
10/5/2020 12 Managing Data Frames with the dplyr package | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/managing-data-frames-with-the-dplyr-package.html 1/17

12 Managing Data Frames with the dplyr
package
Watch a video of this chapter

12.1 Data Frames
The data frame is a key data structure in statistics and in R. The basic structure of a data frame
is that there is one observation per row and each column represents a variable, a measure,
feature, or characteristic of that observation. R has an internal implementation of data frames
that is likely the one you will use most often. However, there are packages on CRAN that
implement data frames via things like relational databases that allow you to operate on very very
large data frames (but we won’t discuss them here).

Given the importance of managing data frames, it’s important that we have good tools for
dealing with them. In previous chapters we have already discussed some tools like the
 subset() function and the use of [and $ operators to extract subsets of data frames.
However, other operations, like filtering, re-ordering, and collapsing, can often be tedious
operations in R whose syntax is not very intuitive. The dplyr package is designed to mitigate a
lot of these problems and to provide a highly optimized set of routines specifically for dealing
with data frames.

12.2 The dplyr Package
The dplyr package was developed by Hadley Wickham of RStudio and is an optimized and
distilled version of his plyr package. The dplyr package does not provide any “new”
functionality to R per se, in the sense that everything dplyr does could already be done with
base R, but it greatly simplifies existing functionality in R.

https://youtu.be/aywFompr1F4

10/5/2020 12 Managing Data Frames with the dplyr package | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/managing-data-frames-with-the-dplyr-package.html 2/17

One important contribution of the dplyr package is that it provides a “grammar” (in particular,
verbs) for data manipulation and for operating on data frames. With this grammar, you can
sensibly communicate what it is that you are doing to a data frame that other people can
understand (assuming they also know the grammar). This is useful because it provides an
abstraction for data manipulation that previously did not exist. Another useful contribution is that
the dplyr functions are very fast, as many key operations are coded in C++.

12.3 dplyr Grammar
Some of the key “verbs” provided by the dplyr package are

 select : return a subset of the columns of a data frame, using a flexible notation

 filter : extract a subset of rows from a data frame based on logical conditions

 arrange : reorder rows of a data frame

 rename : rename variables in a data frame

 mutate : add new variables/columns or transform existing variables

 summarise / summarize : generate summary statistics of different variables in the data
frame, possibly within strata

 %>% : the “pipe” operator is used to connect multiple verb actions together into a pipeline

The dplyr package as a number of its own data types that it takes advantage of. For example,
there is a handy print method that prevents you from printing a lot of data to the console.
Most of the time, these additional data types are transparent to the user and do not need to be
worried about.

12.3.1 Common dplyr Function Properties

All of the functions that we will discuss in this Chapter will have a few common characteristics.
In particular,

1. The first argument is a data frame.

10/5/2020 12 Managing Data Frames with the dplyr package | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/managing-data-frames-with-the-dplyr-package.html 3/17

2. The subsequent arguments describe what to do with the data frame specified in the first
argument, and you can refer to columns in the data frame directly without using the $
operator (just use the column names).

3. The return result of a function is a new data frame

4. Data frames must be properly formatted and annotated for this to all be useful. In particular,
the data must be tidy. In short, there should be one observation per row, and each column
should represent a feature or characteristic of that observation.

12.4 Installing the dplyr package
The dplyr package can be installed from CRAN or from GitHub using the devtools package
and the install_github() function. The GitHub repository will usually contain the latest
updates to the package and the development version.

To install from CRAN, just run

To install from GitHub you can run

After installing the package it is important that you load it into your R session with the
 library() function.

> install.packages("dplyr")

> install_github("hadley/dplyr")

http://www.jstatsoft.org/v59/i10/paper

10/5/2020 12 Managing Data Frames with the dplyr package | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/managing-data-frames-with-the-dplyr-package.html 4/17

You may get some warnings when the package is loaded because there are functions in the
 dplyr package that have the same name as functions in other packages. For now you can
ignore the warnings.

