
Stat 221, Time Series Analysis. Day 3.  

  Outline for the day: 

1. Random Walks (RW) with drift.   

2. Signal plus noise.  

3. Mean function.  

4. Autocovariance function.  

  



 

1. Random Walk (RW) with drift.  

Suppose	x0	=	0,	and	for	t	=	1,	2,	...,		

xt	=	xt-1	+	d	+	wt	.		

Then	xt	is	called	a	Random	Walk	(RW)	with	drift.		

The	constant	d	is	called	the	drift,	and	when	d		=	0,	xt	is	called	a	RW.		

An	example	with	and	without	drift	is	shown	in	Fig	1.10.		

It	is	called	a	random	walk	because	when	d	=	0,	the	value	of	xt	at	time	t	is	equal	

to	xt-1	plus	the	completely	random	term	wt	.		

We	can	write	xt	as	a	sum	of	the	first	t	white	noise	terms.	For	a	RW	with	drift,		

xt	=	xt-1	+	d	+	wt		=	[xt-2	+		d	+	wt-1	]	+	d	+	wt		=	xt-2	+	2d	+	wt-1	+	wt		,	and	

continuing	to	plug	in	xt-2	=	xt-3	+	d	+	wt-2	,	etc.,	we	eventually	get			

xt	=	dt	+	∑ wi	
%
&'( 	. 

Note that the code in the book has the line set.seed(154)	.		

This	is	useful,	because	it	sets	the	random	seed	so	that	your	results	will	look	

exactly	like	those	in	the	book.	This	is	very	handy	if	you	want	to	be	able	to	

reproduce	your	results	exactly	over	and	over.		You	don't	have	to	use	the	

number	154	unless	you	want	to	reproduce	the	results	they	happen	to	have	

generated	in	the	book.		

For instance, try  

set.seed(123)  



x = rnorm(1); print(x)  

x = rnorm(1); print(x)  

set.seed(123)  

x = rnorm(1); print(x)  

 

Suppose we want to simulate xt = 0.7 xt-1 + 0.6 xt-2 + wt, where s2 = v(wt)=1. 

And suppose we want to MA filter it generating 

yt = 0.5 xt-1 + 0.25 xt-2 + 0.25 xt-3.  

w = rnorm(150,0,1) 

x = filter(w, filter=c(0.7,0.6), method="recursive")[-(1:50)]  

y = filter(x, c(0.5,0.25,0.25), sides = 1) plot.ts(x)  

lines(y,lty=2)  

  

 



2. Signal plus noise.  

It	is	often	convenient	to	view	time	series	data	as	consisting	of	an	underlying	

signal	plus	some	random	noise.	The	signal	part	of	the	model	is	usually	

modelled	as	deterministic,	rather	than	random.	It	is	simply	some	function	of	t.	

For	example,	suppose,	for	each	t,	 

xt	=2	cos{2π	(t+15)/15}	+	wt	.		

The	first	term	is	viewed	as	the	signal,	and	wt	is	the	noise.	An	example	is	shown	

in	Fig	1.11.		

Any	cosine	wave	can	always	be	written	in	the	form	 

A	cos(	2π	w	t	+	f )	,		

where	A	is	called	the	amplitude,	w	is	called	the	frequency	indicating	how	many	

cycles	are	occurring	per	time	unit,	and	f	is	called	the	phase	shift.		

Here	A	=	2,	w	=	1/50	because	there	is	one	cycle	every	50	time	points,	and	f	=	

(2π)	15/50	=	0.6π.		

In	the	bottom	two	panels	of	Fig	1.11,	we	can	see	what	the	cosine	looks	like	

after	white	noise	has	been	added	to	it.	Here	there	are	two	different	WN	

processes	in	the	middle	and	bottom	panel,	with	two	different	variances,	or	

sizes, sw	,	of	the	white	noise.	In	both	cases	the	WN	is	Gaussian.	The	amplitude	

of	the	signal	and	the	variance	of	the	WN	determine	how	clearly	the	signal	

appears.	The	ratio	of	the	amplitude	of	the	signal	to	sw	is	called	the	signal-to-

noise	ratio	(SNR).	Larger	SNR	means	the	signal	is	easier	to	discern	and	lower	

SNR	means	it	is	more	obscured.		



