibble. But tibbles are the preferred format in the tidyverse and as a result
tidyverse functions that produce a data frame from scratch return a tibble. For example, in
Chapter 5 we will see that tidyverse functions used to import data create tibbles.

Tibbles are very similar to data frames. In fact, you can think of them as a modern version of
data frames. Nonetheless there are three important differences which we describe next.

4.10.1 Tibbles display better

The print method for tibbles is more readable than that of a data frame. To see this, compare the
outputs of typing murders and the output of murders if we convert it to a tibble. We can do this
using as_tibble(murders) . If using RStudio, output for a tibble adjusts to your window size.
To see this, change the width of your R console and notice how more/less columns are shown.

4.10.2 Subsets of tibbles are tibbles

If you subset the columns of a data frame, you may get back an object that is not a data frame,
such as a vector or scalar. For example:

is not a data frame. With tibbles this does not happen:

This is useful in the tidyverse since functions require data frames as input.

With tibbles, if you want to access the vector that defines a column, and not get back a data
frame, you need to use the accessor $:

class(murders[,4])

#> [1] "numeric"

class(as_tibble(murders)[,4])

#> [1] "tbl_df" "tbl" "data.frame"

https://rafalab.github.io/dsbook/importing-data.html#importing-data

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 22/31

A related feature is that tibbles will give you a warning if you try to access a column that does
not exist. If we accidentally write Population instead of population this:

returns a NULL with no warning, which can make it harder to debug. In contrast, if we try this
with a tibble we get an informative warning:

4.10.3 Tibbles can have complex entries

While data frame columns need to be vectors of numbers, strings, or logical values, tibbles can
have more complex objects, such as lists or functions. Also, we can create tibbles with
functions:

4.10.4 Tibbles can be grouped

class(as_tibble(murders)$population)

#> [1] "numeric"

murders$Population

#> NULL

as_tibble(murders)$Population

#> Warning: Unknown or uninitialised column: `Population`.

#> NULL

tibble(id = c(1, 2, 3), func = c(mean, median, sd))

#> # A tibble: 3 x 2

#> id func

#> <dbl> <list>

#> 1 1 <fn>

#> 2 2 <fn>

#> 3 3 <fn>

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 23/31

The function group_by returns a special kind of tibble: a grouped tibble. This class stores
information that lets you know which rows are in which groups. The tidyverse functions, in
particular the summarize function, are aware of the group information.

4.10.5 Create a tibble using tibble instead of data.frame

It is sometimes useful for us to create our own data frames. To create a data frame in the tibble
format, you can do this by using the tibble function.

Note that base R (without packages loaded) has a function with a very similar name,
 data.frame , that can be used to create a regular data frame rather than a tibble. One other
important difference is that by default data.frame coerces characters into factors without
providing a warning or message:

To avoid this, we use the rather cumbersome argument stringsAsFactors :

To convert a regular data frame to a tibble, you can use the as_tibble function.

grades <- tibble(names = c("John", "Juan", "Jean", "Yao"),

 exam_1 = c(95, 80, 90, 85),

 exam_2 = c(90, 85, 85, 90))

grades <- data.frame(names = c("John", "Juan", "Jean", "Yao"),

 exam_1 = c(95, 80, 90, 85),

 exam_2 = c(90, 85, 85, 90))

class(grades$names)

#> [1] "character"

grades <- data.frame(names = c("John", "Juan", "Jean", "Yao"),

 exam_1 = c(95, 80, 90, 85),

 exam_2 = c(90, 85, 85, 90),

 stringsAsFactors = FALSE)

class(grades$names)

#> [1] "character"

factor

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 24/31

4.11 The dot operator
One of the advantages of using the pipe %>% is that we do not have to keep naming new
objects as we manipulate the data frame. As a quick reminder, if we want to compute the median
murder rate for states in the southern states, instead of typing:

We can avoid defining any new intermediate objects by instead typing:

We can do this because each of these functions takes a data frame as the first argument. But
what if we want to access a component of the data frame. For example, what if the pull
function was not available and we wanted to access tab_2$rate ? What data frame name
would we use? The answer is the dot operator.

