
10/19/2020 17 Regular Expressions | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/regular-expressions.html 1/14

17 Regular Expressions
Watch a video of this chapter

17.1 Before You Begin
If you want a very quick introduction to the general notion of regular expressions and how they
can be used to process text (as opposed to how to implement them specifically in R), you should
watch this lecture first.

17.2 Primary R Functions
The primary R functions for dealing with regular expressions are

 grep() , grepl() : These functions search for matches of a regular expression/pattern in
a character vector. grep() returns the indices into the character vector that contain a
match or the specific strings that happen to have the match. grepl() returns a
 TRUE / FALSE vector indicating which elements of the character vector contain a match

 regexpr() , gregexpr() : Search a character vector for regular expression matches and
return the indices of the string where the match begins and the length of the match

 sub() , gsub() : Search a character vector for regular expression matches and replace
that match with another string

 regexec() : This function searches a character vector for a regular expression, much like
 regexpr() , but it will additionally return the locations of any parenthesized sub-
expressions. Probably easier to explain through demonstration.

For this chapter, we will use a running example using data from homicides in Baltimore City. The
Baltimore Sun newspaper collects information on all homicides that occur in the city (it also
reports on many of them). That data is collected and presented in a map that is publically
available. I encourage you to go look at the web site/map to get a sense of what kinds of data

https://www.youtube.com/watch?v=q8SzNKib5-4
Rick Paik Schoenberg

https://www.youtube.com/watch?v=NvHjYOilOf8
http://data.baltimoresun.com/bing-maps/homicides/

10/19/2020 17 Regular Expressions | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/regular-expressions.html 2/14

are presented there. Unfortunately, the data on the web site are not particularly amenable to
analysis, so I’ve scraped the data and put it in a separate file. The data in this file contain data
from January 2007 to October 2013.

Here is an excerpt of the Baltimore City homicides dataset:

The data set is formatted so that each homicide is presented on a single line of text. So when we
read the data in with readLines() , each element of the character vector represents one
homicide event. Notice that the data are riddled with HTML tags because they were scraped
directly from the web site.

A few interesting features stand out: We have the latitude and longitude of where the victim was
found; then there’s the street address; the age, race, and gender of the victim; the date on which
the victim was found; in which hospital the victim ultimately died; the cause of death.

17.3 grep()
Suppose we wanted to identify the records for all the victims of shootings (as opposed to other
causes)? How could we do that? From the map we know that for each cause of death there is a
different icon/flag placed on the map. In particular, they are different colors. You can see that is
indicated in the dataset for shooting deaths with a iconHomicideShooting label. Perhaps we
can use this aspect of the data to idenfity all of the shootings.

Here I use grep() to match the literal iconHomicideShooting into the character vector of
homicides.

> homicides <- readLines("homicides.txt")

>

> ## Total number of events recorded

> length(homicides)

[1] 1571

> homicides[1]

[1] "39.311024, -76.674227, iconHomicideShooting, 'p2', '<dl><dt>Leon Nelson</dt><d

> homicides[1000]

[1] "39.33626300000, -76.55553990000, icon_homicide_shooting, 'p1200', '<dl><dt><a

Rick Paik Schoenberg

10/19/2020 17 Regular Expressions | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/regular-expressions.html 3/14

Using this approach I get 228 shooting deaths. However, I notice that for some of the entries, the
indicator for the homicide “flag” is noted as icon_homicide_shooting . It’s not uncommon over
time for web site maintainers to change the names of files or update files. What happens if we
now grep() on both icon names using the | operator?

Now we have 1263 shooting deaths, which is quite a bit more. In fact, the vast majority of
homicides in Baltimore are shooting deaths.

Another possible way to do this is to grep() on the cause of death field, which seems to have
the format Cause: shooting . We can grep() on this literally and get

Notice that we seem to be undercounting again. This is because for some of the entries, the
word “shooting” uses a captial “S” while other entries use a lower case “s”. We can handle this
variation by using a character class in our regular expression.

One thing you have to be careful of when processing text data is not not grep() things out of
context. For example, suppose we just grep() -ed on the expression [Ss]hooting .

> g <- grep("iconHomicideShooting", homicides)

> length(g)

[1] 228

> g <- grep("iconHomicideShooting|icon_homicide_shooting", homicides)

> length(g)

[1] 1263

> g <- grep("Cause: shooting", homicides)

> length(g)

[1] 228

> g <- grep("Cause: [Ss]hooting", homicides)

> length(g)

[1] 1263

Rick Paik Schoenberg

10/19/2020 17 Regular Expressions | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/regular-expressions.html 4/14

Notice that we see to pick up 2 extra homicides this way. We can figure out which ones they are
by comparing the results of the two expressions.

