
9/22/2020 6 Using the readr Package | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/using-the-readr-package.html 1/5

6 Using the readr Package
The readr package is recently developed by Hadley Wickham to deal with reading in large flat
files quickly. The package provides replacements for functions like read.table() and
 read.csv() . The analogous functions in readr are read_table() and read_csv() . These
functions are often much faster than their base R analogues and provide a few other nice
features such as progress meters.

For the most part, you can read use read_table() and read_csv() pretty much anywhere
you might use read.table() and read.csv() . In addition, if there are non-fatal problems
that occur while reading in the data, you will get a warning and the returned data frame will have
some information about which rows/observations triggered the warning. This can be very helpful
for “debugging” problems with your data before you get neck deep in data analysis.

The importance of the read_csv function is perhaps better understood from an historical
perspective. R’s built in read.csv function similarly reads CSV files, but the read_csv
function in readr builds on that by removing some of the quirks and “gotchas” of read.csv
as well as dramatically optimizing the speed with which it can read data into R. The read_csv
function also adds some nice user-oriented features like a progress meter and a compact
method for specifying column types.

A typical call to read_csv will look as follows.

9/22/2020 6 Using the readr Package | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/using-the-readr-package.html 2/5

By default, read_csv will open a CSV file and read it in line-by-line. It will also (by default), read
in the first few rows of the table in order to figure out the type of each column (i.e. integer,
character, etc.). From the read_csv help page:

You can specify the type of each column with the col_types argument.

In general, it’s a good idea to specify the column types explicitly. This rules out any possible
guessing errors on the part of read_csv . Also, specifying the column types explicitly provides a
useful safety check in case anything about the dataset should change without you knowing
about it.

> library(readr)

> teams <- read_csv("data/team_standings.csv")

Parsed with column specification:

cols(

 Standing = col_double(),

 Team = col_character()

)

> teams

A tibble: 32 x 2

 Standing Team

 <dbl> <chr>

 1 1 Spain

 2 2 Netherlands

 3 3 Germany

 4 4 Uruguay

 5 5 Argentina

 6 6 Brazil

 7 7 Ghana

 8 8 Paraguay

 9 9 Japan

10 10 Chile

… with 22 more rows

If ‘NULL’, all column types will be imputed from the first 1000 rows on the input. This is
convenient (and fast), but not robust. If the imputation fails, you’ll need to supply the correct
types yourself.

9/22/2020 6 Using the readr Package | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/using-the-readr-package.html 3/5

Note that the col_types argument accepts a compact representation. Here "cc" indicates
that the first column is character and the second column is character (there are only two
columns). Using the col_types argument is useful because often it is not easy to automatically
figure out the type of a column by looking at a few rows (especially if a column has many missing
values).

The read_csv function will also read compressed files automatically. There is no need to
decompress the file first or use the gzfile connection function. The following call reads a
gzip-compressed CSV file containing download logs from the RStudio CRAN mirror.

Note that the warnings indicate that read_csv may have had some difficulty identifying the
type of each column. This can be solved by using the col_types argument.

> teams <- read_csv("data/team_standings.csv", col_types = "cc")

> logs <- read_csv("data/2016-07-19.csv.bz2", n_max = 10)

Parsed with column specification:

cols(

 date = col_date(format = ""),

 time = col_time(format = ""),

 size = col_double(),

 r_version = col_character(),

 r_arch = col_character(),

 r_os = col_character(),

 package = col_character(),

 version = col_character(),

 country = col_character(),

 ip_id = col_double()

)

9/22/2020 6 Using the readr Package | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/using-the-readr-package.html 4/5

You can specify the column type in a more detailed fashion by using the various col_*
functions. For example, in the log data above, the first column is actually a date, so it might
make more sense to read it in as a Date variable. If we wanted to just read in that first column,
we could do

> logs <- read_csv("data/2016-07-19.csv.bz2", col_types = "ccicccccci", n_max = 10)

> logs

A tibble: 10 x 10

 date time size r_version r_arch r_os package version country ip_id

 <chr> <chr> <int> <chr> <chr> <chr> <chr> <chr> <chr> <int>

 1 2016-0… 22:00… 1.89e6 3.3.0 x86_64 mingw32 data.t… 1.9.6 US 1

 2 2016-0… 22:00… 4.54e4 3.3.1 x86_64 mingw32 assert… 0.1 US 2

 3 2016-0… 22:00… 1.43e7 3.3.1 x86_64 mingw32 stringi 1.1.1 DE 3

 4 2016-0… 22:00… 1.89e6 3.3.1 x86_64 mingw32 data.t… 1.9.6 US 4

 5 2016-0… 22:00… 3.90e5 3.3.1 x86_64 mingw32 foreach 1.4.3 US 4

 6 2016-0… 22:00… 4.88e4 3.3.1 x86_64 linux-… tree 1.0-37 CO 5

 7 2016-0… 22:00… 5.25e2 3.3.1 x86_64 darwin… surviv… 2.39-5 US 6

 8 2016-0… 22:00… 3.23e6 3.3.1 x86_64 mingw32 Rcpp 0.12.5 US 2

 9 2016-0… 22:00… 5.56e5 3.3.1 x86_64 mingw32 tibble 1.1 US 2

10 2016-0… 22:00… 1.52e5 3.3.1 x86_64 mingw32 magrit… 1.5 US 2

9/22/2020 6 Using the readr Package | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/using-the-readr-package.html 5/5

Now the date column is stored as a Date object which can be used for relevant date-related
computations (for example, see the lubridate package).

The read_csv function has a progress option that defaults to TRUE. This options
provides a nice progress meter while the CSV file is being read. However, if you are
using read_csv in a function, or perhaps embedding it in a loop, it’s probably best
to set progress = FALSE .

> logdates <- read_csv("data/2016-07-19.csv.bz2",

+ col_types = cols_only(date = col_date()),

+ n_max = 10)

> logdates

A tibble: 10 x 1

 date

 <date>

 1 2016-07-19

 2 2016-07-19

 3 2016-07-19

 4 2016-07-19

 5 2016-07-19

 6 2016-07-19

 7 2016-07-19

 8 2016-07-19

 9 2016-07-19

10 2016-07-19

