
10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 1/49

Chapter 24 String processing
One of the most common data wrangling challenges involves extracting numeric data contained
in character strings and converting them into the numeric representations required to make
plots, compute summaries, or fit models in R. Also common is processing unorganized text into
meaningful variable names or categorical variables. Many of the string processing challenges a
data scientist faces are unique and often unexpected. It is therefore quite ambitious to write a
comprehensive section on this topic. Here we use a series of case studies that help us
demonstrate how string processing is a necessary step for many data wrangling challenges.
Specifically, we describe the process of converting the not yet shown original raw data from
which we extracted the murders , heights , and research_funding_rates example into the
data frames we have studied in this book.

By going over these case studies, we will cover some of the most common tasks in string
processing including extracting numbers from strings, removing unwanted characters from text,
finding and replacing characters, extracting specific parts of strings, converting free form text to
more uniform formats, and splitting strings into multiple values.

Base R includes functions to perform all these tasks. However, they don’t follow a unifying
convention, which makes them a bit hard to memorize and use. The stringr package basically
repackages this functionality, but uses a more consistent approach of naming functions and
ordering their arguments. For example, in stringr, all the string processing functions start with
 str_ . This means that if you type str_ and hit tab, R will auto-complete and show all the
available functions. As a result, we don’t necessarily have to memorize all the function names.
Another advantage is that in the functions in this package the string being processed is always
the first argument, which means we can more easily use the pipe. Therefore, we will start by
describing how to use the functions in the stringr package.

Most of the examples will come from the second case study which deals with self-reported
heights by students and most of the chapter is dedicated to learning regular expressions (regex),
and functions in the stringr package.

24.1 The stringr package

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 2/49

In general, string processing tasks can be divided into detecting, locating, extracting, or
replacing patterns in strings. We will see several examples. The table below includes the
functions available to you in the stringr package. We split them by task. We also include the R-
base equivalent when available.

All these functions take a character vector as first argument. Also, for each function, operations
are vectorized: the operation gets applied to each string in the vector.

Finally, note that in this table we mention groups. These will be explained in Section 24.5.9.

library(tidyverse)

library(stringr)

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 3/49

stringr Task Description R-base

 str_detect Detect Is the pattern in the string? grepl

 str_which Detect
Returns the index of entries that
contain the pattern.

 grep

 str_subset Detect
Returns the subset of strings that
contain the pattern.

 grep with
 value =

TRUE

 str_locate Locate
Returns positions of first occurrence of
pattern in a string.

 regexpr

 str_locate_all Locate
Returns position of all occurrences of
pattern in a string.

 gregexpr

 str_view Locate
Show the first part of the string that
matches pattern.

 str_view_all Locate
Show me all the parts of the string that
match the pattern.

 str_extract Extract
Extract the first part of the string that
matches the pattern.

 str_extract_all Extract
Extract all parts of the string that
match the pattern.

 str_match Extract
Extract first part of the string that
matches the groups and the patterns
defined by the groups.

 str_match_all Extract
Extract all parts of the string that
matches the groups and the patterns
defined by the groups.

 str_sub Extract Extract a substring. substring

 str_split Extract
Split a string into a list with parts
separated by pattern.

 strsplit

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 4/49

stringr Task Description R-base

 str_split_fixed Extract
Split a string into a matrix with parts
separated by pattern.

 strsplit

with fixed
= TRUE

 str_count Describe
Count number of times a pattern
appears in a string.

 str_length Describe Number of character in string. nchar

 str_replace Replace
Replace first part of a string matching
a pattern with another.

 str_replace_all Replace
Replace all parts of a string matching a
pattern with another.

 gsub

 str_to_upper Replace Change all characters to upper case. toupper

 str_to_lower Replace Change all characters to lower case. tolower

 str_to_title Replace
Change first character to upper and
rest to lower.

 str_replace_na Replace Replace all NA s to a new value.

 str_trim Replace
Remove white space from start and
end of string.

 str_c Manipulate Join multiple strings. paste0

 str_conv Manipulate Change the encoding of the string.

 str_sort Manipulate Sort the vector in alphabetical order. sort

 str_order Manipulate
Index needed to order the vector in
alphabetical order.

 order

 str_trunc Manipulate Truncate a string to a fixed size.

 str_pad Manipulate
Add white space to string to make it a
fixed size.

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 5/49

stringr Task Description R-base

 str_dup Manipulate Repeat a string.
 rep then
 paste

 str_wrap Manipulate
Wrap things into formatted
paragraphs.

 str_interp Manipulate String interpolation. sprintf

24.2 Case study 1: US murders data
In this section we introduce some of the more simple string processing challenges with the
following datasets as an example:

The code above shows the first step in constructing the dataset

from the raw data, which was extracted from a Wikipedia page.

In general, string processing involves a string and a pattern. In R, we usually store strings in a
character vector such as murders$population . The first three strings in this vector defined by
the population variable are:

library(rvest)

url <- paste0("https://en.wikipedia.org/w/index.php?title=",

 "Gun_violence_in_the_United_States_by_state",

 "&direction=prev&oldid=810166167")

murders_raw <- read_html(url) %>%

 html_node("table") %>%

 html_table() %>%

 setNames(c("state", "population", "total", "murder_rate"))

library(dslabs)

data(murders)

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 6/49

The usual coercion does not work here:

This is because of the commas , . The string processing we want to do here is remove the
pattern, , , from the strings in murders_raw$population and then coerce to numbers. We
can use the str_detect function to see that two of the three columns have commas in the
entries:

We can then use the str_replace_all function to remove them:

We can then use mutate_all to apply this operation to each column, since it won’t affect the
columns without commas.

It turns out that this operation is so common that readr includes the function parse_number
specifically meant to remove non-numeric characters before coercing:

murders_raw$population[1:3]

#> [1] "4,853,875" "737,709" "6,817,565"

as.numeric(murders_raw$population[1:3])

#> Warning: NAs introduced by coercion

#> [1] NA NA NA

commas <- function(x) any(str_detect(x, ","))

murders_raw %>% summarize_all(commas)

#> state population total murder_rate

#> 1 FALSE TRUE TRUE FALSE

test_1 <- str_replace_all(murders_raw$population, ",", "")

test_1 <- as.numeric(test_1)

test_2 <- parse_number(murders_raw$population)

identical(test_1, test_2)

#> [1] TRUE

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 7/49

So we can obtain our desired table using:

This case is relatively simple compared to the string processing challenges that we typically face
in data science. The next example is a rather complex one and it provides several challenges
that will permit us to learn many string processing techniques.

