
10/19/2020 14 Functions | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/functions.html 1/11

14 Functions
Writing functions is a core activity of an R programmer. It represents the key step of the
transition from a mere “user” to a developer who creates new functionality for R. Functions are
often used to encapsulate a sequence of expressions that need to be executed numerous times,
perhaps under slightly different conditions. Functions are also often written when code must be
shared with others or the public.

The writing of a function allows a developer to create an interface to the code, that is explicitly
specified with a set of parameters. This interface provides an abstraction of the code to potential
users. This abstraction simplifies the users’ lives because it relieves them from having to know
every detail of how the code operates. In addition, the creation of an interface allows the
developer to communicate to the user the aspects of the code that are important or are most
relevant.

14.1 Functions in R
Functions in R are “first class objects”, which means that they can be treated much like any
other R object. Importantly,

Functions can be passed as arguments to other functions. This is very handy for the various
apply functions, like lapply() and sapply() .

Functions can be nested, so that you can define a function inside of another function

If you’re familiar with common language like C, these features might appear a bit strange.
However, they are really important in R and can be useful for data analysis.

14.2 Your First Function
Functions are defined using the function() directive and are stored as R objects just like
anything else. In particular, they are R objects of class “function”.

10/19/2020 14 Functions | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/functions.html 2/11

Here’s a simple function that takes no arguments and does nothing.

Not very interesting, but it’s a start. The next thing we can do is create a function that actually
has a non-trivial function body.

The last aspect of a basic function is the function arguments. These are the options that you can
specify to the user that the user may explicity set. For this basic function, we can add an
argument that determines how many times “Hello, world!” is printed to the console.

> f <- function() {

+ ## This is an empty function

+ }

> ## Functions have their own class

> class(f)

[1] "function"

> ## Execute this function

> f()

NULL

> f <- function() {

+ cat("Hello, world!\n")

+ }

> f()

Hello, world!

> f <- function(num) {

+ for(i in seq_len(num)) {

+ cat("Hello, world!\n")

+ }

+ }

> f(3)

Hello, world!

Hello, world!

Hello, world!

10/19/2020 14 Functions | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/functions.html 3/11

Obviously, we could have just cut-and-pasted the cat("Hello, world!\n") code three times
to achieve the same effect, but then we wouldn’t be programming, would we? Also, it would be
un-neighborly of you to give your code to someone else and force them to cut-and-paste the
code however many times the need to see “Hello, world!”.

Finally, the function above doesn’t return anything. It just prints “Hello, world!” to the console
 num number of times and then exits. But often it is useful if a function returns something that
perhaps can be fed into another section of code.

This next function returns the total number of characters printed to the console.

In the above function, we didn’t have to indicate anything special in order for the function to
return the number of characters. In R, the return value of a function is always the very last
expression that is evaluated. Because the chars variable is the last expression that is
evaluated in this function, that becomes the return value of the function.

Note that there is a return() function that can be used to return an explicity value from a
function, but it is rarely used in R (we will discuss it a bit later in this chapter).

In general, if you find yourself doing a lot of cutting and pasting, that’s usually a good sign
that you might need to write a function.

> f <- function(num) {

+ hello <- "Hello, world!\n"

+ for(i in seq_len(num)) {

+ cat(hello)

+ }

+ chars <- nchar(hello) * num

+ chars

+ }

> meaningoflife <- f(3)

Hello, world!

Hello, world!

Hello, world!

> print(meaningoflife)

[1] 42

14 characters technically. \n means return.

10/19/2020 14 Functions | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/functions.html 4/11

Finally, in the above function, the user must specify the value of the argument num . If it is not
specified by the user, R will throw an error.

We can modify this behavior by setting a default value for the argument num . Any function
argument can have a default value, if you wish to specify it. Sometimes, argument values are
rarely modified (except in special cases) and it makes sense to set a default value for that
argument. This relieves the user from having to specify the value of that argument every single
time the function is called.

