
10/19/2020 Chapter 23 Web scraping | Introduction to Data Science

https://rafalab.github.io/dsbook/web-scraping.html 1/11

Chapter 23 Web scraping
The data we need to answer a question is not always in a spreadsheet ready for us to read. For
example, the US murders dataset we used in the R Basics chapter originally comes from this
Wikipedia page:

You can see the data table when you visit the webpage:

(Web page courtesy of Wikipedia . CC-BY-SA-3.0 license . Screenshot of part of the page.)

Unfortunately, there is no link to a data file. To make the data frame that is loaded when we type
 data(murders) , we had to do some web scraping.

Web scraping, or web harvesting, is the term we use to describe the process of extracting data
from a website. The reason we can do this is because the information used by a browser to
render webpages is received as a text file from a server. The text is code written in hyper text
markup language (HTML). Every browser has a way to show the html source code for a page,
each one different. On Chrome, you can use Control-U on a PC and command+alt+U on a Mac.
You will see something like this:

url <- paste0("https://en.wikipedia.org/w/index.php?title=",

 "Gun_violence_in_the_United_States_by_state",

 "&direction=prev&oldid=810166167")

81 82

for later

10/19/2020 Chapter 23 Web scraping | Introduction to Data Science

https://rafalab.github.io/dsbook/web-scraping.html 2/11

23.1 HTML
Because this code is accessible, we can download the HTML file, import it into R, and then write
programs to extract the information we need from the page. However, once we look at HTML
code, this might seem like a daunting task. But we will show you some convenient tools to
facilitate the process. To get an idea of how it works, here are a few lines of code from the
Wikipedia page that provides the US murders data:

10/19/2020 Chapter 23 Web scraping | Introduction to Data Science

https://rafalab.github.io/dsbook/web-scraping.html 3/11

<table class="wikitable sortable">

<tr>

<th>State</th>

<th><a href="/wiki/List_of_U.S._states_and_territories_by_population"

title="List of U.S. states and territories by population">Population

<small>(total inhabitants)</small>

<small>(2015)</small> <sup id="cite_ref-1" class="reference">

[1]</sup></th>

<th>Murders and Nonnegligent

<p>Manslaughter

<small>(total deaths)</small>

<small>(2015)</small> <sup id="cite_ref-2" class="reference">

[2]</sup></p>

</th>

<th>Murder and Nonnegligent

<p>Manslaughter Rate

<small>(per 100,000 inhabitants)</small>

<small>(2015)</small></p>

</th>

</tr>

<tr>

<td>Alabama</td>

<td>4,853,875</td>

<td>348</td>

<td>7.2</td>

</tr>

<tr>

<td>Alaska</td>

<td>737,709</td>

<td>59</td>

<td>8.0</td>

</tr>

<tr>

10/19/2020 Chapter 23 Web scraping | Introduction to Data Science

https://rafalab.github.io/dsbook/web-scraping.html 4/11

You can actually see the data, except data values are surrounded by html code such as <td> .
We can also see a pattern of how it is stored. If you know HTML, you can write programs that
leverage knowledge of these patterns to extract what we want. We also take advantage of a
language widely used to make webpages look “pretty” called Cascading Style Sheets (CSS). We
say more about this in Section 23.3.

Although we provide tools that make it possible to scrape data without knowing HTML, as a data
scientist it is quite useful to learn some HTML and CSS. Not only does this improve your
scraping skills, but it might come in handy if you are creating a webpage to showcase your work.
There are plenty of online courses and tutorials for learning these. Two examples are
Codeacademy and W3schools .

23.2 The rvest package

The tidyverse provides a web harvesting package called rvest. The first step using this package
is to import the webpage into R. The package makes this quite simple:

Note that the entire Murders in the US Wikipedia webpage is now contained in h . The class of
this object is:

The rvest package is actually more general; it handles XML documents. XML is a general
markup language (that’s what the ML stands for) that can be used to represent any kind of data.
HTML is a specific type of XML specifically developed for representing webpages. Here we focus
on HTML documents.

Now, how do we extract the table from the object h ? If we print h , we don’t really see much:

83 84

library(tidyverse)

library(rvest)

h <- read_html(url)

class(h)

#> [1] "xml_document" "xml_node"

10/19/2020 Chapter 23 Web scraping | Introduction to Data Science

https://rafalab.github.io/dsbook/web-scraping.html 5/11

We can see all the code that defines the downloaded webpage using the html_text function
like this:

We don’t show the output here because it includes thousands of characters, but if we look at it,
we can see the data we are after are stored in an HTML table: you can see this in this line of the
HTML code above <table class="wikitable sortable"> . The different parts of an HTML
document, often defined with a message in between < and > are referred to as nodes. The
rvest package includes functions to extract nodes of an HTML document: html_nodes extracts
all nodes of different types and html_node extracts the first one. To extract the tables from the
html code we use:

Now, instead of the entire webpage, we just have the html code for the tables in the page:

The table we are interested is the first one:

h

#> {html_document}

#> <html class="client-nojs" lang="en" dir="ltr">

#> [1] <head>\n<meta http-equiv="Content-Type" content="text/html; chars ...