24.3 Case study 2: self-reported heights

The dslabs package includes the raw data from which the heights dataset was obtained. You
can load it like this:

These heights were obtained using a web form in which students were asked to enter their
heights. They could enter anything, but the instructions asked for height in inches, a number. We
compiled 1,095 submissions, but unfortunately the column vector with the reported heights had
several non-numeric entries and as a result became a character vector:

If we try to parse it into numbers, we get a warning:

murders_new <- murders_raw %>% mutate_at(2:3, parse_number)

head(murders_new)

#> state population total murder_rate

#> 1 Alabama 4853875 348 7.2

#> 2 Alaska 737709 59 8.0

#> 3 Arizona 6817565 309 4.5

#> 4 Arkansas 2977853 181 6.1

#> 5 California 38993940 1861 4.8

#> 6 Colorado 5448819 176 3.2

data(reported_heights)

class(reported_heights$height)

#> [1] "character"

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 8/49

Although most values appear to be height in inches as requested:

we do end up with many NA s:

We can see some of the entries that are not successfully converted by using filter to keep
only the entries resulting in NA s:

x <- as.numeric(reported_heights$height)

#> Warning: NAs introduced by coercion

head(x)

#> [1] 75 70 68 74 61 65

sum(is.na(x))

#> [1] 81

reported_heights %>%

 mutate(new_height = as.numeric(height)) %>%

 filter(is.na(new_height)) %>%

 head(n=10)

#> time_stamp sex height new_height

#> 1 2014-09-02 15:16:28 Male 5' 4" NA

#> 2 2014-09-02 15:16:37 Female 165cm NA

#> 3 2014-09-02 15:16:52 Male 5'7 NA

#> 4 2014-09-02 15:16:56 Male >9000 NA

#> 5 2014-09-02 15:16:56 Male 5'7" NA

#> 6 2014-09-02 15:17:09 Female 5'3" NA

#> 7 2014-09-02 15:18:00 Male 5 feet and 8.11 inches NA

#> 8 2014-09-02 15:19:48 Male 5'11 NA

#> 9 2014-09-04 00:46:45 Male 5'9'' NA

#> 10 2014-09-04 10:29:44 Male 5'10'' NA

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 9/49

We immediately see what is happening. Some of the students did not report their heights in
inches as requested. We could discard these data and continue. However, many of the entries
follow patterns that, in principle, we can easily convert to inches. For example, in the output
above, we see various cases that use the format x'y'' with x and y representing feet and
inches, respectively. Each one of these cases can be read and converted to inches by a human,
for example 5'4'' is 5*12 + 4 = 64 . So we could fix all the problematic entries by hand.
However, humans are prone to making mistakes, so an automated approach is preferable. Also,
because we plan on continuing to collect data, it will be convenient to write code that
automatically does this.

A first step in this type of task is to survey the problematic entries and try to define specific
patterns followed by a large groups of entries. The larger these groups, the more entries we can
fix with a single programmatic approach. We want to find patterns that can be accurately
described with a rule, such as “a digit, followed by a feet symbol, followed by one or two digits,
followed by an inches symbol”.

To look for such patterns, it helps to remove the entries that are consistent with being in inches
and to view only the problematic entries. We thus write a function to automatically do this. We
keep entries that either result in NA s when applying as.numeric or are outside a range of
plausible heights. We permit a range that covers about 99.9999% of the adult population. We
also use suppressWarnings to avoid the warning message we know as.numeric will gives
us.

We apply this function and find the number of problematic entries:

not_inches <- function(x, smallest = 50, tallest = 84){

 inches <- suppressWarnings(as.numeric(x))

 ind <- is.na(inches) | inches < smallest | inches > tallest

 ind

}

problems <- reported_heights %>%

 filter(not_inches(height)) %>%

 pull(height)

length(problems)

#> [1] 292

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 10/49

We can now view all the cases by simply printing them. We don’t do that here because there are
 length(problems) , but after surveying them carefully, we see that three patterns can be used
to define three large groups within these exceptions.

1. A pattern of the form x'y or x' y'' or x'y" with x and y representing feet and
inches, respectively. Here are ten examples:

#> 5' 4" 5'7 5'7" 5'3" 5'11 5'9'' 5'10'' 5' 10 5'5" 5'2"

2. A pattern of the form x.y or x,y with x feet and y inches. Here are ten examples:

#> 5.3 5.5 6.5 5.8 5.6 5,3 5.9 6,8 5.5 6.2

3. Entries that were reported in centimeters rather than inches. Here are ten examples:

#> 150 175 177 178 163 175 178 165 165 180

Once we see these large groups following specific patterns, we can develop a plan of attack.
Remember that there is rarely just one way to perform these tasks. Here we pick one that helps
us teach several useful techniques. But surely there is a more efficient way of performing the
task.

Plan of attack: we will convert entries fitting the first two patterns into a standardized one. We
will then leverage the standardization to extract the feet and inches and convert to inches. We
will then define a procedure for identifying entries that are in centimeters and convert them to
inches. After applying these steps, we will then check again to see what entries were not fixed
and see if we can tweak our approach to be more comprehensive.

At the end, we hope to have a script that makes web-based data collection methods robust to
the most common user mistakes.

To achieve our goal, we will use a technique that enables us to accurately detect patterns and
extract the parts we want: regular expressions (regex). But first, we quickly describe how to
escape the function of certain characters so that they can be included in strings.

24.4 How to escape when defining strings

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 11/49

To define strings in R, we can use either double quotes:

or single quotes:

Make sure you choose the correct single quote since using the back quote will give you an error:

Error: object 'Hello' not found

Now, what happens if the string we want to define includes double quotes? For example, if we
want to write 10 inches like this 10" ? In this case you can’t use:

because this is just the string 10 followed by a double quote. If you type this into R, you get an
error because you have an unclosed double quote. To avoid this, we can use the single quotes:

If we print out s we see that the double quotes are escaped with the backslash \ .

In fact, escaping with the backslash provides a way to define the string while still using the
double quotes to define strings:

s <- "Hello!"

s <- 'Hello!'

s <- `Hello`

s <- "10""

s <- '10"'

s

#> [1] "10\""

s <- "10\""

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 12/49

In R, the function cat lets us see what the string actually looks like:

Now, what if we want our string to be 5 feet written like this 5' ? In this case, we can use the
double quotes:

So we’ve learned how to write 5 feet and 10 inches separately, but what if we want to write them
together to represent 5 feet and 10 inches like this 5'10" ? In this case, neither the single nor
double quotes will work. This:

closes the string after 5 and this:

closes the string after 10. Keep in mind that if we type one of the above code snippets into R, it
will get stuck waiting for you to close the open quote and you will have to exit the execution with
the esc button.

In this situation, we need to escape the function of the quotes with the backslash \ . You can
escape either character like this:

or like this:

cat(s)

#> 10"

s <- "5'"

cat(s)

#> 5'

s <- '5'10"'

s <- "5'10""

s <- '5\'10"'

cat(s)

#> 5'10"

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 13/49

Escaping characters is something we often have to use when processing strings.

24.5 Regular expressions
A regular expression (regex) is a way to describe specific patterns of characters of text. They can
be used to determine if a given string matches the pattern. A set of rules has been defined to do
this efficiently and precisely and here we show some examples. We can learn more about these
rules by reading a detailed tutorials . This RStudio cheat sheet is also very useful.

The patterns supplied to the stringr functions can be a regex rather than a standard string. We
will learn how this works through a series of examples.

Throughout this section you will see that we create strings to test out our regex. To do this, we
define patterns that we know should match and also patterns that we know should not. We will
call them yes and no , respectively. This permits us to check for the two types of errors:
failing to match and incorrectly matching.

24.5.1 Strings are a regexp

Technically any string is a regex, perhaps the simplest example is a single character. So the
comma , used in the next code example is a simple example of searching with regex.

We suppress the output which is logical vector telling us which entries have commas.

Above, we noted that an entry included a cm . This is also a simple example of a regex. We can
show all the entries that used cm like this:

s <- "5'10\""

cat(s)

#> 5'10"

89 90 91

pattern <- ","

str_detect(murders_raw$total, pattern)

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 14/49

24.5.2 Special characters

Now let’s consider a slightly more complicated example. Which of the following strings contain
the pattern cm or inches ?

However, we don’t need to do this. The main feature that distinguishes the regex language from
plain strings is that we can use special characters. These are characters with a meaning. We
start by introducing | which means or. So if we want to know if either cm or inches
appears in the strings, we can use the regex cm|inches :

and obtain the correct answer.

