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Chapter 8  Visualizing data distributions
You may have noticed that numerical data is often summarized with the average value. For
example, the quality of a high school is sometimes summarized with one number: the average
score on a standardized test. Occasionally, a second number is reported: the standard deviation.
For example, you might read a report stating that scores were 680 plus or minus 50 (the
standard deviation). The report has summarized an entire vector of scores with just two
numbers. Is this appropriate? Is there any important piece of information that we are missing by
only looking at this summary rather than the entire list?

Our first data visualization building block is learning to summarize lists of factors or numeric
vectors. More often than not, the best way to share or explore this summary is through data
visualization. The most basic statistical summary of a list of objects or numbers is its
distribution. Once a vector has been summarized as a distribution, there are several data
visualization techniques to effectively relay this information.

In this chapter, we first discuss properties of a variety of distributions and how to visualize
distributions using a motivating example of student heights. We then discuss the ggplot2
geometries for these visualizations in Section 8.16.

8.1  Variable types
We will be working with two types of variables: categorical and numeric. Each can be divided
into two other groups: categorical can be ordinal or not, whereas numerical variables can be
discrete or continuous.

When each entry in a vector comes from one of a small number of groups, we refer to the data
as categorical data. Two simple examples are sex (male or female) and regions (Northeast,
South, North Central, West). Some categorical data can be ordered even if they are not numbers
per se, such as spiciness (mild, medium, hot). In statistics textbooks, ordered categorical data
are referred to as ordinal data.
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Examples of numerical data are population sizes, murder rates, and heights. Some numerical
data can be treated as ordered categorical. We can further divide numerical data into continuous
and discrete. Continuous variables are those that can take any value, such as heights, if
measured with enough precision. For example, a pair of twins may be 68.12 and 68.11 inches,
respectively. Counts, such as population sizes, are discrete because they have to be round
numbers.

Keep in mind that discrete numeric data can be considered ordinal. Although this is technically
true, we usually reserve the term ordinal data for variables belonging to a small number of
different groups, with each group having many members. In contrast, when we have many
groups with few cases in each group, we typically refer to them as discrete numerical variables.
So, for example, the number of packs of cigarettes a person smokes a day, rounded to the
closest pack, would be considered ordinal, while the actual number of cigarettes would be
considered a numerical variable. But, indeed, there are examples that can be considered both
numerical and ordinal when it comes to visualizing data.

8.2  Case study: describing student heights
Here we introduce a new motivating problem. It is an artificial one, but it will help us illustrate the
concepts needed to understand distributions.

Pretend that we have to describe the heights of our classmates to ET, an extraterrestrial that has
never seen humans. As a first step, we need to collect data. To do this, we ask students to report
their heights in inches. We ask them to provide sex information because we know there are two
different distributions by sex. We collect the data and save it in the  heights  data frame:

One way to convey the heights to ET is to simply send him this list of 1050 heights. But there are
much more effective ways to convey this information, and understanding the concept of a
distribution will help. To simplify the explanation, we first focus on male heights. We examine the
female height data in Section 8.14.

library(tidyverse)

library(dslabs)

data(heights)
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8.3  Distribution function
It turns out that, in some cases, the average and the standard deviation are pretty much all we
need to understand the data. We will learn data visualization techniques that will help us
determine when this two number summary is appropriate. These same techniques will serve as
an alternative for when two numbers are not enough.

The most basic statistical summary of a list of objects or numbers is its distribution. The simplest
way to think of a distribution is as a compact description of a list with many entries. This concept
should not be new for readers of this book. For example, with categorical data, the distribution
simply describes the proportion of each unique category. The sex represented in the heights
dataset is:

#>  

#> Female   Male  

#>  0.227  0.773

This two-category frequency table is the simplest form of a distribution. We don’t really need to
visualize it since one number describes everything we need to know: 23% are females and the
rest are males. When there are more categories, then a simple barplot describes the distribution.
Here is an example with US state regions:

#> `summarise()` ungrouping output (override with `.groups` argument)
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This particular plot simply shows us four numbers, one for each category. We usually use
barplots to display a few numbers. Although this particular plot does not provide much more
insight than a frequency table itself, it is a first example of how we convert a vector into a plot
that succinctly summarizes all the information in the vector. When the data is numerical, the task
of displaying distributions is more challenging.

8.4  Cumulative distribution functions
Numerical data that are not categorical also have distributions. In general, when data is not
categorical, reporting the frequency of each entry is not an effective summary since most entries
are unique. In our case study, while several students reported a height of 68 inches, only one
student reported a height of  68.503937007874  inches and only one student reported a height
 68.8976377952756  inches. We assume that they converted from 174 and 175 centimeters,
respectively.