Here, for example, we could set the default value for num to be 1, so that if the function is
called without the num argument being explicitly specified, then it will print “Hello, world!” to
the console once.

Remember that the function still returns the number of characters printed to the console.

At this point, we have written a function that

> f()

Error in f(): argument "num" is missing, with no default

> f <- function(num = 1) {

+ hello <- "Hello, world!\n"

+ for(i in seq_len(num)) {

+ cat(hello)

+ }

+ chars <- nchar(hello) * num

+ chars

+ }

> f() ## Use default value for 'num'

Hello, world!

[1] 14

> f(2) ## Use user-specified value

Hello, world!

Hello, world!

[1] 28

10/19/2020 14 Functions | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/functions.html 5/11

has one formal argument named num with a default value of 1. The formal arguments are
the arguments included in the function definition. The formals() function returns a list of
all the formal arguments of a function

prints the message “Hello, world!” to the console a number of times indicated by the
argument num

returns the number of characters printed to the console

Functions have named arguments which can optionally have default values. Because all function
arguments have names, they can be specified using their name.

Specifying an argument by its name is sometimes useful if a function has many arguments and it
may not always be clear which argument is being specified. Here, our function only has one
argument so there’s no confusion.

14.3 Argument Matching
Calling an R function with arguments can be done in a variety of ways. This may be confusing at
first, but it’s really handing when doing interactive work at the command line. R functions
arguments can be matched positionally or by name. Positional matching just means that R
assigns the first value to the first argument, the second value to second argument, etc. So in the
following call to rnorm()

100 is assigned to the n argument, 2 is assigned to the mean argument, and 1 is assigned to
the sd argument, all by positional matching.

> f(num = 2)

Hello, world!

Hello, world!

[1] 28

> str(rnorm)

function (n, mean = 0, sd = 1)

> mydata <- rnorm(100, 2, 1) ## Generate some data

10/19/2020 14 Functions | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/functions.html 6/11

The following calls to the sd() function (which computes the empirical standard deviation of a
vector of numbers) are all equivalent. Note that sd() has two arguments: x indicates the
vector of numbers and na.rm is a logical indicating whether missing values should be removed
or not.

When specifying the function arguments by name, it doesn’t matter in what order you specify
them. In the example below, we specify the na.rm argument first, followed by x , even though
 x is the first argument defined in the function definition.

You can mix positional matching with matching by name. When an argument is matched by
name, it is “taken out” of the argument list and the remaining unnamed arguments are matched
in the order that they are listed in the function definition.

Here, the mydata object is assigned to the x argument, because it’s the only argument not
yet specified.

Below is the argument list for the lm() function, which fits linear models to a dataset.

> ## Positional match first argument, default for 'na.rm'

> sd(mydata)

[1] 1.014325

> ## Specify 'x' argument by name, default for 'na.rm'

> sd(x = mydata)

[1] 1.014325

> ## Specify both arguments by name

> sd(x = mydata, na.rm = FALSE)

[1] 1.014325

> ## Specify both arguments by name

> sd(na.rm = FALSE, x = mydata)

[1] 1.014325

> sd(na.rm = FALSE, mydata)

[1] 1.014325

10/19/2020 14 Functions | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/functions.html 7/11

The following two calls are equivalent.

Even though it’s legal, I don’t recommend messing around with the order of the arguments too
much, since it can lead to some confusion.

Most of the time, named arguments are useful on the command line when you have a long
argument list and you want to use the defaults for everything except for an argument near the
end of the list. Named arguments also help if you can remember the name of the argument and
not its position on the argument list. For example, plotting functions often have a lot of options
to allow for customization, but this makes it difficult to remember exactly the position of every
argument on the argument list.

Function arguments can also be partially matched, which is useful for interactive work. The order
of operations when given an argument is

1. Check for exact match for a named argument
2. Check for a partial match
3. Check for a positional match

Partial matching should be avoided when writing longer code or programs, because it may lead
to confusion if someone is reading the code. However, partial matching is very useful when
calling functions interactively that have very long argument names.