Another special character that will be useful for identifying feet and inches values is \d which
means any digit: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The backslash is used to distinguish it from the
character d . In R, we have to escape the backslash \ so we actually have to use \\d to
represent digits. Here is an example:

str_subset(reported_heights$height, "cm")

#> [1] "165cm" "170 cm"

yes <- c("180 cm", "70 inches")

no <- c("180", "70''")

s <- c(yes, no)

str_detect(s, "cm") | str_detect(s, "inches")

#> [1] TRUE TRUE FALSE FALSE

str_detect(s, "cm|inches")

#> [1] TRUE TRUE FALSE FALSE

What strange syntax! You'd think it would be
"cm" | "inches" .

Confusing, but see example.

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 15/49

We take this opportunity to introduce the str_view function, which is helpful for
troubleshooting as it shows us the first match for each string:

and str_view_all shows us all the matches, so 3'2 has two matches and 5'10 has three.

There are many other special characters. We will learn some others below, but you can see most
or all of them in the cheat sheet mentioned earlier.

yes <- c("5", "6", "5'10", "5 feet", "4'11")

no <- c("", ".", "Five", "six")

s <- c(yes, no)

pattern <- "\\d"

str_detect(s, pattern)

#> [1] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE

str_view(s, pattern)

str_view_all(s, pattern)

92

Does this make sense?
If I say p = "\d", I get
Error: '\d' is an unrecognized escape in character string starting ""\d" .
To me, it's a bit more logical to simply say \\d means "any digit".

Weird and not useful in my opinion.
Very different output when I do it.

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 16/49

24.5.3 Character classes

Character classes are used to define a series of characters that can be matched. We define
character classes with square brackets [] . So, for example, if we want the pattern to match
only if we have a 5 or a 6 , we use the regex [56] :

Suppose we want to match values between 4 and 7. A common way to define character classes
is with ranges. So, for example, [0-9] is equivalent to \\d . The pattern we want is therefore
 [4-7] .

However, it is important to know that in regex everything is a character; there are no numbers.
So 4 is the character 4 not the number four. Notice, for example, that [1-20] does not
mean 1 through 20, it means the characters 1 through 2 or the character 0. So [1-20] simply
means the character class composed of 0, 1, and 2.

Keep in mind that characters do have an order and the digits do follow the numeric order. So 0
comes before 1 which comes before 2 and so on. For the same reason, we can define lower
case letters as [a-z] , upper case letters as [A-Z] , and [a-zA-z] as both.

str_view(s, "[56]")

yes <- as.character(4:7)

no <- as.character(1:3)

s <- c(yes, no)

str_detect(s, "[4-7]")

#> [1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE

Try str_detect(s,"[56]")

Should be capital Z.

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 17/49

24.5.4 Anchors

What if we want a match when we have exactly 1 digit? This will be useful in our case study
since feet are never more than 1 digit so a restriction will help us. One way to do this with regex
is by using anchors, which let us define patterns that must start or end at a specific place. The
two most common anchors are ̂ and $ which represent the beginning and end of a string,
respectively. So the pattern ̂ \\d$ is read as “start of the string followed by one digit followed
by end of string”.

This pattern now only detects the strings with exactly one digit:

The 1 does not match because it does not start with the digit but rather with a space, which is
actually not easy to see.

24.5.5 Quantifiers

For the inches part, we can have one or two digits. This can be specified in regex with
quantifiers. This is done by following the pattern with curly brackets containing the number of
times the previous entry can be repeated. We use an example to illustrate. The pattern for one or
two digits is:

pattern <- "^\\d$"

yes <- c("1", "5", "9")

no <- c("12", "123", " 1", "a4", "b")

s <- c(yes, no)

str_view_all(s, pattern)

Again, try str_detect here instead of str_view_all

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 18/49

In this case, 123 does not match, but 12 does. So to look for our feet and inches pattern, we
can add the symbols for feet ' and inches " after the digits.

With what we have learned, we can now construct an example for the pattern x'y\" with x
feet and y inches.

The pattern is now getting complex, but you can look at it carefully and break it down:

 ̂ = start of the string
 [4-7] = one digit, either 4,5,6 or 7
 ' = feet symbol
 \\d{1,2} = one or two digits
 \" = inches symbol
 $ = end of the string

Let’s test it out:

pattern <- "^\\d{1,2}$"

yes <- c("1", "5", "9", "12")

no <- c("123", "a4", "b")

str_view(c(yes, no), pattern)

pattern <- "^[4-7]'\\d{1,2}\"$"

One or two digits.

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 19/49

For now, we are permitting the inches to be 12 or larger. We will add a restriction later as the
regex for this is a bit more complex than we are ready to show.

24.5.6 White space \s

Another problem we have are spaces. For example, our pattern does not match 5' 4"
because there is a space between ' and 4 which our pattern does not permit. Spaces are
characters and R does not ignore them:

In regex, \s represents white space. To find patterns like 5' 4 , we can change our pattern
to:

However, this will not match the patterns with no space. So do we need more than one regex
pattern? It turns out we can use a quantifier for this as well.

24.5.7 Quantifiers: * , ? , +

We want the pattern to permit spaces but not require them. Even if there are several spaces, like
in this example 5' 4 , we still want it to match. There is a quantifier for exactly this purpose. In
regex, the character * means zero or more instances of the previous character. Here is an

yes <- c("5'7\"", "6'2\"", "5'12\"")

no <- c("6,2\"", "6.2\"","I am 5'11\"", "3'2\"", "64")

str_detect(yes, pattern)

#> [1] TRUE TRUE TRUE

str_detect(no, pattern)

#> [1] FALSE FALSE FALSE FALSE FALSE

identical("Hi", "Hi ")

#> [1] FALSE

pattern_2 <- "^[4-7]'\\s\\d{1,2}\"$"

str_subset(problems, pattern_2)

#> [1] "5' 4\"" "5' 11\"" "5' 7\""

Even 6' 2" would be false. Try it with
s = "5' 4\""
str_detect(s,pattern)

To me, it's more logical to just say \\s is space
and \\d means a digit.

By the way, normally \n means newline and \t means space.
Try
a = "blue\ncar"
a
cat(a)
Then try a = "blue\tcar"

I stopped here.

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 20/49

example:

The above matches the first string which has zero 1s and all the strings with one or more 1. We
can then improve our pattern by adding the * after the space character \s .

There are two other similar quantifiers. For none or once, we can use ? , and for one or more,
we can use + . You can see how they differ with this example:

We will actually use all three in our reported heights example, but we will see these in a later
section.

24.5.8 Not

To specify patterns that we do not want to detect, we can use the ̂ symbol but only inside
square brackets. Remember that outside the square bracket ̂ means the start of the string.
So, for example, if we want to detect digits that are preceded by anything except a letter we can
do the following:

yes <- c("AB", "A1B", "A11B", "A111B", "A1111B")

no <- c("A2B", "A21B")

str_detect(yes, "A1*B")

#> [1] TRUE TRUE TRUE TRUE TRUE

str_detect(no, "A1*B")

#> [1] FALSE FALSE

data.frame(string = c("AB", "A1B", "A11B", "A111B", "A1111B"),

 none_or_more = str_detect(yes, "A1*B"),

 nore_or_once = str_detect(yes, "A1?B"),

 once_or_more = str_detect(yes, "A1+B"))

#> string none_or_more nore_or_once once_or_more

#> 1 AB TRUE TRUE FALSE

#> 2 A1B TRUE TRUE TRUE

#> 3 A11B TRUE FALSE TRUE

#> 4 A111B TRUE FALSE TRUE

#> 5 A1111B TRUE FALSE TRUE

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 21/49

Another way to generate a pattern that searches for everything except is to use the upper case
of the special character. For example \\D means anything other than a digit, \\S means
anything except a space, and so on.