Statistics textbooks teach us that a more useful way to define a distribution for numeric data is
to define a function that reports the proportion of the data below  for all possible values of .
This function is called the cumulative distribution function (CDF). In statistics, the following
notation is used:

Here is a plot of  for the male height data:

a a

F(a) = Pr(x ≤ a)

F
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Similar to what the frequency table does for categorical data, the CDF defines the distribution for
numerical data. From the plot, we can see that 16% of the values are below 65, since 
0.164, or that 84% of the values are below 72, since  0.841, and so on. In fact, we can
report the proportion of values between any two heights, say  and , by computing .
This means that if we send this plot above to ET, he will have all the information needed to
reconstruct the entire list. Paraphrasing the expression “a picture is worth a thousand words”, in
this case, a picture is as informative as 812 numbers.

A final note: because CDFs can be defined mathematically the word empirical is added to make
the distinction when data is used. We therefore use the term empirical CDF (eCDF).

8.5  Histograms
Although the CDF concept is widely discussed in statistics textbooks, the plot is actually not
very popular in practice. The main reason is that it does not easily convey characteristics of
interest such as: at what value is the distribution centered? Is the distribution symmetric? What
ranges contain 95% of the values? Histograms are much preferred because they greatly facilitate
answering such questions. Histograms sacrifice just a bit of information to produce plots that are
much easier to interpret.

The simplest way to make a histogram is to divide the span of our data into non-overlapping
bins of the same size. Then, for each bin, we count the number of values that fall in that interval.
The histogram plots these counts as bars with the base of the bar defined by the intervals. Here
is the histogram for the height data splitting the range of values into one inch intervals: 

F(66) =
F(72) =

a b F(b) − F(a)

(49.5, 50.5], (50.5, 51.5], (51.5, 52.5], (52.5, 53.5], . . . , (82.5, 83.5]
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As you can see in the figure above, a histogram is similar to a barplot, but it differs in that the x-
axis is numerical, not categorical.

If we send this plot to ET, he will immediately learn some important properties about our data.
First, the range of the data is from 50 to 84 with the majority (more than 95%) between 63 and
75 inches. Second, the heights are close to symmetric around 69 inches. Also, by adding up
counts, ET could obtain a very good approximation of the proportion of the data in any interval.
Therefore, the histogram above is not only easy to interpret, but also provides almost all the
information contained in the raw list of 812 heights with about 30 bin counts.

What information do we lose? Note that all values in each interval are treated the same when
computing bin heights. So, for example, the histogram does not distinguish between 64, 64.1,
and 64.2 inches. Given that these differences are almost unnoticeable to the eye, the practical
implications are negligible and we were able to summarize the data to just 23 numbers.

We discuss how to code histograms in Section 8.16.

8.6  Smoothed density
Smooth density plots are aesthetically more appealing than histograms. Here is what a smooth
density plot looks like for our heights data:
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In this plot, we no longer have sharp edges at the interval boundaries and many of the local
peaks have been removed. Also, the scale of the y-axis changed from counts to density.

To understand the smooth densities, we have to understand estimates, a topic we don’t cover
until later. However, we provide a heuristic explanation to help you understand the basics so you
can use this useful data visualization tool.

The main new concept you must understand is that we assume that our list of observed values is
a subset of a much larger list of unobserved values. In the case of heights, you can imagine that
our list of 812 male students comes from a hypothetical list containing all the heights of all the
male students in all the world measured very precisely. Let’s say there are 1,000,000 of these
measurements. This list of values has a distribution, like any list of values, and this larger
distribution is really what we want to report to ET since it is much more general. Unfortunately,
we don’t get to see it.

However, we make an assumption that helps us perhaps approximate it. If we had 1,000,000
values, measured very precisely, we could make a histogram with very, very small bins. The
assumption is that if we show this, the height of consecutive bins will be similar. This is what we
mean by smooth: we don’t have big jumps in the heights of consecutive bins. Below we have a
hypothetical histogram with bins of size 1:
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The smaller we make the bins, the smoother the histogram gets. Here are the histograms with
bin width of 1, 0.5, and 0.1:

The smooth density is basically the curve that goes through the top of the histogram bars when
the bins are very, very small. To make the curve not depend on the hypothetical size of the
hypothetical list, we compute the curve on frequencies rather than counts:
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Now, back to reality. We don’t have millions of measurements. Instead, we have 812 and we
can’t make a histogram with very small bins.