12.5 select()
For the examples in this chapter we will be using a dataset containing air pollution and
temperature data for the city of Chicago in the U.S. The dataset is available from my web site.

After unzipping the archive, you can load the data into R using the readRDS() function.

You can see some basic characteristics of the dataset with the dim() and str() functions.

> library(dplyr)

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

 filter, lag

The following objects are masked from 'package:base':

 intersect, setdiff, setequal, union

> chicago <- readRDS("chicago.rds")

http://www.biostat.jhsph.edu/~rpeng/leanpub/rprog/chicago_data.zip

10/5/2020 12 Managing Data Frames with the dplyr package | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/managing-data-frames-with-the-dplyr-package.html 5/17

The select() function can be used to select columns of a data frame that you want to focus
on. Often you’ll have a large data frame containing “all” of the data, but any given analysis might
only use a subset of variables or observations. The select() function allows you to get the
few columns you might need.

Suppose we wanted to take the first 3 columns only. There are a few ways to do this. We could
for example use numerical indices. But we can also use the names directly.

Note that the : normally cannot be used with names or strings, but inside the select()
function you can use it to specify a range of variable names.

> dim(chicago)

[1] 6940 8

> str(chicago)

'data.frame': 6940 obs. of 8 variables:

 $ city : chr "chic" "chic" "chic" "chic" ...

 $ tmpd : num 31.5 33 33 29 32 40 34.5 29 26.5 32.5 ...

 $ dptp : num 31.5 29.9 27.4 28.6 28.9 ...

 $ date : Date, format: "1987-01-01" "1987-01-02" ...

 $ pm25tmean2: num NA NA NA NA NA NA NA NA NA NA ...

 $ pm10tmean2: num 34 NA 34.2 47 NA ...

 $ o3tmean2 : num 4.25 3.3 3.33 4.38 4.75 ...

 $ no2tmean2 : num 20 23.2 23.8 30.4 30.3 ...

> names(chicago)[1:3]

[1] "city" "tmpd" "dptp"

> subset <- select(chicago, city:dptp)

> head(subset)

 city tmpd dptp

1 chic 31.5 31.500

2 chic 33.0 29.875

3 chic 33.0 27.375

4 chic 29.0 28.625

5 chic 32.0 28.875

6 chic 40.0 35.125

10/5/2020 12 Managing Data Frames with the dplyr package | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/managing-data-frames-with-the-dplyr-package.html 6/17

You can also omit variables using the select() function by using the negative sign. With
 select() you can do

which indicates that we should include every variable except the variables city through
 dptp . The equivalent code in base R would be

Not super intuitive, right?

The select() function also allows a special syntax that allows you to specify variable names
based on patterns. So, for example, if you wanted to keep every variable that ends with a “2”,
we could do

Or if we wanted to keep every variable that starts with a “d”, we could do

> select(chicago, -(city:dptp))

> i <- match("city", names(chicago))

> j <- match("dptp", names(chicago))

> head(chicago[, -(i:j)])

> subset <- select(chicago, ends_with("2"))

> str(subset)

'data.frame': 6940 obs. of 4 variables:

 $ pm25tmean2: num NA NA NA NA NA NA NA NA NA NA ...

 $ pm10tmean2: num 34 NA 34.2 47 NA ...

 $ o3tmean2 : num 4.25 3.3 3.33 4.38 4.75 ...

 $ no2tmean2 : num 20 23.2 23.8 30.4 30.3 ...

> subset <- select(chicago, starts_with("d"))

> str(subset)

'data.frame': 6940 obs. of 2 variables:

 $ dptp: num 31.5 29.9 27.4 28.6 28.9 ...

 $ date: Date, format: "1987-01-01" "1987-01-02" ...

10/5/2020 12 Managing Data Frames with the dplyr package | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/managing-data-frames-with-the-dplyr-package.html 7/17

You can also use more general regular expressions if necessary. See the help page (?select)
for more details.