24.5.9 Groups

Groups are a powerful aspect of regex that permits the extraction of values. Groups are defined
using parentheses. They don’t affect the pattern matching per se. Instead, it permits tools to
identify specific parts of the pattern so we can extract them.

We want to change heights written like 5.6 to 5'6 .

To avoid changing patterns such as 70.2 , we will require that the first digit be between 4 and 7
 [4-7] and that the second be none or more digits \\d* . Let’s start by defining a simple
pattern that matches this:

We want to extract the digits so we can then form the new version using a period. These are our
two groups, so we encapsulate them with parentheses:

We encapsulate the part of the pattern that matches the parts we want to keep for later use.
Adding groups does not affect the detection, since it only signals that we want to save what is
captured by the groups. Note that both patterns return the same result when using
 str_detect :

pattern <- "[^a-zA-Z]\\d"

yes <- c(".3", "+2", "-0","*4")

no <- c("A3", "B2", "C0", "E4")

str_detect(yes, pattern)

#> [1] TRUE TRUE TRUE TRUE

str_detect(no, pattern)

#> [1] FALSE FALSE FALSE FALSE

pattern_without_groups <- "^[4-7],\\d*$"

pattern_with_groups <- "^([4-7]),(\\d*)$"

He didn't say it but
he's dealing with the answers with commas in them.
This will include a response like "4,8".

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 22/49

Once we define groups, we can use the function str_match to extract the values these groups
define:

Notice that the second and third columns contain feet and inches, respectively. The first column
is the part of the string matching the pattern. If no match occurred, we see an NA .

Now we can understand the difference between the functions str_extract and str_match :
 str_extract extracts only strings that match a pattern, not the values defined by groups:

24.6 Search and replace with regex

yes <- c("5,9", "5,11", "6,", "6,1")

no <- c("5'9", ",", "2,8", "6.1.1")

s <- c(yes, no)

str_detect(s, pattern_without_groups)

#> [1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE

str_detect(s, pattern_with_groups)

#> [1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE

str_match(s, pattern_with_groups)

#> [,1] [,2] [,3]

#> [1,] "5,9" "5" "9"

#> [2,] "5,11" "5" "11"

#> [3,] "6," "6" ""

#> [4,] "6,1" "6" "1"

#> [5,] NA NA NA

#> [6,] NA NA NA

#> [7,] NA NA NA

#> [8,] NA NA NA

str_extract(s, pattern_with_groups)

#> [1] "5,9" "5,11" "6," "6,1" NA NA NA NA

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 23/49

Earlier we defined the object problems containing the strings that do not appear to be in
inches. We can see that not too many of our problematic strings match the pattern:

To see why this is, we show some examples that expose why we don’t have more matches:

An initial problem we see immediately is that some students wrote out the words “feet” and
“inches”. We can see the entries that did this with the str_subset function:

We also see that some entries used two single quotes '' instead of a double quote " .

To correct this, we can replace the different ways of representing inches and feet with a uniform
symbol. We will use ' for feet, whereas for inches we will simply not use a symbol since some
entries were of the form x'y . Now, if we no longer use the inches symbol, we have to change
our pattern accordingly:

pattern <- "^[4-7]'\\d{1,2}\"$"

sum(str_detect(problems, pattern))

#> [1] 14

problems[c(2, 10, 11, 12, 15)] %>% str_view(pattern)

str_subset(problems, "inches")

#> [1] "5 feet and 8.11 inches" "Five foot eight inches"

#> [3] "5 feet 7inches" "5ft 9 inches"

#> [5] "5 ft 9 inches" "5 feet 6 inches"

str_subset(problems, "''")

#> [1] "5'9''" "5'10''" "5'10''" "5'3''" "5'7''" "5'6''"

#> [7] "5'7.5''" "5'7.5''" "5'10''" "5'11''" "5'10''" "5'5''"

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 24/49

If we do this replacement before the matching, we get many more matches:

However, we still have many cases to go.

Note that in the code above, we leveraged the stringr consistency and used the pipe.

For now, we improve our pattern by adding \\s* in front of and after the feet symbol ' to
permit space between the feet symbol and the numbers. Now we match a few more entries:

We might be tempted to avoid doing this by removing all the spaces with str_replace_all .
However, when doing such an operation we need to make sure that it does not have unintended
effects. In our reported heights examples, this will be a problem because some entries are of the
form x y with space separating the feet from the inches. If we remove all spaces, we will
incorrectly turn x y into xy which implies that a 6 1 would become 61 inches instead of
 73 inches.

The second large type of problematic entries were of the form x.y , x,y and x y . We want
to change all these to our common format x'y . But we can’t just do a search and replace
because we would change values such as 70.5 into 70'5 . Our strategy will therefore be to

pattern <- "^[4-7]'\\d{1,2}$"

problems %>%

 str_replace("feet|ft|foot", "'") %>% # replace feet, ft, foot with '

 str_replace("inches|in|''|\"", "") %>% # remove all inches symbols

 str_detect(pattern) %>%

 sum()

#> [1] 48

pattern <- "^[4-7]\\s*'\\s*\\d{1,2}$"

problems %>%

 str_replace("feet|ft|foot", "'") %>% # replace feet, ft, foot with '

 str_replace("inches|in|''|\"", "") %>% # remove all inches symbols

 str_detect(pattern) %>%

 sum

#> [1] 53

Or

tricky

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 25/49

search for a very specific pattern that assures us feet and inches are being provided and then,
for those that match, replace appropriately.

24.6.1 Search and replace using groups

Another powerful aspect of groups is that you can refer to the extracted values in a regex when
searching and replacing.

The regex special character for the i -th group is \\i . So \\1 is the value extracted from
the first group, \\2 the value from the second and so on. As a simple example, note that the
following code will replace a comma with period, but only if it is between two digits:

We can use this to convert cases in our reported heights.

We are now ready to define a pattern that helps us convert all the x.y , x,y and x y to our
preferred format. We need to adapt pattern_with_groups to be a bit more flexible and capture
all the cases.

Let’s break this one down:

 ̂ = start of the string
 [4-7] = one digit, either 4, 5, 6, or 7
 \\s* = none or more white space
 [,\\.\\s+] = feet symbol is either , , . or at least one space
 \\s* = none or more white space
 \\d* = none or more digits
 $ = end of the string

pattern_with_groups <- "^([4-7]),(\\d*)$"

yes <- c("5,9", "5,11", "6,", "6,1")

no <- c("5'9", ",", "2,8", "6.1.1")

s <- c(yes, no)

str_replace(s, pattern_with_groups, "\\1'\\2")

#> [1] "5'9" "5'11" "6'" "6'1" "5'9" "," "2,8" "6.1.1"

pattern_with_groups <-"^([4-7])\\s*[,\\.\\s+]\\s*(\\d*)$"

The parentheses denote the first "group" and the second group.

Very interesting

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 26/49

We can see that it appears to be working:

and will be able to perform the search and replace:

Again, we will deal with the inches-larger-than-twelve challenge later.