We therefore make a histogram, using bin sizes appropriate for our data and computing
frequencies rather than counts, and we draw a smooth curve that goes through the tops of the
histogram bars. The following plots demonstrate the steps that lead to a smooth density:
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However, remember that smooth is a relative term. We can actually control the smoothness of
the curve that defines the smooth density through an option in the function that computes the
smooth density curve. Here are two examples using different degrees of smoothness on the
same histogram:

We need to make this choice with care as the resulting visualizations can change our
interpretation of the data. We should select a degree of smoothness that we can defend as being
representative of the underlying data. In the case of height, we really do have reason to believe
that the proportion of people with similar heights should be the same. For example, the
proportion that is 72 inches should be more similar to the proportion that is 71 than to the
proportion that is 78 or 65. This implies that the curve should be pretty smooth; that is, the curve
should look more like the example on the right than on the left.

While the histogram is an assumption-free summary, the smoothed density is based on some
assumptions.

8.6.1  Interpreting the y-axis

Note that interpreting the y-axis of a smooth density plot is not straightforward. It is scaled so
that the area under the density curve adds up to 1. If you imagine we form a bin with a base 1
unit in length, the y-axis value tells us the proportion of values in that bin. However, this is only
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true for bins of size 1. For other size intervals, the best way to determine the proportion of data
in that interval is by computing the proportion of the total area contained in that interval. For
example, here are the proportion of values between 65 and 68:

The proportion of this area is about 0.3, meaning that about 30% of male heights are between 65
and 68 inches.

By understanding this, we are ready to use the smooth density as a summary. For this dataset,
we would feel quite comfortable with the smoothness assumption, and therefore with sharing
this aesthetically pleasing figure with ET, which he could use to understand our male heights
data:
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8.6.2  Densities permit stratification

As a final note, we point out that an advantage of smooth densities over histograms for
visualization purposes is that densities make it easier to compare two distributions. This is in
large part because the jagged edges of the histogram add clutter. Here is an example comparing
male and female heights:

With the right argument,  ggplot  automatically shades the intersecting region with a different
color. We will show examples of ggplot2 code for densities in Section 9 as well as Section 8.16.

8.7  Exercises
1. In the  murders  dataset, the region is a categorical variable and the following is its
distribution:

#> `summarise()` ungrouping output (override with `.groups` argument)

https://rafalab.github.io/dsbook/gapminder.html#gapminder
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To the closest 5%, what proportion of the states are in the North Central region?

2. Which of the following is true:

a. The graph above is a histogram.
b. The graph above shows only four numbers with a bar plot.
c. Categories are not numbers, so it does not make sense to graph the distribution.
d. The colors, not the height of the bars, describe the distribution.

3. The plot below shows the eCDF for male heights:

Based on the plot, what percentage of males are shorter than 75 inches?

a. 100%
b. 95%
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c. 80%
d. 72 inches

4. To the closest inch, what height  m  has the property that 1/2 of the male students are taller
than  m  and 1/2 are shorter?

a. 61 inches
b. 64 inches
c. 69 inches
d. 74 inches

5. Here is an eCDF of the murder rates across states:

Knowing that there are 51 states (counting DC) and based on this plot, how many states have
murder rates larger than 10 per 100,000 people?

a. 1
b. 5
c. 10
d. 50

6. Based on the eCDF above, which of the following statements are true:

a. About half the states have murder rates above 7 per 100,000 and the other half below.
b. Most states have murder rates below 2 per 100,000.
c. All the states have murder rates above 2 per 100,000.
d. With the exception of 4 states, the murder rates are below 5 per 100,000.
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7. Below is a histogram of male heights in our  heights  dataset:

Based on this plot, how many males are between 63.5 and 65.5?

a. 10
b. 24
c. 34
d. 100

8. About what percentage are shorter than 60 inches?

a. 1%
b. 10%
c. 25%
d. 50%

9. Based on the density plot below, about what proportion of US states have populations larger
than 10 million?



10/5/2020 Chapter 8 Visualizing data distributions | Introduction to Data Science

https://rafalab.github.io/dsbook/distributions.html 16/40

a. 0.02
b. 0.15
c. 0.50
d. 0.55

10. Below are three density plots. Is it possible that they are from the same dataset?

Which of the following statements is true:

a. It is impossible that they are from the same dataset.
b. They are from the same dataset, but the plots are different due to code errors.
c. They are the same dataset, but the first and second plot undersmooth and the third

oversmooths.



10/5/2020 Chapter 8 Visualizing data distributions | Introduction to Data Science

https://rafalab.github.io/dsbook/distributions.html 17/40

d. They are the same dataset, but the first is not in the log scale, the second undersmooths,
and the third oversmooths.

8.8  The normal distribution
Histograms and density plots provide excellent summaries of a distribution. But can we
summarize even further? We often see the average and standard deviation used as summary
statistics: a two-number summary! To understand what these summaries are and why they are
so widely used, we need to understand the normal distribution.

The normal distribution, also known as the bell curve and as the Gaussian distribution, is one of
the most famous mathematical concepts in history. A reason for this is that approximately
normal distributions occur in many situations, including gambling winnings, heights, weights,
blood pressure, standardized test scores, and experimental measurement errors. There are
explanations for this, but we describe these later. Here we focus on how the normal distribution
helps us summarize data.