12.6 filter()
The filter() function is used to extract subsets of rows from a data frame. This function is
similar to the existing subset() function in R but is quite a bit faster in my experience.

Suppose we wanted to extract the rows of the chicago data frame where the levels of PM2.5
are greater than 30 (which is a reasonably high level), we could do

You can see that there are now only 194 rows in the data frame and the distribution of the
 pm25tmean2 values is.

We can place an arbitrarily complex logical sequence inside of filter() , so we could for
example extract the rows where PM2.5 is greater than 30 and temperature is greater than 80
degrees Fahrenheit.

> chic.f <- filter(chicago, pm25tmean2 > 30)

> str(chic.f)

'data.frame': 194 obs. of 8 variables:

 $ city : chr "chic" "chic" "chic" "chic" ...

 $ tmpd : num 23 28 55 59 57 57 75 61 73 78 ...

 $ dptp : num 21.9 25.8 51.3 53.7 52 56 65.8 59 60.3 67.1 ...

 $ date : Date, format: "1998-01-17" "1998-01-23" ...

 $ pm25tmean2: num 38.1 34 39.4 35.4 33.3 ...

 $ pm10tmean2: num 32.5 38.7 34 28.5 35 ...

 $ o3tmean2 : num 3.18 1.75 10.79 14.3 20.66 ...

 $ no2tmean2 : num 25.3 29.4 25.3 31.4 26.8 ...

> summary(chic.f$pm25tmean2)

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 30.05 32.12 35.04 36.63 39.53 61.50

10/5/2020 12 Managing Data Frames with the dplyr package | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/managing-data-frames-with-the-dplyr-package.html 8/17

Now there are only 17 observations where both of those conditions are met.

12.7 arrange()
The arrange() function is used to reorder rows of a data frame according to one of the
variables/columns. Reordering rows of a data frame (while preserving corresponding order of
other columns) is normally a pain to do in R. The arrange() function simplifies the process
quite a bit.

Here we can order the rows of the data frame by date, so that the first row is the earliest (oldest)
observation and the last row is the latest (most recent) observation.

> chic.f <- filter(chicago, pm25tmean2 > 30 & tmpd > 80)

> select(chic.f, date, tmpd, pm25tmean2)

 date tmpd pm25tmean2

1 1998-08-23 81 39.60000

2 1998-09-06 81 31.50000

3 2001-07-20 82 32.30000

4 2001-08-01 84 43.70000

5 2001-08-08 85 38.83750

6 2001-08-09 84 38.20000

7 2002-06-20 82 33.00000

8 2002-06-23 82 42.50000

9 2002-07-08 81 33.10000

10 2002-07-18 82 38.85000

11 2003-06-25 82 33.90000

12 2003-07-04 84 32.90000

13 2005-06-24 86 31.85714

14 2005-06-27 82 51.53750

15 2005-06-28 85 31.20000

16 2005-07-17 84 32.70000

17 2005-08-03 84 37.90000

> chicago <- arrange(chicago, date)

10/5/2020 12 Managing Data Frames with the dplyr package | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/managing-data-frames-with-the-dplyr-package.html 9/17

We can now check the first few rows

and the last few rows.

Columns can be arranged in descending order too by useing the special desc() operator.

Looking at the first three and last three rows shows the dates in descending order.

> head(select(chicago, date, pm25tmean2), 3)

 date pm25tmean2

1 1987-01-01 NA

2 1987-01-02 NA

3 1987-01-03 NA

> tail(select(chicago, date, pm25tmean2), 3)

 date pm25tmean2

6938 2005-12-29 7.45000

6939 2005-12-30 15.05714

6940 2005-12-31 15.00000

> chicago <- arrange(chicago, desc(date))

> head(select(chicago, date, pm25tmean2), 3)

 date pm25tmean2

1 2005-12-31 15.00000

2 2005-12-30 15.05714

3 2005-12-29 7.45000

> tail(select(chicago, date, pm25tmean2), 3)

 date pm25tmean2

6938 1987-01-03 NA

6939 1987-01-02 NA

6940 1987-01-01 NA

10/5/2020 12 Managing Data Frames with the dplyr package | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/managing-data-frames-with-the-dplyr-package.html 10/17

12.8 rename()
Renaming a variable in a data frame in R is surprisingly hard to do! The rename() function is
designed to make this process easier.

