
Stat 221, Time Series Analysis. Day 2.  

  Outline for the day: 

1. Syllabus, etc. 

2. More examples of time series.  

 3. Stochastic processes.  

 4. White Noise (WN).  

 5. Moving Averages (MA).  

 6. AutoRegressive (AR) processes.  

7. Suggested homework problems to look at on your own, not collected.  

Again, note that the CCLE and Canvas websites for this course are not maintained.  

The course website is http://www.stat.ucla.edu/~frederic/221/F22 .  

Only one question is off limits, and it is “What did we do in class?” 

We discussed various examples of time series, including quarterly 

financial time series, global and local temperature data, and speech.   

Now we will review other examples.  

 

 



Brain imaging.   

As with fish and SOI data, in the brain imaging FMRI data from 

Figure 1.6, we might be interested in whether and how the two 

variables are related to one another, and whether the two areas of the 

brain might be responding to the stimulus in different ways.  

 



 

Earthquakes and explosions.  

Our final example of time series data is the earthquake and explosion 

data in Figure 1.7. The data come from recording instruments in 

Scandinavia observing earthquakes and mining explosions. The 

question here is how to tell the difference between an earthquake and 

a mining explosion based on these seismograms. Seismologists have 

noticed that the Primary wave (the P-wave) and the Secondary wave 

(S-wave) seem to extend to heights that are more comparable in 



explosions than in earthquakes, where the height in the S-wave is 

much greater. These heights of the corresponding waves are called 

amplitudes. Here, the ratio of the amplitude of the S-wave to the 

amplitude of the P-wave seems to be about 2 for the earthquake data, 

whereas for the explosion data it is close to 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 



3.	Stochastic	processes	and	time	series.		

A	collection	of	random	variables	{xt	}	indexed	by	time	is	called	a	stochastic	

process.	An	observation	of	a	stochastic	process	is	called	a	realization	of	the	

stochastic	process.		

Generally for a stochastic process, a value of xt	exists for any possible t. In this 

course, we will analyze time series, which may be viewed as stochastic processes 

but where we only observe xt	at	times	0,	1,	2,	3,	etc.,	or	maybe	also	at	times	-1,	-

2,	-3,	etc.,	but	not	at	all	times.	The	key	idea	is	that	often	it	is	useful	to	imagine	

that	xt	exists	at	all	times	but	we	are	only	observing	it	at	the	integer	times.		

A	basic	question	with	any	time	series	is	how	smooth	it	is.	For	many	time	

series,	if	the	value	is	large	at	time	100,	then	the	value	is	probably	also	large	at	

time	101.	As	a	result,	many	of	the	basic	models	for	time	series	try	to	

characterize	this	relationship	between	xt	and	xt-1,	especially	in	terms	of	the	

correlation	between	xt	and	xt-1.		

 

 

 

 



4. White Noise.  

	

If	the	time	series	consists	of	uncorrelated	random	variables	with	mean	0	and	

finite	variance	sw2	,	then	we	call	the	series	white	noise	(WN),	and	use	the	

notation	wt	for	such	a	series.		wt	=	wn(0,	sw2	).		

Often	when	we	fit	a	more	complicated	model,	the	residuals	from	the	model	are	

posited	to	be	WN,	just	as	in	regression,	the	errors	are	typically	modelled	as	iid	

with	mean	0	and	constant	variance.		

	

The	name	white	noise	comes	from	the	fact	that	with	white	light,	all	possible	

periodic	cyclical	components	are	equally	strong.	As	we	will	see,	in	time	series,	

the	process	WN,	when	decomposed	into	different	cycles	of	different	

frequencies,	also	has	equal	strength	among	these	cycles.	Put	another	way,	as	

we	will	see	when	we	discuss	chapter	4,	the	spectrum	of	WN	is	flat.		 

We	will	typically	assume	WN	is	independent	and	identically	distributed	(iid),	

though	sometimes	we	do	not	need	this	assumption	and	it	is	sometimes	

enough	only	to	assume	the	values	are	uncorrelated.		



An	example	of	WN	is	shown	in	the	top	of	Figure	1.8,	which	shows	500	values	

where	sw2	=	1.		

	

5. Moving Average processes.  

If	we	take	WN,	wt	,	and	smooth	it	out,	we	obtain	a	moving	average	(MA)	

process.	For	example,	suppose	we	start	with	WN,	wt	,	and	for	each	t,	we	let	Xt	

be	the	average	of	wt	,	wt-1	,	and	wt+1	.		In	other	words,	Xt	=	1/3	(wt-1	+	wt	+	

wt+1).	The	result	is	called	an	MA	process	and	it	is	shown	in	the	bottom	panel	

of	Fig	1.8.	We	can	see	that	it	is	much	smoother	than	the	WN	series.	The	R	code		

v	=	filter(w,	sides=2,	filter=rep(1/3,3))		

was used to very simply create the vector v = Xt	plotted	in	the	figure.		



6. AutoRegressive processes.  

If	we	start	with	wt	=	white	noise	and	for	each	t,	we	let		

xt	=	xt-1	-	0.9xt-2	+	wt	,	 

then	wt	is	called	an	AutoRegressive	(AR)	process.	It	is	helpful	to	imagine	

starting	by	letting	x1	=	w1	and	x2	=	w2	,	and	then	generating	the	values	x3	,	x4	

,	etc.,	one	at	time,	up	to	x500.		

For	instance,	x3	=	x2	-	0.9x1	+	w3	,		

and x4	=	x3	-	0.9x2	+	w4	,	 

and we can easily imagine continuing and generating all 500 values of xt	this	way.	 

The	resulting	AR	process	is	shown	in	Figure	1.9.	It	looks	periodic,	because	if	

say	w100	is	very	large	and	positive,	then	this	will	tend	to	make	x100	be	large	

and	positive,	which	will	in	turn	make	x102	be	large	in	the	negative	direction,	

which	will	in	turn	cause	x104	to	be	large	and	positive,	etc.		

 



7. Suggested but not collected hw problems.  

1.3, 1.10, 1.19, 1.20, 1.21, and 1.27. On problem 1.10, where it says "and autocorrelation 
function g(h) at some time in the future", it should say "and autocovariance function g(h) at some 
time in the future".  
2.9, 3.1, 3.2, 3.4, 3.6, 3.9, 4.5, 4.9, and 4.19.  
See tsa4.pdf to find these problems, and see oldhw1notes.pdf for some hints on the first few 
problems.  
 