#> [2] <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns- ...

html_text(h)

tab <- h %>% html_nodes("table")

tab

#> {xml_nodeset (2)}

#> [1] <table class="wikitable sortable"><tbody>\n<tr>\n<th>State\n</th> ...

#> [2] <table class="nowraplinks hlist mw-collapsible mw-collapsed navbo ...

tab[[1]]

#> {html_node}

#> <table class="wikitable sortable">

#> [1] <tbody>\n<tr>\n<th>State\n</th>\n<th>\n<a href="/wiki/List_of_U.S ...

10/19/2020 Chapter 23 Web scraping | Introduction to Data Science

https://rafalab.github.io/dsbook/web-scraping.html 6/11

This is clearly not a tidy dataset, not even a data frame. In the code above, you can definitely see
a pattern and writing code to extract just the data is very doable. In fact, rvest includes a
function just for converting HTML tables into data frames:

We are now much closer to having a usable data table:

We still have some wrangling to do. For example, we need to remove the commas and turn
characters into numbers. Before continuing with this, we will learn a more general approach to
extracting information from web sites.

23.3 CSS selectors
The default look of a webpage made with the most basic HTML is quite unattractive. The
aesthetically pleasing pages we see today are made using CSS to define the look and style of
webpages. The fact that all pages for a company have the same style usually results from their
use of the same CSS file to define the style. The general way these CSS files work is by defining
how each of the elements of a webpage will look. The title, headings, itemized lists, tables, and
links, for example, each receive their own style including font, color, size, and distance from the

tab <- tab[[1]] %>% html_table

class(tab)

#> [1] "data.frame"

tab <- tab %>% setNames(c("state", "population", "total", "murder_rate"))

head(tab)

#> state population total murder_rate

#> 1 Alabama 4,853,875 348 7.2

#> 2 Alaska 737,709 59 8.0

#> 3 Arizona 6,817,565 309 4.5

#> 4 Arkansas 2,977,853 181 6.1

#> 5 California 38,993,940 1,861 4.8

#> 6 Colorado 5,448,819 176 3.2

10/19/2020 Chapter 23 Web scraping | Introduction to Data Science

https://rafalab.github.io/dsbook/web-scraping.html 7/11

margin. CSS does this by leveraging patterns used to define these elements, referred to as
selectors. An example of such a pattern, which we used above, is table , but there are many,
many more.

If we want to grab data from a webpage and we happen to know a selector that is unique to the
part of the page containing this data, we can use the html_nodes function. However, knowing
which selector can be quite complicated. In fact, the complexity of webpages has been
increasing as they become more sophisticated. For some of the more advanced ones, it seems
almost impossible to find the nodes that define a particular piece of data. However, selector
gadgets actually make this possible.

SelectorGadget is piece of software that allows you to interactively determine what CSS
selector you need to extract specific components from the webpage. If you plan on scraping
data other than tables from html pages, we highly recommend you install it. A Chrome extension
is available which permits you to turn on the gadget and then, as you click through the page, it
highlights parts and shows you the selector you need to extract these parts. There are various
demos of how to do this including rvest author Hadley Wickham’s vignette and other tutorials
based on the vignette .

23.4 JSON
Sharing data on the internet has become more and more common. Unfortunately, providers use
different formats, which makes it harder for data scientists to wrangle data into R. Yet there are
some standards that are also becoming more common. Currently, a format that is widely being
adopted is the JavaScript Object Notation or JSON. Because this format is very general, it is
nothing like a spreadsheet. This JSON file looks more like the code you use to define a list. Here
is an example of information stored in a JSON format:

85

86

87 88

10/19/2020 Chapter 23 Web scraping | Introduction to Data Science

https://rafalab.github.io/dsbook/web-scraping.html 8/11

#> [

#> {

#> "name": "Miguel",

#> "student_id": 1,

#> "exam_1": 85,

#> "exam_2": 86

#> },

#> {

#> "name": "Sofia",

#> "student_id": 2,

#> "exam_1": 94,

#> "exam_2": 93

#> },

#> {

#> "name": "Aya",

#> "student_id": 3,

#> "exam_1": 87,

#> "exam_2": 88

#> },

#> {

#> "name": "Cheng",

#> "student_id": 4,

#> "exam_1": 90,

#> "exam_2": 91

#> }

#>]

The file above actually represents a data frame. To read it, we can use the function fromJSON
from the jsonlite package. Note that JSON files are often made available via the internet. Several
organizations provide a JSON API or a web service that you can connect directly to and obtain
data. Here is an example:

10/19/2020 Chapter 23 Web scraping | Introduction to Data Science

https://rafalab.github.io/dsbook/web-scraping.html 9/11

This downloads a list. The first argument tells you when you downloaded it:

and the second is a data table:

You can learn much more by examining tutorials and help files from the jsonlite package. This
package is intended for relatively simple tasks such as converting data into tables. For more
flexibility, we recommend rjson .