 

	

## yt = 2yt-1 + wt 
## so 2yt-1 = yt - wt 
## and yt-1 = .5yt - .5wt.  
 
set.seed(184)  
alpha = .5  
sigma = .5  
par(mfrow=c(1,2))  
n = 100  
w = rnorm(n,mean=0,sd=sigma) 
x = rep(0,n) 
x[1] = w[1]  
for(i in 2:n) x[i] = alpha*x[i-1] + w[i]  



plot(1:n,x,xlab="t",ylab=expression(x[t]),type="l")  
y = rep(0,n)  
y[n] = w[1] 
for(i in 2:n) y[n+1-i] = alpha*y[n+2-i] - alpha * w[n+2-i] 
plot(1:n,y,xlab="t",ylab=expression(y[t]),type="l")   
 
## Verify that yt = 2yt-1 + wt.  
y[1:3] 
w[1:3] 
2*y[1]+w[2]  
2*y[2]+w[3]  
 
library(astsa)  
par(mfrow=c(3,2))  
n = 500  
t = (1:n)/n  
x = 10*cos(t*2*pi*100) + rnorm(n)*12 ## 100 cycles of amplitude 10, in 500 pts, 
so freq = 1/5.   
y = 0*cos(t*2*pi*100) + rnorm(n)*12 ## 100 cycles of amplitude 0, in 500 pts, so 
freq = 1/5.   
plot(t,x,type="l",main="x")  
plot(t,y,type="l",main="y")  
spectrum(x,ylim=c(1,10000),main="periodogram of x")  
spectrum(y,ylim=c(1,10000),main="periodogram of y")  
spec.ar(x,ylim=c(1,10000),main="spectral density estimate of x")  
spec.ar(y,ylim=c(1,10000),main="spectral density estimate of y")  
## For the periodogram, see the bottom of p172.  

	

3.	Mean	function.		

If xt	is	a	time	series,	then	E(xt)	is	called	the	mean	function.	It	is	also	sometimes	

written	µ(t)	or	µt	,	or	sometimes	just	µ	in	the	case	where	it	is	constant	for	all	t.		

If	xt	is	the	MA	process	xt	=	wt-1	+	wt	+	wt+1,		

then	E(Xt)	=	1/3	[E(wt-1)+E(wt)+E(wt+1)]=0.			

For	a	RW	with	drift,	E(Xt)	=	dt.		



4. Autocovariance.  

The	autocovariance	function	is	defined	for	any	s	and	t	as			

g(s,t)	=	cov(xs	,	xt)	=	E[(xs	-	μs)(xt	-	μt)].		

Note that g(s,t)	=	g(t,s).	Also,	note	that	when	s	=	t,		

g(s,t)	=	cov(xt	,	xt)	=	var(xt).	 

Often	when	the	time	series	is	smooth,	the	autocovariance	is	large	and	decays	

very	very	slowly	to	zero,	i.e.	it	is	large	even	for	s	and	t	rather	far	apart	in	time.	

When	the	time	series	is	rough,	the	autocovariance	tends	to	be	close	to	0	for	t-s	

exceeding	some	threshold.	This	difference	t-s	is	called	the	lag	or	time	lag.			

If xt	=	WN,	then	what	is	g(s,t)?		

Here g(s,t)	=	0	whenever	s	≠	t,		

but when s=t, g(s,t)	=	var(xt)	=	sw2.		

So this is the autocovariance of WN. Now we will look at the autocovariance of a 
MA process.   
 
See  p17 of ch1.  
 