Rather than using data, the normal distribution is defined with a mathematical formula. For any
interval , the proportion of values in that interval can be computed using this formula:

You don’t need to memorize or understand the details of the formula. But note that it is
completely defined by just two parameters:  and . The rest of the symbols in the formula
represent the interval ends that we determine,  and , and known mathematical constants 
and . These two parameters,  and , are referred to as the average (also called the mean) and
the standard deviation (SD) of the distribution, respectively.

The distribution is symmetric, centered at the average, and most values (about 95%) are within 2
SDs from the average. Here is what the normal distribution looks like when the average is 0 and
the SD is 1:

(a, b)

Pr(a < x < b) = ∫
b

a
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The fact that the distribution is defined by just two parameters implies that if a dataset is
approximated by a normal distribution, all the information needed to describe the distribution
can be encoded in just two numbers: the average and the standard deviation. We now define
these values for an arbitrary list of numbers.

For a list of numbers contained in a vector  x , the average is defined as:

and the SD is defined as:

which can be interpreted as the average distance between values and their average.

Let’s compute the values for the height for males which we will store in the object :

The pre-built functions  mean  and  sd  (note that for reasons explained in Section 16.2,  sd 
divides by  length(x)-1  rather than  length(x) ) can be used here:

m <- sum(x) / length(x)

s <- sqrt(sum((x-mu)^2) / length(x))

x

index <- heights$sex == "Male"

x <- heights$height[index]

https://rafalab.github.io/dsbook/models.html#data-driven-model
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Here is a plot of the smooth density and the normal distribution with mean = 69.3 and SD = 3.6
plotted as a black line with our student height smooth density in blue:

The normal distribution does appear to be quite a good approximation here. We now will see
how well this approximation works at predicting the proportion of values within intervals.

8.9  Standard units
For data that is approximately normally distributed, it is convenient to think in terms of standard
units. The standard unit of a value tells us how many standard deviations away from the average
it is. Specifically, for a value  x  from a vector  X , we define the value of  x  in standard units
as  z = (x - m)/s  with  m  and  s  the average and standard deviation of  X , respectively.
Why is this convenient?

First look back at the formula for the normal distribution and note that what is being
exponentiated is  with  equivalent to  in standard units. Because the maximum of 
is when , this explains why the maximum of the distribution occurs at the average. It also

m <- mean(x)

s <- sd(x)

c(average = m, sd = s)

#> average      sd 

#>   69.31    3.61

−z2/2 z x e−z2/2

z = 0
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explains the symmetry since  is symmetric around 0. Second, note that if we convert the
normally distributed data to standard units, we can quickly know if, for example, a person is
about average ( ), one of the largest ( ), one of the smallest ( ), or an extremely
rare occurrence (  or ). Remember that it does not matter what the original units are,
these rules apply to any data that is approximately normal.

In R, we can obtain standard units using the function  scale :

Now to see how many men are within 2 SDs from the average, we simply type:

The proportion is about 95%, which is what the normal distribution predicts! To further confirm
that, in fact, the approximation is a good one, we can use quantile-quantile plots.

8.10  Quantile-quantile plots
A systematic way to assess how well the normal distribution fits the data is to check if the
observed and predicted proportions match. In general, this is the approach of the quantile-
quantile plot (QQ-plot).

First let’s define the theoretical quantiles for the normal distribution. In statistics books we use
the symbol  to define the function that gives us the probability of a standard normal
distribution being smaller than . So, for example,  and . In R,
we can evaluate  using the  pnorm  function:

The inverse function  gives us the theoretical quantiles for the normal distribution. So, for
example, . In R, we can evaluate the inverse of  using the  qnorm  function.

−z2/2

z = 0 z ≈ 2 z ≈ −2
z > 3 z < −3

z <- scale(x)

mean(abs(z) < 2)

#> [1] 0.95

Φ(x)
x Φ(−1.96) = 0.025 Φ(1.96) = 0.975

Φ

pnorm(-1.96)

#> [1] 0.025

Φ−1(x)
Φ−1(0.975) = 1.96 Φ
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Note that these calculations are for the standard normal distribution by default (mean = 0,
standard deviation = 1), but we can also define these for any normal distribution. We can do this
using the  mean  and  sd  arguments in the  pnorm  and  qnorm  function. For example, we can
use  qnorm  to determine quantiles of a distribution with a specific average and standard
deviation

For the normal distribution, all the calculations related to quantiles are done without data, thus
the name theoretical quantiles. But quantiles can be defined for any distribution, including an
empirical one. So if we have data in a vector , we can define the quantile associated with any
proportion  as the  for which the proportion of values below  is . Using R code, we can
define  q  as the value for which  mean(x <= q) = p . Notice that not all  have a  for which
the proportion is exactly . There are several ways of defining the best  as discussed in the help
for the  quantile  function.