Here you can see the names of the first five variables in the chicago data frame.

The dptp column is supposed to represent the dew point temperature adn the pm25tmean2
column provides the PM2.5 data. However, these names are pretty obscure or awkward and
probably be renamed to something more sensible.

The syntax inside the rename() function is to have the new name on the left-hand side of the
 = sign and the old name on the right-hand side.

I leave it as an exercise for the reader to figure how you do this in base R without dplyr .

12.9 mutate()
The mutate() function exists to compute transformations of variables in a data frame. Often,
you want to create new variables that are derived from existing variables and mutate()
provides a clean interface for doing that.

> head(chicago[, 1:5], 3)

 city tmpd dptp date pm25tmean2

1 chic 35 30.1 2005-12-31 15.00000

2 chic 36 31.0 2005-12-30 15.05714

3 chic 35 29.4 2005-12-29 7.45000

> chicago <- rename(chicago, dewpoint = dptp, pm25 = pm25tmean2)

> head(chicago[, 1:5], 3)

 city tmpd dewpoint date pm25

1 chic 35 30.1 2005-12-31 15.00000

2 chic 36 31.0 2005-12-30 15.05714

3 chic 35 29.4 2005-12-29 7.45000

10/5/2020 12 Managing Data Frames with the dplyr package | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/managing-data-frames-with-the-dplyr-package.html 11/17

For example, with air pollution data, we often want to detrend the data by subtracting the mean
from the data. That way we can look at whether a given day’s air pollution level is higher than or
less than average (as opposed to looking at its absolute level).

Here we create a pm25detrend variable that subtracts the mean from the pm25 variable.

There is also the related transmute() function, which does the same thing as mutate() but
then drops all non-transformed variables.

Here we detrend the PM10 and ozone (O3) variables.

> chicago <- mutate(chicago, pm25detrend = pm25 - mean(pm25, na.rm = TRUE))

> head(chicago)

 city tmpd dewpoint date pm25 pm10tmean2 o3tmean2 no2tmean2

1 chic 35 30.1 2005-12-31 15.00000 23.5 2.531250 13.25000

2 chic 36 31.0 2005-12-30 15.05714 19.2 3.034420 22.80556

3 chic 35 29.4 2005-12-29 7.45000 23.5 6.794837 19.97222

4 chic 37 34.5 2005-12-28 17.75000 27.5 3.260417 19.28563

5 chic 40 33.6 2005-12-27 23.56000 27.0 4.468750 23.50000

6 chic 35 29.6 2005-12-26 8.40000 8.5 14.041667 16.81944

 pm25detrend

1 -1.230958

2 -1.173815

3 -8.780958

4 1.519042

5 7.329042

6 -7.830958

10/5/2020 12 Managing Data Frames with the dplyr package | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/managing-data-frames-with-the-dplyr-package.html 12/17

Note that there are only two columns in the transmuted data frame.

12.10 group_by()
The group_by() function is used to generate summary statistics from the data frame within
strata defined by a variable. For example, in this air pollution dataset, you might want to know
what the average annual level of PM2.5 is. So the stratum is the year, and that is something we
can derive from the date variable. In conjunction with the group_by() function we often use
the summarize() function (or summarise() for some parts of the world).

The general operation here is a combination of splitting a data frame into separate pieces
defined by a variable or group of variables (group_by()), and then applying a summary
function across those subsets (summarize()).

First, we can create a year varible using as.POSIXlt() .

Now we can create a separate data frame that splits the original data frame by year.