First we can get the indices for the first expresssion match.

Then we can get the indices for just matching on [Ss]hooting .

Now we just need to identify which are the entries that the vectors i and j do not have in
common.

Here we can see that the index vector j has two entries that are not in i : entries 318, 859.
We can take a look at these entries directly to see what makes them different.

> g <- grep("[Ss]hooting", homicides)

> length(g)

[1] 1265

> i <- grep("[cC]ause: [Ss]hooting", homicides)

> str(i)

 int [1:1263] 1 2 6 7 8 9 10 11 12 13 ...

> j <- grep("[Ss]hooting", homicides)

> str(j)

 int [1:1265] 1 2 6 7 8 9 10 11 12 13 ...

> setdiff(i, j)

integer(0)

> setdiff(j, i)

[1] 318 859

> homicides[859]

[1] "39.33743900000, -76.66316500000, icon_homicide_bluntforce, 'p914', '<dl><dt><a

Rick Paik Schoenberg

10/19/2020 17 Regular Expressions | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/regular-expressions.html 5/14

Here we can see that the word “shooting” appears in the narrative text that accompanies the
data, but the ultimate cause of death was in fact blunt force.

When developing a regular expression to extract entries from a large dataset, it’s
important that you understand the formatting of the dataset well enough so that you
can develop a specific expression that doesn’t accidentally grep data out of context.

Sometimes we want to identify elements of a character vector that match a pattern, but instead
of returning their indices we want the actual values that satisfy the match. For example, we may
want to identify all of the states in the United States whose names start with “New”.

This gives us the indices into the state.name variable that match, but setting value = TRUE
returns the actual elements of the character vector that match.

17.4 grepl()
The function grepl() works much like grep() except that it differs in its return value.
 grepl() returns a logical vector indicating which element of a character vector contains the
match. For example, suppose we want to know which states in the United States begin with
word “New”.

> grep("^New", state.name)

[1] 29 30 31 32

> grep("^New", state.name, value = TRUE)

[1] "New Hampshire" "New Jersey" "New Mexico" "New York"

10/19/2020 17 Regular Expressions | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/regular-expressions.html 6/14

Here, we can see that grepl() returns a logical vector that can be used to subset the original
 state.name vector.

17.5 regexpr()
Both the grep() and the grepl() functions have some limitations. In particular, both
functions tell you which strings in a character vector match a certain pattern but they don’t tell
you exactly where the match occurs or what the match is for a more complicated regular
expression.

The regexpr() function gives you the (a) index into each string where the match begins and
the (b) length of the match for that string. regexpr() only gives you the first match of the string
(reading left to right). gregexpr() will give you all of the matches in a given string if there are is
more than one match.

In our Baltimore City homicides dataset, we might be interested in finding the date on which
each victim was found. Taking a look at the dataset

it seems that we might be able to just grep on the word “Found”. However, the word “found”
may be found elsewhere in the entry, such as in this entry, where the word “found” appears in
the narrative text at the end.

> g <- grepl("^New", state.name)

> g

 [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[25] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE

[37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[49] FALSE FALSE

> state.name[g]

[1] "New Hampshire" "New Jersey" "New Mexico" "New York"

> homicides[1]

[1] "39.311024, -76.674227, iconHomicideShooting, 'p2', '<dl><dt>Leon Nelson</dt><d

Rick Paik Schoenberg

10/19/2020 17 Regular Expressions | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/regular-expressions.html 7/14

But we can see that the date is typically preceded by “Found on” and is surrounded by <dd>
</dd> tags, so let’s use the pattern <dd>[F|f]ound(.*)</dd> and see what it brings up.

We can use the substr() function to extract the first match in the first string.

Immediately, we can see that the regular expression picked up too much information. This is
because the previous pattern was too greedy and matched too much of the string. We need to
use the ? metacharacter to make the regular expression “lazy” so that it stops at the first
 </dd> tag.

