
10/5/2020 9 Subsetting R Objects | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/subsetting-r-objects.html 1/8

9 Subsetting R Objects
Watch a video of this section

There are three operators that can be used to extract subsets of R objects.

The [operator always returns an object of the same class as the original. It can be used
to select multiple elements of an object

The [[operator is used to extract elements of a list or a data frame. It can only be used to
extract a single element and the class of the returned object will not necessarily be a list or
data frame.

The $ operator is used to extract elements of a list or data frame by literal name. Its
semantics are similar to that of [[.

9.1 Subsetting a Vector
Vectors are basic objects in R and they can be subsetted using the [operator.

The [operator can be used to extract multiple elements of a vector by passing the operator an
integer sequence. Here we extract the first four elements of the vector.

The sequence does not have to be in order; you can specify any arbitrary integer vector.

> x <- c("a", "b", "c", "c", "d", "a")

> x[1] ## Extract the first element

[1] "a"

> x[2] ## Extract the second element

[1] "b"

> x[1:4]

[1] "a" "b" "c" "c"

https://youtu.be/VfZUZGUgHqg

10/5/2020 9 Subsetting R Objects | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/subsetting-r-objects.html 2/8

We can also pass a logical sequence to the [operator to extract elements of a vector that
satisfy a given condition. For example, here we want the elements of x that come
lexicographically after the letter “a”.

Another, more compact, way to do this would be to skip the creation of a logical vector and just
subset the vector directly with the logical expression.

9.2 Subsetting a Matrix
Watch a video of this section

Matrices can be subsetted in the usual way with (i,j) type indices. Here, we create simple \
(2\times3\) matrix with the matrix function.

We can access the \((1,2)\) or the \((2,1)\) element of this matrix using the appropriate indices.

> x[c(1, 3, 4)]

[1] "a" "c" "c"

> u <- x > "a"

> u

[1] FALSE TRUE TRUE TRUE TRUE FALSE

> x[u]

[1] "b" "c" "c" "d"

> x[x > "a"]

[1] "b" "c" "c" "d"

> x <- matrix(1:6, 2, 3)

> x

 [,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

https://youtu.be/FzjXesh9tRw
T/F

10/5/2020 9 Subsetting R Objects | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/subsetting-r-objects.html 3/8

Indices can also be missing. This behavior is used to access entire rows or columns of a matrix.

9.2.1 Dropping matrix dimensions

By default, when a single element of a matrix is retrieved, it is returned as a vector of length 1
rather than a \(1\times1\) matrix. Often, this is exactly what we want, but this behavior can be
turned off by setting drop = FALSE .

Similarly, when we extract a single row or column of a matrix, R by default drops the dimension
of length 1, so instead of getting a \(1\times3\) matrix after extracting the first row, we get a
vector of length 3. This behavior can similarly be turned off with the drop = FALSE option.

> x[1, 2]

[1] 3

> x[2, 1]

[1] 2

> x[1,] ## Extract the first row

[1] 1 3 5

> x[, 2] ## Extract the second column

[1] 3 4

> x <- matrix(1:6, 2, 3)

> x[1, 2]

[1] 3

> x[1, 2, drop = FALSE]

 [,1]

[1,] 3

The result is a matrix

10/5/2020 9 Subsetting R Objects | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/subsetting-r-objects.html 4/8

Be careful of R’s automatic dropping of dimensions. This is a feature that is often quite useful
during interactive work, but can later come back to bite you when you are writing longer
programs or functions.

9.3 Subsetting Lists
Watch a video of this section

Lists in R can be subsetted using all three of the operators mentioned above, and all three are
used for different purposes.

The [[operator can be used to extract single elements from a list. Here we extract the first
element of the list.

> x <- matrix(1:6, 2, 3)

> x[1,]

[1] 1 3 5

> x[1, , drop = FALSE]

 [,1] [,2] [,3]

[1,] 1 3 5

> x <- list(foo = 1:4, bar = 0.6)

> x

$foo

[1] 1 2 3 4

$bar

[1] 0.6

> x[[1]]

[1] 1 2 3 4

https://youtu.be/DStKguVpuDI
matrix

10/5/2020 9 Subsetting R Objects | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/subsetting-r-objects.html 5/8

The [[operator can also use named indices so that you don’t have to remember the exact
ordering of every element of the list. You can also use the $ operator to extract elements by
name.