In addition to not specifying a default value, you can also set an argument value to NULL .

> args(lm)

function (formula, data, subset, weights, na.action, method = "qr",

 model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,

 contrasts = NULL, offset, ...)

NULL

lm(data = mydata, y ~ x, model = FALSE, 1:100)

lm(y ~ x, mydata, 1:100, model = FALSE)

f <- function(a, b = 1, c = 2, d = NULL) {

}

10/19/2020 14 Functions | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/functions.html 8/11

You can check to see whether an R object is NULL with the is.null() function. It is
sometimes useful to allow an argument to take the NULL value, which might indicate that the
function should take some specific action.

14.4 Lazy Evaluation
Arguments to functions are evaluated lazily, so they are evaluated only as needed in the body of
the function.

In this example, the function f() has two arguments: a and b .

This function never actually uses the argument b , so calling f(2) will not produce an error
because the 2 gets positionally matched to a . This behavior can be good or bad. It’s common
to write a function that doesn’t use an argument and not notice it simply because R never throws
an error.

This example also shows lazy evaluation at work, but does eventually result in an error.

Notice that “45” got printed first before the error was triggered. This is because b did not have
to be evaluated until after print(a) . Once the function tried to evaluate print(b) the
function had to throw an error.

> f <- function(a, b) {

+ a^2

+ }

> f(2)

[1] 4

> f <- function(a, b) {

+ print(a)

+ print(b)

+ }

> f(45)

[1] 45

Error in print(b): argument "b" is missing, with no default

10/19/2020 14 Functions | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/functions.html 9/11

14.5 The ... Argument
There is a special argument in R known as the ... argument, which indicate a variable number
of arguments that are usually passed on to other functions. The ... argument is often used
when extending another function and you don’t want to copy the entire argument list of the
original function

For example, a custom plotting function may want to make use of the default plot() function
along with its entire argument list. The function below changes the default for the type
argument to the value type = "l" (the original default was type = "p").

Generic functions use ... so that extra arguments can be passed to methods.

The ... argument is necessary when the number of arguments passed to the function cannot
be known in advance. This is clear in functions like paste() and cat() .

myplot <- function(x, y, type = "l", ...) {

 plot(x, y, type = type, ...) ## Pass '...' to 'plot' function

}

> mean

function (x, ...)

UseMethod("mean")

<bytecode: 0x7fe2e9aead40>

<environment: namespace:base>

> args(paste)

function (..., sep = " ", collapse = NULL, recycle0 = FALSE)

NULL

> args(cat)

function (..., file = "", sep = " ", fill = FALSE, labels = NULL,

 append = FALSE)

NULL

10/19/2020 14 Functions | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/functions.html 10/11

Because both paste() and cat() print out text to the console by combining multiple
character vectors together, it is impossible for those functions to know in advance how many
character vectors will be passed to the function by the user. So the first argument to either
function is

14.6 Arguments Coming After the ... Argument
One catch with ... is that any arguments that appear after ... on the argument list must be
named explicitly and cannot be partially matched or matched positionally.

Take a look at the arguments to the paste() function.

With the paste() function, the arguments sep and collapse must be named explicitly and
in full if the default values are not going to be used.

Here I specify that I want “a” and “b” to be pasted together and separated by a colon.

If I don’t specify the sep argument in full and attempt to rely on partial matching, I don’t get the
expected result.

14.7 Summary
Functions can be defined using the function() directive and are assigned to R objects
just like any other R object

> args(paste)

function (..., sep = " ", collapse = NULL, recycle0 = FALSE)

NULL

> paste("a", "b", sep = ":")

[1] "a:b"

> paste("a", "b", se = ":")

[1] "a b :"

10/19/2020 14 Functions | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/functions.html 11/11

Functions have can be defined with named arguments; these function arguments can have
default values

Functions arguments can be specified by name or by position in the argument list

Functions always return the last expression evaluated in the function body

A variable number of arguments can be specified using the special ... argument in a
function definition.