24.7 Testing and improving
Developing the right regex on the first try is often difficult. Trial and error is a common approach
to finding the regex pattern that satisfies all desired conditions. In the previous sections, we have
developed a powerful string processing technique that can help us catch many of the
problematic entries. Here we will test our approach, search for further problems, and tweak our
approach for possible improvements. Let’s write a function that captures all the entries that can’t
be converted into numbers remembering that some are in centimeters (we will deal with those
later):

str_subset(problems, pattern_with_groups) %>% head()

#> [1] "5.3" "5.25" "5.5" "6.5" "5.8" "5.6"

str_subset(problems, pattern_with_groups) %>%

 str_replace(pattern_with_groups, "\\1'\\2") %>% head

#> [1] "5'3" "5'25" "5'5" "6'5" "5'8" "5'6"

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 27/49

Let’s see what proportion of these fit our pattern after the processing steps we developed above:

Note how we leveraged the pipe, one of the advantages of using stringr. This last piece of code
shows that we have matched well over half of the strings. Let’s examine the remaining cases:

not_inches_or_cm <- function(x, smallest = 50, tallest = 84){

 inches <- suppressWarnings(as.numeric(x))

 ind <- !is.na(inches) &

 ((inches >= smallest & inches <= tallest) |

 (inches/2.54 >= smallest & inches/2.54 <= tallest))

 !ind

}

problems <- reported_heights %>%

 filter(not_inches_or_cm(height)) %>%

 pull(height)

length(problems)

#> [1] 200

converted <- problems %>%

 str_replace("feet|foot|ft", "'") %>% # convert feet symbols to '

 str_replace("inches|in|''|\"", "") %>% # remove inches symbols

 str_replace("^([4-7])\\s*[,\\.\\s+]\\s*(\\d*)$", "\\1'\\2")# change format

pattern <- "^[4-7]\\s*'\\s*\\d{1,2}$"

index <- str_detect(converted, pattern)

mean(index)

#> [1] 0.615

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 28/49

Four clear patterns arise:

1. Many students measuring exactly 5 or 6 feet did not enter any inches, for example 6' , and
our pattern requires that inches be included.

2. Some students measuring exactly 5 or 6 feet entered just that number.
3. Some of the inches were entered with decimal points. For example 5'7.5'' . Our pattern

only looks for two digits.
4. Some entries have spaces at the end, for example 5 ' 9 .

Although not as common, we also see the following problems:

5. Some entries are in meters and some of these use European decimals: 1.6 , 1,70 .
6. Two students added cm .
7. A student spelled out the numbers: Five foot eight inches .

converted[!index]

#> [1] "6" "165cm" "511" "6"

#> [5] "2" ">9000" "5 ' and 8.11 " "11111"

#> [9] "6" "103.2" "19" "5"

#> [13] "300" "6'" "6" "Five ' eight "

#> [17] "7" "214" "6" "0.7"

#> [21] "6" "2'33" "612" "1,70"

#> [25] "87" "5'7.5" "5'7.5" "111"

#> [29] "5' 7.78" "12" "6" "yyy"

#> [33] "89" "34" "25" "6"

#> [37] "6" "22" "684" "6"

#> [41] "1" "1" "6*12" "87"

#> [45] "6" "1.6" "120" "120"

#> [49] "23" "1.7" "6" "5"

#> [53] "69" "5' 9 " "5 ' 9 " "6"

#> [57] "6" "86" "708,661" "5 ' 6 "

#> [61] "6" "649,606" "10000" "1"

#> [65] "728,346" "0" "6" "6"

#> [69] "6" "100" "88" "6"

#> [73] "170 cm" "7,283,465" "5" "5"

#> [77] "34"

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 29/49

It is not necessarily clear that it is worth writing code to handle these last three cases since they
might be rare enough. However, some of them provide us with an opportunity to learn a few
more regex techniques, so we will build a fix.

For case 1, if we add a '0 after the first digit, for example, convert all 6 to 6'0 , then our
previously defined pattern will match. This can be done using groups:

The pattern says it has to start (̂) with a digit between 4 and 7 and end there ($). The
parenthesis defines the group that we pass as \\1 to generate the replacement regex string.

We can adapt this code slightly to handle the case 2 as well, which covers the entry 5' . Note
 5' is left untouched. This is because the extra ' makes the pattern not match since we have
to end with a 5 or 6. We want to permit the 5 or 6 to be followed by 0 or 1 feet sign. So we can
simply add '{0,1} after the ' to do this. However, we can use the none or once special
character ? . As we saw above, this is different from * which is none or more. We now see
that the fourth case is also converted:

Here we only permit 5 and 6, but not 4 and 7. This is because 5 and 6 feet tall is quite common,
so we assume those that typed 5 or 6 really meant 60 or 72 inches. However, 4 and 7
feet tall are so rare that, although we accept 84 as a valid entry, we assume 7 was entered in
error.

We can use quantifiers to deal with case 3. These entries are not matched because the inches
include decimals and our pattern does not permit this. We need to allow the second group to
include decimals not just digits. This means we must permit zero or one period . then zero or
more digits. So we will be using both ? and * . Also remember that, for this particular case,
the period needs to be escaped since it is a special character (it means any character except line
break). Here is a simple example of how we can use * .

yes <- c("5", "6", "5")

no <- c("5'", "5''", "5'4")

s <- c(yes, no)

str_replace(s, "^([4-7])$", "\\1'0")

#> [1] "5'0" "6'0" "5'0" "5'" "5''" "5'4"

str_replace(s, "^([56])'?$", "\\1'0")

#> [1] "5'0" "6'0" "5'0" "5'0" "5''" "5'4"

He switched cases 1 and 2, but whatever.

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 30/49

So we can adapt our pattern, currently ̂ [4-7]\\s*'\\s*\\d{1,2}$ to permit a decimal at the
end:

Case 4, meters using commas, we can approach similarly to how we converted the x.y to
 x'y . A difference is that we require that the first digit be 1 or 2:

We will later check if the entries are meters using their numeric values. We will come back to the
case study after introducing two widely used functions in string processing that will come in
handy when developing our final solution for the self-reported heights.

24.8 Trimming
In general, spaces at the start or end of the string are uninformative. These can be particularly
deceptive because sometimes they can be hard to see:

This is a general enough problem that there is a function dedicated to removing them:
 str_trim .

pattern <- "^[4-7]\\s*'\\s*(\\d+\\.?\\d*)$"

yes <- c("1,7", "1, 8", "2, ")

no <- c("5,8", "5,3,2", "1.7")

s <- c(yes, no)

str_replace(s, "^([12])\\s*,\\s*(\\d*)$", "\\1\\.\\2")

#> [1] "1.7" "1.8" "2." "5,8" "5,3,2" "1.7"

s <- "Hi "

cat(s)

#> Hi

identical(s, "Hi")

#> [1] FALSE

str_trim("5 ' 9 ")

#> [1] "5 ' 9"

0 or 1 period

0 or more digits

a = " blue "
str_trim(a)
a = "\t blue"
str_trim(a)

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 31/49

24.9 Changing lettercase
Notice that regex is case sensitive. Often we want to match a word regardless of case. One
approach to doing this is to first change everything to lower case and then proceeding ignoring
case. As an example, note that one of the entries writes out numbers as words Five foot
eight inches . Although not efficient, we could add 13 extra str_replace calls to convert
 zero to 0 , one to 1 , and so on. To avoid having to write two separate operations for
 Zero and zero , One and one , etc., we can use the str_to_lower function to make all
works lower case first:

Other related functions are str_to_upper and str_to_title . We are now ready to define a
procedure that converts all the problematic cases to inches.