Notice you don’t need the quotes when you use the $ operator.

One thing that differentiates the [[operator from the $ is that the [[operator can be used
with computed indices. The $ operator can only be used with literal names.

9.4 Subsetting Nested Elements of a List
The [[operator can take an integer sequence if you want to extract a nested element of a list.

> x[["bar"]]

[1] 0.6

> x$bar

[1] 0.6

> x <- list(foo = 1:4, bar = 0.6, baz = "hello")

> name <- "foo"

>

> ## computed index for "foo"

> x[[name]]

[1] 1 2 3 4

>

> ## element "name" doesn’t exist! (but no error here)

> x$name

NULL

>

> ## element "foo" does exist

> x$foo

[1] 1 2 3 4

This makes sense esp since
you wouldn't say x$"foo".
A little weird that there's no error though.

10/5/2020 9 Subsetting R Objects | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/subsetting-r-objects.html 6/8

9.5 Extracting Multiple Elements of a List
The [operator can be used to extract multiple elements from a list. For example, if you
wanted to extract the first and third elements of a list, you would do the following

Note that x[c(1, 3)] is NOT the same as x[[c(1, 3)]] .

Remember that the [operator always returns an object of the same class as the original.
Since the original object was a list, the [operator returns a list. In the above code, we
returned a list with two elements (the first and the third).

> x <- list(a = list(10, 12, 14), b = c(3.14, 2.81))

>

> ## Get the 3rd element of the 1st element

> x[[c(1, 3)]]

[1] 14

>

> ## Same as above

> x[[1]][[3]]

[1] 14

>

> ## 1st element of the 2nd element

> x[[c(2, 1)]]

[1] 3.14

> x <- list(foo = 1:4, bar = 0.6, baz = "hello")

> x[c(1, 3)]

$foo

[1] 1 2 3 4

$baz

[1] "hello"

Weird! Don't do this!
It's easy to mistake this for
the 1st and 3rd elements
of the list.
Use x[c(1,3)] instead. See below.

Much more sensible.

10/5/2020 9 Subsetting R Objects | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/subsetting-r-objects.html 7/8

9.6 Partial Matching
Watch a video of this section

Partial matching of names is allowed with [[and $. This is often very useful during
interactive work if the object you’re working with has very long element names. You can just
abbreviate those names and R will figure out what element you’re referring to.

In general, this is fine for interactive work, but you shouldn’t resort to partial matching if you are
writing longer scripts, functions, or programs. In those cases, you should refer to the full element
name if possible. That way there’s no ambiguity in your code.

9.7 Removing NA Values
Watch a video of this section

A common task in data analysis is removing missing values (NA s).

What if there are multiple R objects and you want to take the subset with no missing values in
any of those objects?

> x <- list(aardvark = 1:5)

> x$a

[1] 1 2 3 4 5

> x[["a"]]

NULL

> x[["a", exact = FALSE]]

[1] 1 2 3 4 5

> x <- c(1, 2, NA, 4, NA, 5)

> bad <- is.na(x)

> print(bad)

[1] FALSE FALSE TRUE FALSE TRUE FALSE

> x[!bad]

[1] 1 2 4 5

https://youtu.be/q3BNhHHVCu4
Interesting.

https://youtu.be/TtJxmwXbwo0

10/5/2020 9 Subsetting R Objects | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/subsetting-r-objects.html 8/8

You can use complete.cases on data frames too.

> x <- c(1, 2, NA, 4, NA, 5)

> y <- c("a", "b", NA, "d", NA, "f")

> good <- complete.cases(x, y)

> good

[1] TRUE TRUE FALSE TRUE FALSE TRUE

> x[good]

[1] 1 2 4 5

> y[good]

[1] "a" "b" "d" "f"

> head(airquality)

 Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

5 NA NA 14.3 56 5 5

6 28 NA 14.9 66 5 6

> good <- complete.cases(airquality)

> head(airquality[good,])

 Ozone Solar.R Wind Temp Month Day

1 41 190 7.4 67 5 1

2 36 118 8.0 72 5 2

3 12 149 12.6 74 5 3

4 18 313 11.5 62 5 4

7 23 299 8.6 65 5 7

8 19 99 13.8 59 5 8

This can be confusing though if
you end up only looking at certain columns
and don't care if there are NAs
in excluded columns.