Finally, we compute summary statistics for each year in the data frame with the summarize()
function.

> head(transmute(chicago,

+ pm10detrend = pm10tmean2 - mean(pm10tmean2, na.rm = TRUE),

+ o3detrend = o3tmean2 - mean(o3tmean2, na.rm = TRUE)))

 pm10detrend o3detrend

1 -10.395206 -16.904263

2 -14.695206 -16.401093

3 -10.395206 -12.640676

4 -6.395206 -16.175096

5 -6.895206 -14.966763

6 -25.395206 -5.393846

> chicago <- mutate(chicago, year = as.POSIXlt(date)$year + 1900)

> years <- group_by(chicago, year)

10/5/2020 12 Managing Data Frames with the dplyr package | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/managing-data-frames-with-the-dplyr-package.html 13/17

 summarize() returns a data frame with year as the first column, and then the annual
averages of pm25 , o3 , and no2 .

In a slightly more complicated example, we might want to know what are the average levels of
ozone (o3) and nitrogen dioxide (no2) within quintiles of pm25 . A slicker way to do this
would be through a regression model, but we can actually do this quickly with group_by() and
 summarize() .

First, we can create a categorical variable of pm25 divided into quintiles.

> summarize(years, pm25 = mean(pm25, na.rm = TRUE),

+ o3 = max(o3tmean2, na.rm = TRUE),

+ no2 = median(no2tmean2, na.rm = TRUE))

`summarise()` ungrouping output (override with `.groups` argument)

A tibble: 19 x 4

 year pm25 o3 no2

 <dbl> <dbl> <dbl> <dbl>

 1 1987 NaN 63.0 23.5

 2 1988 NaN 61.7 24.5

 3 1989 NaN 59.7 26.1

 4 1990 NaN 52.2 22.6

 5 1991 NaN 63.1 21.4

 6 1992 NaN 50.8 24.8

 7 1993 NaN 44.3 25.8

 8 1994 NaN 52.2 28.5

 9 1995 NaN 66.6 27.3

10 1996 NaN 58.4 26.4

11 1997 NaN 56.5 25.5

12 1998 18.3 50.7 24.6

13 1999 18.5 57.5 24.7

14 2000 16.9 55.8 23.5

15 2001 16.9 51.8 25.1

16 2002 15.3 54.9 22.7

17 2003 15.2 56.2 24.6

18 2004 14.6 44.5 23.4

19 2005 16.2 58.8 22.6

10/5/2020 12 Managing Data Frames with the dplyr package | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/managing-data-frames-with-the-dplyr-package.html 14/17

Now we can group the data frame by the pm25.quint variable.

Finally, we can compute the mean of o3 and no2 within quintiles of pm25 .

From the table, it seems there isn’t a strong relationship between pm25 and o3 , but there
appears to be a positive correlation between pm25 and no2 . More sophisticated statistical
modeling can help to provide precise answers to these questions, but a simple application of
 dplyr functions can often get you most of the way there.

12.11 %>%
The pipeline operater %>% is very handy for stringing together multiple dplyr functions in a
sequence of operations. Notice above that every time we wanted to apply more than one
function, the sequence gets buried in a sequence of nested function calls that is difficult to read,
i.e.

> qq <- quantile(chicago$pm25, seq(0, 1, 0.2), na.rm = TRUE)

> chicago <- mutate(chicago, pm25.quint = cut(pm25, qq))

> quint <- group_by(chicago, pm25.quint)

> summarize(quint, o3 = mean(o3tmean2, na.rm = TRUE),

+ no2 = mean(no2tmean2, na.rm = TRUE))

`summarise()` ungrouping output (override with `.groups` argument)

A tibble: 6 x 3

 pm25.quint o3 no2

 <fct> <dbl> <dbl>

1 (1.7,8.7] 21.7 18.0

2 (8.7,12.4] 20.4 22.1

3 (12.4,16.7] 20.7 24.4

4 (16.7,22.6] 19.9 27.3

5 (22.6,61.5] 20.3 29.6

6 <NA> 18.8 25.8

10/5/2020 12 Managing Data Frames with the dplyr package | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/managing-data-frames-with-the-dplyr-package.html 15/17

This nesting is not a natural way to think about a sequence of operations. The %>% operator
allows you to string operations in a left-to-right fashion, i.e.