23.5 Exercises
1. Visit the following web page:
https://web.archive.org/web/20181024132313/http://www.stevetheump.com/Payrolls.htm

Notice there are several tables. Say we are interested in comparing the payrolls of teams across
the years. The next few exercises take us through the steps needed to do this.

Start by applying what you learned to read in the website into an object called h .

2. Note that, although not very useful, we can actually see the content of the page by typing:

The next step is to extract the tables. For this, we can use the html_nodes function. We
learned that tables in html are associated with the table node. Use the html_nodes function
and the table node to extract the first table. Store it in an object nodes .

library(jsonlite)

res <- fromJSON('http://ergast.com/api/f1/2004/1/results.json')

citi_bike <- fromJSON("http://citibikenyc.com/stations/json")

citi_bike$executionTime

citi_bike$stationBeanList %>% as_tibble()

html_text(h)

https://web.archive.org/web/20181024132313/http://www.stevetheump.com/Payrolls.htm
Rick Paik Schoenberg
This file is still there.

This one no longer seems to be there.

10/19/2020 Chapter 23 Web scraping | Introduction to Data Science

https://rafalab.github.io/dsbook/web-scraping.html 10/11

3. The html_nodes function returns a list of objects of class xml_node . We can see the
content of each one using, for example, the html_text function. You can see the content for
an arbitrarily picked component like this:

If the content of this object is an html table, we can use the html_table function to convert it
to a data frame. Use the html_table function to convert the 8th entry of nodes into a table.

4. Repeat the above for the first 4 components of nodes . Which of the following are payroll
tables:

a. All of them.
b. 1
c. 2
d. 2-4

5. Repeat the above for the first last 3 components of nodes . Which of the following is true:

a. The last entry in nodes shows the average across all teams through time, not payroll per
team.

b. All three are payroll per team tables.
c. All three are like the first entry, not a payroll table.
d. All of the above.

6. We have learned that the first and last entries of nodes are not payroll tables. Redefine
 nodes so that these two are removed.

7. We saw in the previous analysis that the first table node is not actually a table. This happens
sometimes in html because tables are used to make text look a certain way, as opposed to
storing numeric values. Remove the first component and then use sapply and html_table to
convert each node in nodes into a table. Note that in this case, sapply will return a list of
tables. You can also use lapply to assure that a list is applied.

8. Look through the resulting tables. Are they all the same? Could we just join them with
 bind_rows ?

9. Create two tables, call them tab_1 and tab_2 using entries 10 and 19.

html_text(nodes[[8]])

10/19/2020 Chapter 23 Web scraping | Introduction to Data Science

https://rafalab.github.io/dsbook/web-scraping.html 11/11

10. Use a full_join function to combine these two tables. Before you do this you will have to
fix the missing header problem. You will also need to make the names match.

11. After joining the tables, you see several NAs. This is because some teams are in one table
and not the other. Use the anti_join function to get a better idea of why this is happening.

12. We see see that one of the problems is that Yankees are listed as both N.Y. Yankees and NY
Yankees. In the next section, we will learn efficient approaches to fixing problems like this. Here
we can do it “by hand” as follows:

Now join the tables and show only Oakland and the Yankees and the payroll columns.

13. Advanced: extract the titles of the movies that won Best Picture from this website:
https://m.imdb.com/chart/bestpicture/

81. https://en.wikipedia.org/w/index.php?
title=Gun_violence_in_the_United_States_by_state&direction=prev&oldid=810166167

82. https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-
ShareAlike_3.0_Unported_License

83. https://www.codecademy.com/learn/learn-html

84. https://www.w3schools.com/

85. http://selectorgadget.com/

86. https://cran.r-project.org/web/packages/rvest/vignettes/selectorgadget.html

87. https://stat4701.github.io/edav/2015/04/02/rvest_tutorial/

88. https://www.analyticsvidhya.com/blog/2017/03/beginners-guide-on-web-scraping-in-r-
using-rvest-with-hands-on-knowledge/

tab_1 <- tab_1 %>%

 mutate(Team = ifelse(Team == "N.Y. Yankees", "NY Yankees", Team))

https://m.imdb.com/chart/bestpicture/
https://en.wikipedia.org/w/index.php?title=Gun_violence_in_the_United_States_by_state&direction=prev&oldid=810166167
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://www.codecademy.com/learn/learn-html
https://www.w3schools.com/
http://selectorgadget.com/
https://cran.r-project.org/web/packages/rvest/vignettes/selectorgadget.html
https://stat4701.github.io/edav/2015/04/02/rvest_tutorial/
https://www.analyticsvidhya.com/blog/2017/03/beginners-guide-on-web-scraping-in-r-using-rvest-with-hands-on-knowledge/