To give a quick example, for the male heights data, we have that:

So about 50% are shorter or equal to 69 inches. This implies that if  then .

The idea of a QQ-plot is that if your data is well approximated by normal distribution then the
quantiles of your data should be similar to the quantiles of a normal distribution. To construct a
QQ-plot, we do the following:

1. Define a vector of  proportions .
2. Define a vector of quantiles  for your data for the proportions . We refer

to these as the sample quantiles.
3. Define a vector of theoretical quantiles for the proportions  for a normal

distribution with the same average and standard deviation as the data.

qnorm(0.975)

#> [1] 1.96

qnorm(0.975, mean = 5, sd = 2)

#> [1] 8.92

x
p q q p

p q
p q

mean(x <= 69.5)

#> [1] 0.515

p = 0.50 q = 69.5

m p1, p2, … , pm

q1, … , qm p1, … , pm

p1, … , pm
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4. Plot the sample quantiles versus the theoretical quantiles.

Let’s construct a QQ-plot using R code. Start by defining the vector of proportions.

To obtain the quantiles from the data, we can use the  quantile  function like this:

To obtain the theoretical normal distribution quantiles with the corresponding average and SD,
we use the  qnorm  function:

To see if they match or not, we plot them against each other and draw the identity line:

Notice that this code becomes much cleaner if we use standard units:

p <- seq(0.05, 0.95, 0.05)

sample_quantiles <- quantile(x, p)

theoretical_quantiles <- qnorm(p, mean = mean(x), sd = sd(x))

qplot(theoretical_quantiles, sample_quantiles) + geom_abline()
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The above code is included to help describe QQ-plots. However, in practice it is easier to use
the ggplot2 code described in Section 8.16:

While for the illustration above we used 20 quantiles, the default from the  geom_qq  function is
to use as many quantiles as data points.

8.11  Percentiles
Before we move on, let’s define some terms that are commonly used in exploratory data
analysis.

Percentiles are special cases of quantiles that are commonly used. The percentiles are the
quantiles you obtain when setting the  at . We call, for example, the case of 

 the 25th percentile, which gives us a number for which 25% of the data is below. The
most famous percentile is the 50th, also known as the median.

For the normal distribution the median and average are the same, but this is generally not the
case.

Another special case that receives a name are the quartiles, which are obtained when setting 
, and .

8.12  Boxplots

sample_quantiles <- quantile(z, p)

theoretical_quantiles <- qnorm(p) 

qplot(theoretical_quantiles, sample_quantiles) + geom_abline()

heights %>% filter(sex == "Male") %>%

  ggplot(aes(sample = scale(height))) + 

  geom_qq() +

  geom_abline()

p 0.01, 0.02, . . . , 0.99
p = 0.25

p = 0.25, 0.50 0.75
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To introduce boxplots we will go back to the US murder data. Suppose we want to summarize
the murder rate distribution. Using the data visualization technique we have learned, we can
quickly see that the normal approximation does not apply here:

In this case, the histogram above or a smooth density plot would serve as a relatively succinct
summary.

Now suppose those used to receiving just two numbers as summaries ask us for a more
compact numerical summary.

Here Tukey offered some advice. Provide a five-number summary composed of the range along
with the quartiles (the 25th, 50th, and 75th percentiles). Tukey further suggested that we ignore
outliers when computing the range and instead plot these as independent points. We provide a
detailed explanation of outliers later. Finally, he suggested we plot these numbers as a “box”
with “whiskers” like this:



10/5/2020 Chapter 8 Visualizing data distributions | Introduction to Data Science

https://rafalab.github.io/dsbook/distributions.html 25/40

with the box defined by the 25% and 75% percentile and the whiskers showing the range. The
distance between these two is called the interquartile range. The two points are outliers
according to Tukey’s definition. The median is shown with a horizontal line. Today, we call these
boxplots.

From just this simple plot, we know that the median is about 2.5, that the distribution is not
symmetric, and that the range is 0 to 5 for the great majority of states with two exceptions.

We discuss how to make boxplots in Section 8.16.

8.13  Stratification
In data analysis we often divide observations into groups based on the values of one or more
variables associated with those observations. For example in the next section we divide the
height values into groups based on a sex variable: females and males. We call this procedure
stratification and refer to the resulting groups as strata.