> homicides[954]

[1] "39.30677400000, -76.59891100000, icon_homicide_shooting, 'p816', '<dl><dt><a h

> regexpr("<dd>[F|f]ound(.*)</dd>", homicides[1:10])

 [1] 177 178 188 189 178 182 178 187 182 183

attr(,"match.length")

 [1] 93 86 89 90 89 84 85 84 88 84

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

> substr(homicides[1], 177, 177 + 93 - 1)

[1] "<dd>Found on January 1, 2007</dd><dd>Victim died at Shock Trauma</dd><dd>Cause

> regexpr("<dd>[F|f]ound(.*?)</dd>", homicides[1:10])

 [1] 177 178 188 189 178 182 178 187 182 183

attr(,"match.length")

 [1] 33 33 33 33 33 33 33 33 33 33

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

10/19/2020 17 Regular Expressions | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/regular-expressions.html 8/14

Now when we look at the substrings indicated by the regexpr() output, we get

While it’s straightforward to take the output of regexpr() and feed it into substr() to get the
matches out of the original data, one handy function is regmatches() which extracts the
matches in the strings for you without you having to use substr() .

17.6 sub() and gsub()
Sometimes we need to clean things up or modify strings by matching a pattern and replacing it
with something else. For example, how can we extract the date from this string?

We want to strip out the stuff surrounding the “January 1, 2007” portion. We can do that by
matching on the text that comes before and after it using the | operator and then replacing it
with the empty string.

Notice that the sub() function found the first match (at the beginning of the string) and
replaced it and then stopped. However, there was another match at the end of the string that we
also wanted to replace. To get both matches, we need the gsub() function.

> substr(homicides[1], 177, 177 + 33 - 1)

[1] "<dd>Found on January 1, 2007</dd>"

> r <- regexpr("<dd>[F|f]ound(.*?)</dd>", homicides[1:5])

> regmatches(homicides[1:5], r)

[1] "<dd>Found on January 1, 2007</dd>" "<dd>Found on January 2, 2007</dd>"

[3] "<dd>Found on January 2, 2007</dd>" "<dd>Found on January 3, 2007</dd>"

[5] "<dd>Found on January 5, 2007</dd>"

> x <- substr(homicides[1], 177, 177 + 33 - 1)

> x

[1] "<dd>Found on January 1, 2007</dd>"

> sub("<dd>[F|f]ound on |</dd>", "", x)

[1] "January 1, 2007</dd>"

10/19/2020 17 Regular Expressions | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/regular-expressions.html 9/14

The sub() and gsub()` functions can take vector arguments so we don’t have to process each
string one by one.

Finally, it may be useful to convert these strings to the Date class so that we can do some
date-related computations.

17.7 regexec()
The regexec() function works like regexpr() except it gives you the indices for
parenthesized sub-expressions. For example, take a look at the following expression.

> gsub("<dd>[F|f]ound on |</dd>", "", x)

[1] "January 1, 2007"

> r <- regexpr("<dd>[F|f]ound(.*?)</dd>", homicides[1:5])

> m <- regmatches(homicides[1:5], r)

> m

[1] "<dd>Found on January 1, 2007</dd>" "<dd>Found on January 2, 2007</dd>"

[3] "<dd>Found on January 2, 2007</dd>" "<dd>Found on January 3, 2007</dd>"

[5] "<dd>Found on January 5, 2007</dd>"

> d <- gsub("<dd>[F|f]ound on |</dd>", "", m)

>

> ## Nice and clean

> d

[1] "January 1, 2007" "January 2, 2007" "January 2, 2007" "January 3, 2007"

[5] "January 5, 2007"

> as.Date(d, "%B %d, %Y")

[1] "2007-01-01" "2007-01-02" "2007-01-02" "2007-01-03" "2007-01-05"

10/19/2020 17 Regular Expressions | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/regular-expressions.html 10/14

Notice first that the regular expression itself has a portion in parentheses () . That is the
portion of the expression that I presume will contain the date. In the output, you’ll notice that
there are two indices and two “match.length” values. The first index tells you where the overall
match begins (character 177) and the second index tells you where the expression in the
parentheses begins (character 190).

By contrast, if we only use the regexpr() function, we get

We can use the substr() function to demonstrate which parts of a strings are matched by the
 regexec() function.

Here’s the output for regexec() .

> regexec("<dd>[F|f]ound on (.*?)</dd>", homicides[1])

[[1]]

[1] 177 190

attr(,"match.length")

[1] 33 15

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

> regexec("<dd>[F|f]ound on .*?</dd>", homicides[1])

[[1]]

[1] 177

attr(,"match.length")

[1] 33

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

10/19/2020 17 Regular Expressions | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/regular-expressions.html 11/14

Here’s the overall expression match.

And here’s the parenthesized sub-expression.

All this can be done much more easily with the regmatches() function.

Notice that regmatches() returns a list in this case, where each element of the list contains
two strings: the overall match and the parenthesized sub-expression.

As an example, we can make a plot of monthly homicide counts. First we need a regular
expression to capture the dates.