24.10 Case study 2: self-reported heights
(continued)
We now put all of what we have learned together into a function that takes a string vector and
tries to convert as many strings as possible to one format. We write a function that puts together
what we have done above.

s <- c("Five feet eight inches")

str_to_lower(s)

#> [1] "five feet eight inches"

convert_format <- function(s){

 s %>%

 str_replace("feet|foot|ft", "'") %>%

 str_replace_all("inches|in|''|\"|cm|and", "") %>%

 str_replace("^([4-7])\\s*[,\\.\\s+]\\s*(\\d*)$", "\\1'\\2") %>%

 str_replace("^([56])'?$", "\\1'0") %>%

 str_replace("^([12])\\s*,\\s*(\\d*)$", "\\1\\.\\2") %>%

 str_trim()

}

cool!

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 32/49

We can also write a function that converts words to numbers:

Note that we can perform the above operation more efficiently with the function recode , which
we learn about in Section 24.13. Now we can see which problematic entries remain:

apart from the cases reported as meters, which we will fix below, they all seem to be cases that
are impossible to fix.

24.10.1 The extract function

library(english)

words_to_numbers <- function(s){

 s <- str_to_lower(s)

 for(i in 0:11)

 s <- str_replace_all(s, words(i), as.character(i))

 s

}

converted <- problems %>% words_to_numbers() %>% convert_format()

remaining_problems <- converted[not_inches_or_cm(converted)]

pattern <- "^[4-7]\\s*'\\s*\\d+\\.?\\d*$"

index <- str_detect(remaining_problems, pattern)

remaining_problems[!index]

#> [1] "511" "2" ">9000" "11111" "103.2"

#> [6] "19" "300" "7" "214" "0.7"

#> [11] "2'33" "612" "1.70" "87" "111"

#> [16] "12" "yyy" "89" "34" "25"

#> [21] "22" "684" "1" "1" "6*12"

#> [26] "87" "1.6" "120" "120" "23"

#> [31] "1.7" "86" "708,661" "649,606" "10000"

#> [36] "1" "728,346" "0" "100" "88"

#> [41] "7,283,465" "34"

This is useful.
Note you have to first do install.packages("english")

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 33/49

The extract function is a useful tidyverse function for string processing that we will use in our
final solution, so we introduce it here. In a previous section, we constructed a regex that lets us
identify which elements of a character vector match the feet and inches pattern. However, we
want to do more. We want to extract and save the feet and number values so that we can
convert them to inches when appropriate.

If we have a simpler case like this:

In Section 21.3 we learned about the separate function, which can be used to achieve our
current goal:

The extract function from the tidyr package lets us use regex groups to extract the desired
values. Here is the equivalent to the code above using separate but using extract :

So why do we even need the new function extract ? We have seen how small changes can
throw off exact pattern matching. Groups in regex give us more flexibility. For example, if we
define:

s <- c("5'10", "6'1")

tab <- data.frame(x = s)

tab %>% separate(x, c("feet", "inches"), sep = "'")

#> feet inches

#> 1 5 10

#> 2 6 1

library(tidyr)

tab %>% extract(x, c("feet", "inches"), regex = "(\\d)'(\\d{1,2})")

#> feet inches

#> 1 5 10

#> 2 6 1

s <- c("5'10", "6'1\"","5'8inches")

tab <- data.frame(x = s)

https://rafalab.github.io/dsbook/reshaping-data.html#separate
one or two digits for inches

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 34/49

and we only want the numbers, separate fails:

However, we can use extract . The regex here is a bit more complicated since we have to
permit ' with spaces and feet . We also do not want the " included in the value, so we do
not include that in the group:

24.10.2 Putting it all together

We are now ready to put it all together and wrangle our reported heights data to try to recover as
many heights as possible. The code is complex, but we will break it down into parts.

We start by cleaning up the height column so that the heights are closer to a feet’inches
format. We added an original heights column so we can compare before and after.

Now we are ready to wrangle our reported heights dataset:

tab %>% separate(x, c("feet","inches"), sep = "'", fill = "right")

#> feet inches

#> 1 5 10

#> 2 6 1"

#> 3 5 8inches

tab %>% extract(x, c("feet", "inches"), regex = "(\\d)'(\\d{1,2})")

#> feet inches

#> 1 5 10

#> 2 6 1

#> 3 5 8

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 35/49

We can check all the entries we converted by typing:

A final observation is that if we look at the shortest students in our course:

pattern <- "^([4-7])\\s*'\\s*(\\d+\\.?\\d*)$"

smallest <- 50

tallest <- 84

new_heights <- reported_heights %>%

 mutate(original = height,

 height = words_to_numbers(height) %>% convert_format()) %>%

 extract(height, c("feet", "inches"), regex = pattern, remove = FALSE) %>%

 mutate_at(c("height", "feet", "inches"), as.numeric) %>%

 mutate(guess = 12 * feet + inches) %>%

 mutate(height = case_when(

 is.na(height) ~ as.numeric(NA),

 between(height, smallest, tallest) ~ height, #inches

 between(height/2.54, smallest, tallest) ~ height/2.54, #cm

 between(height*100/2.54, smallest, tallest) ~ height*100/2.54, #meters

 TRUE ~ as.numeric(NA))) %>%

 mutate(height = ifelse(is.na(height) &

 inches < 12 & between(guess, smallest, tallest),

 guess, height)) %>%

 select(-guess)

new_heights %>%

 filter(not_inches(original)) %>%

 select(original, height) %>%

 arrange(height) %>%

 View()

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 36/49

We see heights of 53, 54, and 55. In the originals, we also have 51 and 52. These short heights
are rare and it is likely that the students actually meant 5'1 , 5'2 , 5'3 , 5'4 , and 5'5 .
Because we are not completely sure, we will leave them as reported. The object new_heights
contains our final solution for this case study.

24.11 String splitting
Another very common data wrangling operation is string splitting. To illustrate how this comes
up, we start with an illustrative example. Suppose we did not have the function read_csv or
 read.csv available to us. We instead have to read a csv file using the base R function
 readLines like this:

This function reads-in the data line-by-line to create a vector of strings. In this case, one string
for each row in the spreadsheet. The first six lines are:

new_heights %>% arrange(height) %>% head(n=7)

#> time_stamp sex height feet inches original

#> 1 2017-07-04 01:30:25 Male 50.0 NA NA 50

#> 2 2017-09-07 10:40:35 Male 50.0 NA NA 50

#> 3 2014-09-02 15:18:30 Female 51.0 NA NA 51

#> 4 2016-06-05 14:07:20 Female 52.0 NA NA 52

#> 5 2016-06-05 14:07:38 Female 52.0 NA NA 52

#> 6 2014-09-23 03:39:56 Female 53.0 NA NA 53

#> 7 2015-01-07 08:57:29 Male 53.8 NA NA 53.77

filename <- system.file("extdata/murders.csv", package = "dslabs")

lines <- readLines(filename)

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 37/49

We want to extract the values that are separated by a comma for each string in the vector. The
command str_split does exactly this:

Note that the first entry has the column names, so we can separate that out:

To convert our list into a data frame, we can use a shortcut provided by the map functions in
the purrr package. The map function applies the same function to each element in a list. So if
we want to extract the first entry of each element in x , we can write:

lines %>% head()

#> [1] "state,abb,region,population,total"

#> [2] "Alabama,AL,South,4779736,135"

#> [3] "Alaska,AK,West,710231,19"

