
9/22/2020 5 Getting Data In and Out of R | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/getting-data-in-and-out-of-r.html 1/4

5 Getting Data In and Out of R

5.1 Reading and Writing Data
Watch a video of this section

There are a few principal functions reading data into R.

 read.table , read.csv , for reading tabular data
 readLines , for reading lines of a text file
 source , for reading in R code files (inverse of dump)
 dget , for reading in R code files (inverse of dput)
 load , for reading in saved workspaces
 unserialize , for reading single R objects in binary form

There are of course, many R packages that have been developed to read in all kinds of other
datasets, and you may need to resort to one of these packages if you are working in a specific
area.

There are analogous functions for writing data to files

 write.table , for writing tabular data to text files (i.e. CSV) or connections

 writeLines , for writing character data line-by-line to a file or connection

 dump , for dumping a textual representation of multiple R objects

 dput , for outputting a textual representation of an R object

 save , for saving an arbitrary number of R objects in binary format (possibly compressed)
to a file.

 serialize , for converting an R object into a binary format for outputting to a connection
(or file).

https://youtu.be/Z_dc_FADyi4

9/22/2020 5 Getting Data In and Out of R | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/getting-data-in-and-out-of-r.html 2/4

5.2 Reading Data Files with read.table()
The read.table() function is one of the most commonly used functions for reading data. The
help file for read.table() is worth reading in its entirety if only because the function gets used
a lot (run ?read.table in R). I know, I know, everyone always says to read the help file, but this
one is actually worth reading.

The read.table() function has a few important arguments:

 file , the name of a file, or a connection
 header , logical indicating if the file has a header line
 sep , a string indicating how the columns are separated
 colClasses , a character vector indicating the class of each column in the dataset
 nrows , the number of rows in the dataset. By default read.table() reads an entire file.
 comment.char , a character string indicating the comment character. This defalts to "#" .
If there are no commented lines in your file, it’s worth setting this to be the empty string
 "" .
 skip , the number of lines to skip from the beginning
 stringsAsFactors , should character variables be coded as factors? This defaults to
 TRUE because back in the old days, if you had data that were stored as strings, it was
because those strings represented levels of a categorical variable. Now we have lots of data
that is text data and they don’t always represent categorical variables. So you may want to
set this to be FALSE in those cases. If you always want this to be FALSE , you can set a
global option via options(stringsAsFactors = FALSE) . I’ve never seen so much heat
generated on discussion forums about an R function argument than the stringsAsFactors
argument. Seriously.

For small to moderately sized datasets, you can usually call read.table without specifying any
other arguments

In this case, R will automatically

skip lines that begin with a #
figure out how many rows there are (and how much memory needs to be allocated)
figure what type of variable is in each column of the table.

> data <- read.table("foo.txt")

9/22/2020 5 Getting Data In and Out of R | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/getting-data-in-and-out-of-r.html 3/4

Telling R all these things directly makes R run faster and more efficiently. The read.csv()
function is identical to read.table except that some of the defaults are set differently (like the
 sep argument).

5.3 Reading in Larger Datasets with read.table
Watch a video of this section

With much larger datasets, there are a few things that you can do that will make your life easier
and will prevent R from choking.

Read the help page for read.table, which contains many hints

Make a rough calculation of the memory required to store your dataset (see the next section
for an example of how to do this). If the dataset is larger than the amount of RAM on your
computer, you can probably stop right here.

Set comment.char = "" if there are no commented lines in your file.

Use the colClasses argument. Specifying this option instead of using the default can
make ’read.table’ run MUCH faster, often twice as fast. In order to use this option, you have
to know the class of each column in your data frame. If all of the columns are “numeric”, for
example, then you can just set colClasses = "numeric" . A quick an dirty way to figure
out the classes of each column is the following:

Set nrows . This doesn’t make R run faster but it helps with memory usage. A mild
overestimate is okay. You can use the Unix tool wc to calculate the number of lines in a
file.

In general, when using R with larger datasets, it’s also useful to know a few things about your
system.

How much memory is available on your system?
What other applications are in use? Can you close any of them?

> initial <- read.table("datatable.txt", nrows = 100)

> classes <- sapply(initial, class)

> tabAll <- read.table("datatable.txt", colClasses = classes)

https://youtu.be/BJYYIJO3UFI

9/22/2020 5 Getting Data In and Out of R | R Programming for Data Science

https://bookdown.org/rdpeng/rprogdatascience/getting-data-in-and-out-of-r.html 4/4

Are there other users logged into the same system?
What operating system ar you using? Some operating systems can limit the amount of
memory a single process can access

5.4 Calculating Memory Requirements for R
Objects
Because R stores all of its objects physical memory, it is important to be cognizant of how much
memory is being used up by all of the data objects residing in your workspace. One situation
where it’s particularly important to understand memory requirements is when you are reading in a
new dataset into R. Fortunately, it’s easy to make a back of the envelope calculation of how
much memory will be required by a new dataset.

For example, suppose I have a data frame with 1,500,000 rows and 120 columns, all of which
are numeric data. Roughly, how much memory is required to store this data frame? Well, on most
modern computers double precision floating point numbers are stored using 64 bits of memory,
or 8 bytes. Given that information, you can do the following calculation

1,500,000 × 120 × 8 bytes/numeric | = 1,440,000,000 bytes |
| = 1,440,000,000 / 2 bytes/MB
| = 1,373.29 MB
| = 1.34 GB
So the dataset would require about 1.34 GB of RAM. Most computers these days have at least
that much RAM. However, you need to be aware of

what other programs might be running on your computer, using up RAM
what other R objects might already be taking up RAM in your workspace

Reading in a large dataset for which you do not have enough RAM is one easy way to freeze up
your computer (or at least your R session). This is usually an unpleasant experience that usually
requires you to kill the R process, in the best case scenario, or reboot your computer, in the
worst case. So make sure to do a rough calculation of memeory requirements before reading in a
large dataset. You’ll thank me later.

20

http://en.wikipedia.org/wiki/Double-precision_floating-point_format