Stratification is common in data visualization because we are often interested in how the
distribution of variables differs across different subgroups. We will see several examples
throughout this part of the book. We will revisit the concept of stratification when we learn
regression in Chapter 17 and in the Machine Learning part of the book.

https://rafalab.github.io/dsbook/regression.html#regression
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8.14  Case study: describing student heights
(continued)
Using the histogram, density plots, and QQ-plots, we have become convinced that the male
height data is well approximated with a normal distribution. In this case, we report back to ET a
very succinct summary: male heights follow a normal distribution with an average of 69.3 inches
and a SD of 3.6 inches. With this information, ET will have a good idea of what to expect when
he meets our male students. However, to provide a complete picture we need to also provide a
summary of the female heights.

We learned that boxplots are useful when we want to quickly compare two or more distributions.
Here are the heights for men and women:

The plot immediately reveals that males are, on average, taller than females. The standard
deviations appear to be similar. But does the normal approximation also work for the female
height data collected by the survey? We expect that they will follow a normal distribution, just
like males. However, exploratory plots reveal that the approximation is not as useful:



10/5/2020 Chapter 8 Visualizing data distributions | Introduction to Data Science

https://rafalab.github.io/dsbook/distributions.html 27/40

We see something we did not see for the males: the density plot has a second “bump”. Also, the
QQ-plot shows that the highest points tend to be taller than expected by the normal distribution.
Finally, we also see five points in the QQ-plot that suggest shorter than expected heights for a
normal distribution. When reporting back to ET, we might need to provide a histogram rather
than just the average and standard deviation for the female heights.

However, go back and read Tukey’s quote. We have noticed what we didn’t expect to see. If we
look at other female height distributions, we do find that they are well approximated with a
normal distribution. So why are our female students different? Is our class a requirement for the
female basketball team? Are small proportions of females claiming to be taller than they are?
Another, perhaps more likely, explanation is that in the form students used to enter their heights,
 FEMALE  was the default sex and some males entered their heights, but forgot to change the sex
variable. In any case, data visualization has helped discover a potential flaw in our data.

Regarding the five smallest values, note that these values are:

Because these are reported heights, a possibility is that the student meant to enter  5'1" ,
 5'2" ,  5'3"  or  5'5" .

heights %>% filter(sex == "Female") %>% 

  top_n(5, desc(height)) %>%

  pull(height)

#> [1] 51 53 55 52 52
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8.15  Exercises
1. Define variables containing the heights of males and females like this:

How many measurements do we have for each?

2. Suppose we can’t make a plot and want to compare the distributions side by side. We can’t
just list all the numbers. Instead, we will look at the percentiles. Create a five row table showing
 female_percentiles  and  male_percentiles  with the 10th, 30th, 50th, 70th, & 90th
percentiles for each sex. Then create a data frame with these two as columns.

3. Study the following boxplots showing population sizes by country:

Which continent has the country with the biggest population size?

4. What continent has the largest median population size?

5. What is median population size for Africa to the nearest million?

6. What proportion of countries in Europe have populations below 14 million?

a. 0.99

library(dslabs)

data(heights)

male <- heights$height[heights$sex == "Male"]

female <- heights$height[heights$sex == "Female"]
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b. 0.75
c. 0.50
d. 0.25

7. If we use a log transformation, which continent shown above has the largest interquartile
range?

8. Load the height data set and create a vector  x  with just the male heights:

What proportion of the data is between 69 and 72 inches (taller than 69, but shorter or equal to
72)? Hint: use a logical operator and  mean .

9. Suppose all you know about the data is the average and the standard deviation. Use the
normal approximation to estimate the proportion you just calculated. Hint: start by computing
the average and standard deviation. Then use the  pnorm  function to predict the proportions.

10. Notice that the approximation calculated in question nine is very close to the exact
calculation in the first question. Now perform the same task for more extreme values. Compare
the exact calculation and the normal approximation for the interval (79,81]. How many times
bigger is the actual proportion than the approximation?

11. Approximate the distribution of adult men in the world as normally distributed with an
average of 69 inches and a standard deviation of 3 inches. Using this approximation, estimate
the proportion of adult men that are 7 feet tall or taller, referred to as seven footers. Hint: use the
 pnorm  function.

12. There are about 1 billion men between the ages of 18 and 40 in the world. Use your answer
to the previous question to estimate how many of these men (18-40 year olds) are seven feet tall
or taller in the world?

13. There are about 10 National Basketball Association (NBA) players that are 7 feet tall or
higher. Using the answer to the previous two questions, what proportion of the world’s 18-to-40-
year-old seven footers are in the NBA?

14. Repeat the calculations performed in the previous question for Lebron James’ height: 6 feet
8 inches. There are about 150 players that are at least that tall.

library(dslabs)

data(heights)

x <- heights$height[heights$sex=="Male"]
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15. In answering the previous questions, we found that it is not at all rare for a seven footer to
become an NBA player. What would be a fair critique of our calculations:

a. Practice and talent are what make a great basketball player, not height.
b. The normal approximation is not appropriate for heights.
c. As seen in question 10, the normal approximation tends to underestimate the extreme

values. It’s possible that there are more seven footers than we predicted.
d. As seen in question 10, the normal approximation tends to overestimate the extreme values.