Take the example that we just did in the last section where we computed the mean of o3 and
 no2 within quintiles of pm25 . There we had to

1. create a new variable pm25.quint
2. split the data frame by that new variable
3. compute the mean of o3 and no2 in the sub-groups defined by pm25.quint

That can be done with the following sequence in a single R expression.

This way we don’t have to create a set of temporary variables along the way or create a massive
nested sequence of function calls.

> third(second(first(x)))

> first(x) %>% second %>% third

> mutate(chicago, pm25.quint = cut(pm25, qq)) %>%

+ group_by(pm25.quint) %>%

+ summarize(o3 = mean(o3tmean2, na.rm = TRUE),

+ no2 = mean(no2tmean2, na.rm = TRUE))

`summarise()` ungrouping output (override with `.groups` argument)

A tibble: 6 x 3

 pm25.quint o3 no2

 <fct> <dbl> <dbl>

1 (1.7,8.7] 21.7 18.0

2 (8.7,12.4] 20.4 22.1

3 (12.4,16.7] 20.7 24.4

4 (16.7,22.6] 19.9 27.3

5 (22.6,61.5] 20.3 29.6

6 <NA> 18.8 25.8

10/5/2020 12 Managing Data Frames with the dplyr package | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/managing-data-frames-with-the-dplyr-package.html 16/17

Notice in the above code that I pass the chicago data frame to the first call to mutate() , but
then afterwards I do not have to pass the first argument to group_by() or summarize() .
Once you travel down the pipeline with %>% , the first argument is taken to be the output of the
previous element in the pipeline.

Another example might be computing the average pollutant level by month. This could be useful
to see if there are any seasonal trends in the data.

Here we can see that o3 tends to be low in the winter months and high in the summer while
 no2 is higher in the winter and lower in the summer.

12.12 Summary

> mutate(chicago, month = as.POSIXlt(date)$mon + 1) %>%

+ group_by(month) %>%

+ summarize(pm25 = mean(pm25, na.rm = TRUE),

+ o3 = max(o3tmean2, na.rm = TRUE),

+ no2 = median(no2tmean2, na.rm = TRUE))

`summarise()` ungrouping output (override with `.groups` argument)

A tibble: 12 x 4

 month pm25 o3 no2

 <dbl> <dbl> <dbl> <dbl>

 1 1 17.8 28.2 25.4

 2 2 20.4 37.4 26.8

 3 3 17.4 39.0 26.8

 4 4 13.9 47.9 25.0

 5 5 14.1 52.8 24.2

 6 6 15.9 66.6 25.0

 7 7 16.6 59.5 22.4

 8 8 16.9 54.0 23.0

 9 9 15.9 57.5 24.5

10 10 14.2 47.1 24.2

11 11 15.2 29.5 23.6

12 12 17.5 27.7 24.5

10/5/2020 12 Managing Data Frames with the dplyr package | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/managing-data-frames-with-the-dplyr-package.html 17/17

The dplyr package provides a concise set of operations for managing data frames. With these
functions we can do a number of complex operations in just a few lines of code. In particular, we
can often conduct the beginnings of an exploratory analysis with the powerful combination of
 group_by() and summarize() .

Once you learn the dplyr grammar there are a few additional benefits

 dplyr can work with other data frame “backends” such as SQL databases. There is an
SQL interface for relational databases via the DBI package

 dplyr can be integrated with the data.table package for large fast tables

The dplyr package is handy way to both simplify and speed up your data frame management
code. It’s rare that you get such a combination at the same time!