#> [4] "Arizona,AZ,West,6392017,232"

#> [5] "Arkansas,AR,South,2915918,93"

#> [6] "California,CA,West,37253956,1257"

x <- str_split(lines, ",")

x %>% head(2)

#> [[1]]

#> [1] "state" "abb" "region" "population" "total"

#>

#> [[2]]

#> [1] "Alabama" "AL" "South" "4779736" "135"

col_names <- x[[1]]

x <- x[-1]

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 38/49

However, because this is such a common task, purrr provides a shortcut. If the second
argument receives an integer instead of a function, it assumes we want that entry. So the code
above can be written more efficiently like this:

To force map to return a character vector instead of a list, we can use map_chr . Similarly,
 map_int returns integers. So to create our data frame, we can use:

library(purrr)

map(x, function(y) y[1]) %>% head(2)

#> [[1]]

#> [1] "Alabama"

#>

#> [[2]]

#> [1] "Alaska"

map(x, 1)

dat <- tibble(map_chr(x, 1),

 map_chr(x, 2),

 map_chr(x, 3),

 map_chr(x, 4),

 map_chr(x, 5)) %>%

 mutate_all(parse_guess) %>%

 setNames(col_names)

dat %>% head

#> # A tibble: 6 x 5

#> state abb region population total

#> <chr> <chr> <chr> <dbl> <dbl>

#> 1 Alabama AL South 4779736 135

#> 2 Alaska AK West 710231 19

#> 3 Arizona AZ West 6392017 232

#> 4 Arkansas AR South 2915918 93

#> 5 California CA West 37253956 1257

#> # … with 1 more row

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 39/49

If you learn more about the purrr package, you will learn that you perform the above with the
following, more efficient, code:

It turns out that we can avoid all the work shown above after the call to str_split .
Specifically, if we know that the data we are extracting can be represented as a table, we can
use the argument simplify=TRUE and str_split returns a matrix instead of a list:

24.12 Case study 3: extracting tables from a PDF
One of the datasets provided in dslabs shows scientific funding rates by gender in the
Netherlands:

dat <- x %>%

 transpose() %>%

 map(~ parse_guess(unlist(.))) %>%

 setNames(col_names) %>%

 as_tibble()

x <- str_split(lines, ",", simplify = TRUE)

col_names <- x[1,]

x <- x[-1,]

colnames(x) <- col_names

x %>% as_tibble() %>%

 mutate_all(parse_guess) %>%

 head(5)

#> # A tibble: 5 x 5

#> state abb region population total

#> <chr> <chr> <chr> <dbl> <dbl>

#> 1 Alabama AL South 4779736 135

#> 2 Alaska AK West 710231 19

#> 3 Arizona AZ West 6392017 232

#> 4 Arkansas AR South 2915918 93

#> 5 California CA West 37253956 1257

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 40/49

The data comes from a paper published in the Proceedings of the National Academy of Science
(PNAS) , a widely read scientific journal. However, the data is not provided in a spreadsheet; it
is in a table in a PDF document. Here is a screenshot of the table:

(Source: Romy van der Lee and Naomi Ellemers, PNAS 2015 112 (40) 12349-12353 .)

We could extract the numbers by hand, but this could lead to human error. Instead, we can try to
wrangle the data using R. We start by downloading the pdf document, then importing into R:

library(dslabs)

data("research_funding_rates")

research_funding_rates %>%

 select("discipline", "success_rates_men", "success_rates_women")

#> discipline success_rates_men success_rates_women

#> 1 Chemical sciences 26.5 25.6

#> 2 Physical sciences 19.3 23.1

#> 3 Physics 26.9 22.2

#> 4 Humanities 14.3 19.3

#> 5 Technical sciences 15.9 21.0

#> 6 Interdisciplinary 11.4 21.8

#> 7 Earth/life sciences 24.4 14.3

#> 8 Social sciences 15.3 11.5

#> 9 Medical sciences 18.8 11.2

93

94

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 41/49

If we examine the object text, we notice that it is a character vector with an entry for each page.
So we keep the page we want:

The steps above can actually be skipped because we include this raw data in the dslabs
package as well:

Examining the object raw_data_research_funding_rates we see that it is a long string and
each line on the page, including the table rows, are separated by the symbol for newline: \n .
We therefore can create a list with the lines of the text as elements as follows:

Because we start off with just one element in the string, we end up with a list with just one entry.

By examining tab we see that the information for the column names is the third and fourth
entries:

library("pdftools")

temp_file <- tempfile()

url <- paste0("https://www.pnas.org/content/suppl/2015/09/16/",

 "1510159112.DCSupplemental/pnas.201510159SI.pdf")

download.file(url, temp_file)

txt <- pdf_text(temp_file)

file.remove(temp_file)

raw_data_research_funding_rates <- txt[2]

data("raw_data_research_funding_rates")

tab <- str_split(raw_data_research_funding_rates, "\n")

tab <- tab[[1]]

the_names_1 <- tab[3]

the_names_2 <- tab[4]

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 42/49

The first of these rows looks like this:

#> Applications, n

#> Awards, n Success rates, %

We want to create one vector with one name for each column. Using some of the functions we
have just learned, we do this. Let’s start with the_names_1 , shown above. We want to remove
the leading space and anything following the comma. We use regex for the latter. Then we can
obtain the elements by splitting strings separated by space. We want to split only when there are
2 or more spaces to avoid splitting Success rates . So we use the regex \\s{2,}

Now we will look at the_names_2 :

#> Discipline Total Men Women

#> n Total Men Women Total Men Women

Here we want to trim the leading space and then split by space as we did for the first line:

the_names_1 <- the_names_1 %>%

 str_trim() %>%

 str_replace_all(",\\s.", "") %>%

 str_split("\\s{2,}", simplify = TRUE)

the_names_1

#> [,1] [,2] [,3]

#> [1,] "Applications" "Awards" "Success rates"

the_names_2 <- the_names_2 %>%

 str_trim() %>%

 str_split("\\s+", simplify = TRUE)

the_names_2

#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

#> [1,] "Discipline" "Total" "Men" "Women" "Total" "Men" "Women" "Total"

#> [,9] [,10]

#> [1,] "Men" "Women"

2 or more

Remember, period means any character except return.

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 43/49

We can then join these to generate one name for each column:

Now we are ready to get the actual data. By examining the tab object, we notice that the
information is in lines 6 through 14. We can use str_split again to achieve our goal:

We can see that the objects are identical:

tmp_names <- str_c(rep(the_names_1, each = 3), the_names_2[-1], sep = "_")

the_names <- c(the_names_2[1], tmp_names) %>%

 str_to_lower() %>%

 str_replace_all("\\s", "_")

the_names

#> [1] "discipline" "applications_total" "applications_men"

#> [4] "applications_women" "awards_total" "awards_men"

#> [7] "awards_women" "success_rates_total" "success_rates_men"

#> [10] "success_rates_women"

new_research_funding_rates <- tab[6:14] %>%

 str_trim %>%

 str_split("\\s{2,}", simplify = TRUE) %>%

 data.frame(stringsAsFactors = FALSE) %>%

 setNames(the_names) %>%

 mutate_at(-1, parse_number)

new_research_funding_rates %>% as_tibble()

#> # A tibble: 9 x 10

#> discipline applications_to… applications_men applications_wo…

#> <chr> <dbl> <dbl> <dbl>

#> 1 Chemical … 122 83 39

#> 2 Physical … 174 135 39

#> 3 Physics 76 67 9

#> 4 Humanities 396 230 166

#> 5 Technical… 251 189 62

#> # … with 4 more rows, and 6 more variables: awards_total <dbl>,

#> # awards_men <dbl>, awards_women <dbl>, success_rates_total <dbl>,

#> # success_rates_men <dbl>, success_rates_women <dbl>

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 44/49

24.13 Recoding
Another common operation involving strings is recoding the names of categorical variables. Let’s
say you have really long names for your levels and you will be displaying them in plots, you
might want to use shorter versions of these names. For example, in character vectors with
country names, you might want to change “United States of America” to “USA” and “United
Kingdom” to UK, and so on. We can do this with case_when , although the tidyverse offers an
option that is specifically designed for this task: the recode function.