It’s possible that there are fewer seven footers than we predicted.

8.16  ggplot2 geometries

In Chapter 7, we introduced the ggplot2 package for data visualization. Here we demonstrate
how to generate plots related to distributions, specifically the plots shown earlier in this chapter.

8.16.1  Barplots

To generate a barplot we can use the  geom_bar  geometry. The default is to count the number
of each category and draw a bar. Here is the plot for the regions of the US.

murders %>% ggplot(aes(region)) + geom_bar()

https://rafalab.github.io/dsbook/ggplot2.html#ggplot2


10/5/2020 Chapter 8 Visualizing data distributions | Introduction to Data Science

https://rafalab.github.io/dsbook/distributions.html 31/40

We often already have a table with a distribution that we want to present as a barplot. Here is an
example of such a table:

We no longer want  geom_bar  to count, but rather just plot a bar to the height provided by the
 proportion  variable. For this we need to provide  x  (the categories) and  y  (the values) and
use the  stat="identity"  option.

8.16.2  Histograms

data(murders)

tab <- murders %>% 

  count(region) %>% 

  mutate(proportion = n/sum(n))

tab

#>          region  n proportion

#> 1     Northeast  9      0.176

#> 2         South 17      0.333

#> 3 North Central 12      0.235

#> 4          West 13      0.255

tab %>% ggplot(aes(region, proportion)) + geom_bar(stat = "identity")
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To generate histograms we use  geom_histogram . By looking at the help file for this function, we
learn that the only required argument is  x , the variable for which we will construct a histogram.
We dropped the  x  because we know it is the first argument. The code looks like this:

If we run the code above, it gives us a message:

We previously used a bin size of 1 inch, so the code looks like this:

Finally, if for aesthetic reasons we want to add color, we use the arguments described in the help
file. We also add labels and a title:

heights %>% 

  filter(sex == "Female") %>% 

  ggplot(aes(height)) + 

  geom_histogram()

 stat_bin()  using  bins = 30 . Pick better value with  binwidth .

heights %>% 

  filter(sex == "Female") %>% 

  ggplot(aes(height)) + 

  geom_histogram(binwidth = 1)

heights %>% 

  filter(sex == "Female") %>% 

  ggplot(aes(height)) +

  geom_histogram(binwidth = 1, fill = "blue", col = "black") +

  xlab("Male heights in inches") + 

  ggtitle("Histogram")

Should say Female 
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8.16.3  Density plots

To create a smooth density, we use the  geom_density . To make a smooth density plot with the
data previously shown as a histogram we can use this code:

To fill in with color, we can use the  fill  argument.

heights %>% 

  filter(sex == "Female") %>%

  ggplot(aes(height)) +

  geom_density()

heights %>% 

  filter(sex == "Female") %>%

  ggplot(aes(height)) +

  geom_density(fill="blue")

This makes a kernel density estimate
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To change the smoothness of the density, we use the  adjust  argument to multiply the default
value by that  adjust . For example, if we want the bandwidth to be twice as big we use:

8.16.4  Boxplots

The geometry for boxplot is  geom_boxplot . As discussed, boxplots are useful for comparing
distributions. For example, below are the previously shown heights for women, but compared to
men. For this geometry, we need arguments  x  as the categories, and  y  as the values.

heights %>% 

  filter(sex == "Female") + 

  geom_density(fill="blue", adjust = 2)
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8.16.5  QQ-plots

For qq-plots we use the  geom_qq  geometry. From the help file, we learn that we need to specify
the  sample  (we will learn about samples in a later chapter). Here is the qqplot for men heights.

heights %>% filter(sex=="Male") %>%

  ggplot(aes(sample = height)) +

  geom_qq()



10/5/2020 Chapter 8 Visualizing data distributions | Introduction to Data Science

https://rafalab.github.io/dsbook/distributions.html 36/40

By default, the sample variable is compared to a normal distribution with average 0 and standard
deviation 1. To change this, we use the  dparams  arguments based on the help file. Adding an
identity line is as simple as assigning another layer. For straight lines, we use the  geom_abline 
function. The default line is the identity line (slope = 1, intercept = 0).

Another option here is to scale the data first and then make a qqplot against the standard
normal.