For example to access the rate vector without the pull function we could use

as_tibble(grades) %>% class()

#> [1] "tbl_df" "tbl" "data.frame"

tab_1 <- filter(murders, region == "South")

tab_2 <- mutate(tab_1, rate = total / population * 10^5)

rates <- tab_2$rate

median(rates)

#> [1] 3.4

filter(murders, region == "South") %>%

 mutate(rate = total / population * 10^5) %>%

 summarize(median = median(rate)) %>%

 pull(median)

#> [1] 3.4

Ok but you could also just do
pull(summarize(mutate(filter(
murders, region = "South"),
rate = total/population * 10^5),
median = median(rate)),
median)

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 25/31

In the next section, we will see other instances in which using the . is useful.

4.12 do
The tidyverse functions know how to interpret grouped tibbles. Furthermore, to facilitate
stringing commands through the pipe %>% , tidyverse functions consistently return data frames,
since this assures that the output of a function is accepted as the input of another. But most R
functions do not recognize grouped tibbles nor do they return data frames. The quantile
function is an example we described in Section 4.7.1. The do function serves as a bridge
between R functions such as quantile and the tidyverse. The do function understands
grouped tibbles and always returns a data frame.

In Section 4.7.1, we noted that if we attempt to use quantile to obtain the min, median and
max in one call, we will receive an error: Error: expecting result of length one, got : 2 .

We can use the do function to fix this.

First we have to write a function that fits into the tidyverse approach: that is, it receives a data
frame and returns a data frame.

rates <- filter(murders, region == "South") %>%

 mutate(rate = total / population * 10^5) %>%

 .$rate

median(rates)

#> [1] 3.4

data(heights)

heights %>%

 filter(sex == "Female") %>%

 summarize(range = quantile(height, c(0, 0.5, 1)))

Cool! This is equivalent to
tab_2$rate

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 26/31

We can now apply the function to the heights dataset to obtain the summaries:

But this is not what we want. We want a summary for each sex and the code returned just one
summary. This is because my_summary is not part of the tidyverse and does not know how to
handled grouped tibbles. do makes this connection:

Note that here we need to use the dot operator. The tibble created by group_by is piped to
 do . Within the call to do , the name of this tibble is . and we want to send it to
 my_summary . If you do not use the dot, then my_summary has no argument and returns an
error telling us that argument "dat" is missing. You can see the error by typing:

my_summary <- function(dat){

 x <- quantile(dat$height, c(0, 0.5, 1))

 tibble(min = x[1], median = x[2], max = x[3])

}

heights %>%

 group_by(sex) %>%

 my_summary

#> # A tibble: 1 x 3

#> min median max

#> <dbl> <dbl> <dbl>

#> 1 50 68.5 82.7

heights %>%

 group_by(sex) %>%

 do(my_summary(.))

#> # A tibble: 2 x 4

#> # Groups: sex [2]

#> sex min median max

#> <fct> <dbl> <dbl> <dbl>

#> 1 Female 51 65.0 79

#> 2 Male 50 69 82.7

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 27/31

If you do not use the parenthesis, then the function is not executed and instead do tries to
return the function. This gives an error because do must always return a data frame. You can
see the error by typing:

4.13 The purrr package
In Section 3.5 we learned about the sapply function, which permitted us to apply the same
function to each element of a vector. We constructed a function and used sapply to compute
the sum of the first n integers for several values of n like this:

This type of operation, applying the same function or procedure to elements of an object, is quite
common in data analysis. The purrr package includes functions similar to sapply but that
better interact with other tidyverse functions. The main advantage is that we can better control
the output type of functions. In contrast, sapply can return several different object types; for
example, we might expect a numeric result from a line of code, but sapply might convert our
result to character under some circumstances. purrr functions will never do this: they will return
objects of a specified type or return an error if this is not possible.

heights %>%

 group_by(sex) %>%

 do(my_summary())

heights %>%

 group_by(sex) %>%

 do(my_summary)

compute_s_n <- function(n){

 x <- 1:n

 sum(x)

}

n <- 1:25

s_n <- sapply(n, compute_s_n)

https://rafalab.github.io/dsbook/programming-basics.html#vectorization
Easy to make this mistake

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 28/31

The first purrr function we will learn is map , which works very similar to sapply but always,
without exception, returns a list:

If we want a numeric vector, we can instead use map_dbl which always returns a vector of
numeric values.