> regexec("<dd>[F|f]ound on (.*?)</dd>", homicides[1])

[[1]]

[1] 177 190

attr(,"match.length")

[1] 33 15

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

> substr(homicides[1], 177, 177 + 33 - 1)

[1] "<dd>Found on January 1, 2007</dd>"

> substr(homicides[1], 190, 190 + 15 - 1)

[1] "January 1, 2007"

> r <- regexec("<dd>[F|f]ound on (.*?)</dd>", homicides[1:2])

> regmatches(homicides[1:2], r)

[[1]]

[1] "<dd>Found on January 1, 2007</dd>" "January 1, 2007"

[[2]]

[1] "<dd>Found on January 2, 2007</dd>" "January 2, 2007"

10/19/2020 17 Regular Expressions | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/regular-expressions.html 12/14

Then we can loop through the list returned by regmatches() and extract the second element of
each (the parenthesized sub-expression).

Finally, we can convert the date strings into the Date class and make a histogram of the
counts.

We can see from the picture that homicides do not occur uniformly throughout the year and
appear to have some seasonality to them.

> r <- regexec("<dd>[F|f]ound on (.*?)</dd>", homicides)

> m <- regmatches(homicides, r)

> dates <- sapply(m, function(x) x[2])

> dates <- as.Date(dates, "%B %d, %Y")

> hist(dates, "month", freq = TRUE, main = "Monthly Homicides in Baltimore")

10/19/2020 17 Regular Expressions | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/regular-expressions.html 13/14

17.8 The stringr Package
The stringr package is part of the tidyverse collection of packages and wraps they underlying
 stringi package in a series of convenience functions. Some of the complexity of using the
base R regular expression functions is usefully hidden by the stringr functions. In addition,
the stringr functions provide a more rational interface to regular expressions with more
consistency in the arguments and argument ordering.

Given what we have discussed so far, there is a fairly straightforward mapping from the base R
functions to the stringr functions. In general, for the stringr functions, the data are the
first argument and the regular expression is the second argument, with optional arguments
afterwards.

 str_subset() is much like grep(value = TRUE) and returns a character vector of strings
that contain a given match.

 str_detect() is essentially equivalent grepl() .

 str_extract() plays the role of regexpr() and regmatches() , extracting the matches
from the output.

Finally, str_match() does the job of regexec() by provide a matrix containing the
parenthesized sub-expressions.

> library(stringr)

> g <- str_subset(homicides, "iconHomicideShooting")

> length(g)

[1] 228

> str_extract(homicides[1:10], "<dd>[F|f]ound(.*?)</dd>")

 [1] "<dd>Found on January 1, 2007</dd>" "<dd>Found on January 2, 2007</dd>"

 [3] "<dd>Found on January 2, 2007</dd>" "<dd>Found on January 3, 2007</dd>"

 [5] "<dd>Found on January 5, 2007</dd>" "<dd>Found on January 5, 2007</dd>"

 [7] "<dd>Found on January 5, 2007</dd>" "<dd>Found on January 7, 2007</dd>"

 [9] "<dd>Found on January 8, 2007</dd>" "<dd>Found on January 8, 2007</dd>"

https://www.tidyverse.org/

10/19/2020 17 Regular Expressions | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/regular-expressions.html 14/14

Note how the second column of the output contains the values of the parenthesized sub-
expressions. We could now obtain these values by extracting the second column of the matrix. If
there had been more parenthesized sub-expressions, there would have been more columns in
the output matrix.

17.9 Summary
The primary R functions for dealing with regular expressions are

 grep() , grepl() : Search for matches of a regular expression/pattern in a character
vector

 regexpr() , gregexpr(): Search a character vector for regular expression matches
and return the indices where the match begins; useful in conjunction

with regmatches()`

 sub() , gsub() : Search a character vector for regular expression matches and replace
that match with another string

 regexec() : Gives you indices of parethensized sub-expressions.

The stringr package provides a series of functions implementing much of the regular
expression functionality in R but with a more consistent and rationalized interface.

> str_match(homicides[1:5], "<dd>[F|f]ound on (.*?)</dd>")

 [,1] [,2]

[1,] "<dd>Found on January 1, 2007</dd>" "January 1, 2007"

[2,] "<dd>Found on January 2, 2007</dd>" "January 2, 2007"

[3,] "<dd>Found on January 2, 2007</dd>" "January 2, 2007"

[4,] "<dd>Found on January 3, 2007</dd>" "January 3, 2007"

[5,] "<dd>Found on January 5, 2007</dd>" "January 5, 2007"