8.16.6  Images

Images were not needed for the concepts described in this chapter, but we will use images in
Section 10.14, so we introduce the two geometries used to create images: geom_tile and
geom_raster. They behave similarly; to see how they differ, please consult the help file. To
create an image in ggplot2 we need a data frame with the x and y coordinates as well as the
values associated with each of these. Here is a data frame.

params <- heights %>% filter(sex=="Male") %>%

  summarize(mean = mean(height), sd = sd(height))

heights %>% filter(sex=="Male") %>%

  ggplot(aes(sample = height)) +

  geom_qq(dparams = params) +

  geom_abline()

heights %>% 

  filter(sex=="Male") %>%

  ggplot(aes(sample = scale(height))) + 

  geom_qq() +

  geom_abline()

x <- expand.grid(x = 1:12, y = 1:10) %>% 

  mutate(z = 1:120) 

https://rafalab.github.io/dsbook/data-visualization-principles.html#vaccines
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Note that this is the tidy version of a matrix,  matrix(1:120, 12, 10) . To plot the image we use
the following code:

With these images you will often want to change the color scale. This can be done through the
 scale_fill_gradientn  layer.

8.16.7  Quick plots

In Section 7.13 we introduced  qplot  as a useful function when we need to make a quick
scatterplot. We can also use  qplot  to make histograms, density plots, boxplot, qqplots and
more. Although it does not provide the level of control of  ggplot ,  qplot  is definitely useful as
it permits us to make a plot with a short snippet of code.

Suppose we have the female heights in an object  x :

x %>% ggplot(aes(x, y, fill = z)) + 

  geom_raster()

x %>% ggplot(aes(x, y, fill = z)) + 

  geom_raster() + 

  scale_fill_gradientn(colors =  terrain.colors(10))

https://rafalab.github.io/dsbook/ggplot2.html#qplot
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To make a quick histogram we can use:

The function guesses that we want to make a histogram because we only supplied one variable.
In Section 7.13 we saw that if we supply  qplot  two variables, it automatically makes a
scatterplot.

To make a quick qqplot you have to use the  sample  argument. Note that we can add layers just
as we do with  ggplot .

If we supply a factor and a numeric vector, we obtain a plot like the one below. Note that in the
code below we are using the  data  argument. Because the data frame is not the first argument
in  qplot , we have to use the dot operator.

We can also select a specific geometry by using the  geom  argument. So to convert the plot
above to a boxplot, we use the following code:

We can also use the  geom  argument to generate a density plot instead of a histogram:

x <- heights %>% 

  filter(sex=="Male") %>% 

  pull(height)

qplot(x)

qplot(sample = scale(x)) + geom_abline()

heights %>% qplot(sex, height, data = .)

heights %>% qplot(sex, height, data = ., geom = "boxplot")

qplot(x, geom = "density")

https://rafalab.github.io/dsbook/ggplot2.html#qplot
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Although not as much as with  ggplot , we do have some flexibility to improve the results of
 qplot . Looking at the help file we see several ways in which we can improve the look of the
histogram above. Here is an example:

Technical note: The reason we use  I("black")  is because we want  qplot  to treat
 "black"  as a character rather than convert it to a factor, which is the default behavior within
 aes , which is internally called here. In general, the function  I  is used in R to say “keep it as it
is”.

8.17  Exercises
1. Now we are going to use the  geom_histogram  function to make a histogram of the heights in
the  height  data frame. When reading the documentation for this function we see that it
requires just one mapping, the values to be used for the histogram. Make a histogram of all the
plots.

What is the variable containing the heights?

a.  sex 
b.  heights 
c.  height 
d.  heights$height 

qplot(x, bins=15, color = I("black"), xlab = "Population")
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2. Now create a ggplot object using the pipe to assign the heights data to a ggplot object.
Assign  height  to the x values through the  aes  function.

3. Now we are ready to add a layer to actually make the histogram. Use the object created in the
previous exercise and the  geom_histogram  function to make the histogram.

4. Note that when we run the code in the previous exercise we get the warning:  stat_bin() 
using  bins = 30 . Pick better value with  binwidth .`

Use the  binwidth  argument to change the histogram made in the previous exercise to use bins
of size 1 inch.

5. Instead of a histogram, we are going to make a smooth density plot. In this case we will not
make an object, but instead render the plot with one line of code. Change the geometry in the
code previously used to make a smooth density instead of a histogram.

6. Now we are going to make a density plot for males and females separately. We can do this
using the  group  argument. We assign groups via the aesthetic mapping as each point needs to
a group before making the calculations needed to estimate a density.

7. We can also assign groups through the  color  argument. This has the added benefit that it
uses color to distinguish the groups. Change the code above to use color.

8. We can also assign groups through the  fill  argument. This has the added benefit that it
uses colors to distinguish the groups, like this:

However, here the second density is drawn over the other. We can make the curves more visible
by using alpha blending to add transparency. Set the alpha parameter to 0.2 in the
 geom_density  function to make this change.

heights %>% 

  ggplot(aes(height, fill = sex)) + 

  geom_density() 