This produces the same results as the sapply call shown above.

A particularly useful purrr function for interacting with the rest of the tidyverse is map_df , which
always returns a tibble data frame. However, the function being called needs to return a vector or
a list with names. For this reason, the following code would result in a Argument 1 must have
names error:

We need to change the function to make this work:

The purrr package provides much more functionality not covered here. For more details you can
consult this online resource.

library(purrr)

s_n <- map(n, compute_s_n)

class(s_n)

#> [1] "list"

s_n <- map_dbl(n, compute_s_n)

class(s_n)

#> [1] "numeric"

s_n <- map_df(n, compute_s_n)

compute_s_n <- function(n){

 x <- 1:n

 tibble(sum = sum(x))

}

s_n <- map_df(n, compute_s_n)

https://jennybc.github.io/purrr-tutorial/
Instead of just sum(x)

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 29/31

4.14 Tidyverse conditionals
A typical data analysis will often involve one or more conditional operations. In Section 3.1 we
described the ifelse function, which we will use extensively in this book. In this section we
present two dplyr functions that provide further functionality for performing conditional
operations.

4.14.1 case_when

The case_when function is useful for vectorizing conditional statements. It is similar to ifelse
but can output any number of values, as opposed to just TRUE or FALSE . Here is an example
splitting numbers into negative, positive, and 0:

A common use for this function is to define categorical variables based on existing variables. For
example, suppose we want to compare the murder rates in four groups of states: New England,
West Coast, South, and other. For each state, we need to ask if it is in New England, if it is not
we ask if it is in the West Coast, if not we ask if it is in the South, and if not we assign other. Here
is how we use case_when to do this:

x <- c(-2, -1, 0, 1, 2)

case_when(x < 0 ~ "Negative",

 x > 0 ~ "Positive",

 TRUE ~ "Zero")

#> [1] "Negative" "Negative" "Zero" "Positive" "Positive"

https://rafalab.github.io/dsbook/programming-basics.html#conditionals
This isn't what he means.
He means it can condition
on a bunch of different
conditions, not just one.

This just means if none of the above is true. Without this it yields NA.

A clearer example is
case_when(x>1 ~ 3, x<0 ~ 4, TRUE ~ 5)

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 30/31

4.14.2 between

A common operation in data analysis is to determine if a value falls inside an interval. We can
check this using conditionals. For example, to check if the elements of a vector x are between
 a and b we can type

However, this can become cumbersome, especially within the tidyverse approach. The
 between function performs the same operation.

4.15 Exercises
1. Load the murders dataset. Which of the following is true?

murders %>%

 mutate(group = case_when(

 abb %in% c("ME", "NH", "VT", "MA", "RI", "CT") ~ "New England",

 abb %in% c("WA", "OR", "CA") ~ "West Coast",

 region == "South" ~ "South",

 TRUE ~ "Other")) %>%

 group_by(group) %>%

 summarize(rate = sum(total) / sum(population) * 10^5)

#> `summarise()` ungrouping output (override with `.groups` argument)

#> # A tibble: 4 x 2

#> group rate

#> <chr> <dbl>

#> 1 New England 1.72

#> 2 Other 2.71

#> 3 South 3.63

#> 4 West Coast 2.90

x >= a & x <= b

between(x, a, b)

good
example.

9/22/2020 Chapter 4 The tidyverse | Introduction to Data Science

https://rafalab.github.io/dsbook/tidyverse.html 31/31

a. murders is in tidy format and is stored in a tibble.
b. murders is in tidy format and is stored in a data frame.
c. murders is not in tidy format and is stored in a tibble.
d. murders is not in tidy format and is stored in a data frame.

2. Use as_tibble to convert the murders data table into a tibble and save it in an object
called murders_tibble .

3. Use the group_by function to convert murders into a tibble that is grouped by region.

4. Write tidyverse code that is equivalent to this code:

Write it using the pipe so that each function is called without arguments. Use the dot operator to
access the population. Hint: The code should start with murders %>% .

5. Use the map_df to create a data frame with three columns named n , s_n , and s_n_2 .
The first column should contain the numbers 1 through 100. The second and third columns
should each contain the sum of 1 through with the row number.

exp(mean(log(murders$population)))