Here is an example that shows how to rename countries with long names:

Suppose we want to show life expectancy time series by country for the Caribbean:

identical(research_funding_rates, new_research_funding_rates)

#> [1] TRUE

library(dslabs)

data("gapminder")

gapminder %>%

 filter(region == "Caribbean") %>%

 ggplot(aes(year, life_expectancy, color = country)) +

 geom_line()

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 45/49

The plot is what we want, but much of the space is wasted to accommodate some of the long
country names. We have four countries with names longer than 12 characters. These names
appear once for each year in the Gapminder dataset. Once we pick nicknames, we need to
change them all consistently. The recode function can be used to do this:

gapminder %>% filter(region=="Caribbean") %>%

 mutate(country = recode(country,

 `Antigua and Barbuda` = "Barbuda",

 `Dominican Republic` = "DR",

 `St. Vincent and the Grenadines` = "St. Vincent",

 `Trinidad and Tobago` = "Trinidad")) %>%

 ggplot(aes(year, life_expectancy, color = country)) +

 geom_line()

obvious

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 46/49

There are other similar functions in other R packages, such as recode_factor and
 fct_recoder in the forcats package.

24.14 Exercises
1. Complete all lessons and exercises in the https://regexone.com/ online interactive tutorial.

2. In the extdata directory of the dslabs package, you will find a PDF file containing daily
mortality data for Puerto Rico from Jan 1, 2015 to May 31, 2018. You can find the file like this:

Find and open the file or open it directly from RStudio. On a Mac, you can type:

and on Windows, you can type:

Which of the following best describes this file:

fn <- system.file("extdata", "RD-Mortality-Report_2015-18-180531.pdf",

 package="dslabs")

system2("open", args = fn)

system("cmd.exe", input = paste("start", fn))

https://regexone.com/

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 47/49

a. It is a table. Extracting the data will be easy.
b. It is a report written in prose. Extracting the data will be impossible.
c. It is a report combining graphs and tables. Extracting the data seems possible.
d. It shows graphs of the data. Extracting the data will be difficult.

3. We are going to create a tidy dataset with each row representing one observation. The
variables in this dataset will be year, month, day, and deaths. Start by installing and loading the
pdftools package:

Now read-in fn using the pdf_text function and store the results in an object called txt .
Which of the following best describes what you see in txt ?

a. A table with the mortality data.
b. A character string of length 12. Each entry represents the text in each page. The mortality

data is in there somewhere.
c. A character string with one entry containing all the information in the PDF file.
d. An html document.

4. Extract the ninth page of the PDF file from the object txt , then use the str_split from
the stringr package so that you have each line in a different entry. Call this string vector s .
Then look at the result and choose the one that best describes what you see.

a. It is an empty string.
b. I can see the figure shown in page 1.
c. It is a tidy table.
d. I can see the table! But there is a bunch of other stuff we need to get rid of.

5. What kind of object is s and how many entries does it have?

6. We see that the output is a list with one component. Redefine s to be the first entry of the
list. What kind of object is s and how many entries does it have?

7. When inspecting the string we obtained above, we see a common problem: white space
before and after the other characters. Trimming is a common first step in string processing.
These extra spaces will eventually make splitting the strings hard so we start by removing them.

install.packages("pdftools")

library(pdftools)

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 48/49

We learned about the command str_trim that removes spaces at the start or end of the
strings. Use this function to trim s .

8. We want to extract the numbers from the strings stored in s . However, there are many non-
numeric characters that will get in the way. We can remove these, but before doing this we want
to preserve the string with the column header, which includes the month abbreviation. Use the
 str_which function to find the rows with a header. Save these results to header_index . Hint:
find the first string that matches the pattern 2015 using the str_which function.

9. Now we are going to define two objects: month will store the month and header will store
the column names. Identify which row contains the header of the table. Save the content of the
row into an object called header , then use str_split to help define the two objects we
need. Hints: the separator here is one or more spaces. Also, consider using the simplify
argument.

10. Notice that towards the end of the page you see a totals row followed by rows with other
summary statistics. Create an object called tail_index with the index of the totals entry.

11. Because our PDF page includes graphs with numbers, some of our rows have just one
number (from the y-axis of the plot). Use the str_count function to create an object n with
the number of numbers in each each row. Hint: you can write a regex for number like this \\d+ .

12. We are now ready to remove entries from rows that we know we don’t need. The entry
 header_index and everything before it should be removed. Entries for which n is 1 should
also be removed, and the entry tail_index and everything that comes after it should be
removed as well.

13. Now we are ready to remove all the non-numeric entries. Do this using regex and the
 str_remove_all function. Hint: remember that in regex, using the upper case version of a
special character usually means the opposite. So \\D means “not a digit”. Remember you also
want to keep spaces.

14. To convert the strings into a table, use the str_split_fixed function. Convert s into a
data matrix with just the day and death count data. Hints: note that the separator is one or more
spaces. Make the argument n a value that limits the number of columns to the values in the 4
columns and the last column captures all the extra stuff. Then keep only the first four columns.

15. Now you are almost ready to finish. Add column names to the matrix, including one called
 day . Also, add a column with the month. Call the resulting object dat . Finally, make sure the
day is an integer not a character. Hint: use only the first five columns.

10/19/2020 Chapter 24 String processing | Introduction to Data Science

https://rafalab.github.io/dsbook/string-processing.html 49/49

16. Now finish it up by tidying tab with the gather function.

17. Make a plot of deaths versus day with color to denote year. Exclude 2018 since we do not
have data for the entire year.

18. Now that we have wrangled this data step-by-step, put it all together in one R chunk, using
the pipe as much as possible. Hint: first define the indexes, then write one line of code that does
all the string processing.

19. Advanced: let’s return to the MLB Payroll example from the web scraping section. Use what
you have learned in the web scraping and string processing chapters to extract the payroll for
the New York Yankees, Boston Red Sox, and Oakland A’s and plot them as a function of time.

89. https://www.regular-expressions.info/tutorial.html

90. http://r4ds.had.co.nz/strings.html#matching-patterns-with-regular-expressions

91. https://www.rstudio.com/wp-content/uploads/2016/09/RegExCheatsheet.pdf

92. https://www.rstudio.com/wp-content/uploads/2016/09/RegExCheatsheet.pdf

93. http://www.pnas.org/content/112/40/12349.abstract

94. http://www.pnas.org/content/112/40/12349

https://www.regular-expressions.info/tutorial.html
http://r4ds.had.co.nz/strings.html#matching-patterns-with-regular-expressions
https://www.rstudio.com/wp-content/uploads/2016/09/RegExCheatsheet.pdf
https://www.rstudio.com/wp-content/uploads/2016/09/RegExCheatsheet.pdf
http://www.pnas.org/content/112/40/12349.abstract
http://www.pnas.org/content/112/40/12349

