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Time Series Regression and Exploratory
Data Analysis

2.1 Introduction

The linear model and its applications are at least as dominant in the time
series context as in classical statistics. Regression models are important for
time domain models discussed in Chapters 3, 5, and 6, and in the frequency
domain models considered in Chapters 4 and 7. The primary ideas depend
on being able to express a response series, say xt, as a linear combination
of inputs, say zt1, zt2, . . . , ztq. Estimating the coe�cients �1,�2, . . . ,�q in the
linear combinations by least squares provides a method for modeling xt in
terms of the inputs.

In the time domain applications of Chapter 3, for example, we will express
xt as a linear combination of previous values xt�1, xt�2, . . . , xt�p, of the cur-
rently observed series. The outputs xt may also depend on lagged values of
another series, say yt�1, yt�2, . . . , yt�q, that have influence. It is easy to see
that forecasting becomes an option when prediction models can be formulated
in this form. Time series smoothing and filtering can be expressed in terms
of local regression models. Polynomials and regression splines also provide
important techniques for smoothing.

If one admits sines and cosines as inputs, the frequency domain ideas that
lead to the periodogram and spectrum of Chapter 4 follow from a regression
model. Extensions to filters of infinite extent can be handled using regression
in the frequency domain. In particular, many regression problems in the fre-
quency domain can be carried out as a function of the periodic components
of the input and output series, providing useful scientific intuition into fields
like acoustics, oceanographics, engineering, biomedicine, and geophysics.

The above considerations motivate us to include a separate chapter on
regression and some of its applications that is written on an elementary level
and is formulated in terms of time series. The assumption of linearity, sta-
tionarity, and homogeneity of variances over time is critical in the regression
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48 2 Time Series Regression and Exploratory Data Analysis

context, and therefore we include some material on transformations and other
techniques useful in exploratory data analysis.

2.2 Classical Regression in the Time Series Context

We begin our discussion of linear regression in the time series context by
assuming some output or dependent time series, say, xt, for t = 1, . . . , n,
is being influenced by a collection of possible inputs or independent series,
say, zt1, zt2, . . . , ztq, where we first regard the inputs as fixed and known.
This assumption, necessary for applying conventional linear regression, will
be relaxed later on. We express this relation through the linear regression
model

xt = �1zt1 + �2zt2 + · · ·+ �qztq + wt, (2.1)

where �1,�2, . . . ,�q are unknown fixed regression coe�cients, and {wt} is
a random error or noise process consisting of independent and identically
distributed (iid) normal variables with mean zero and variance �

2
w; we will

relax the iid assumption later. A more general setting within which to embed
mean square estimation and linear regression is given in Appendix B, where
we introduce Hilbert spaces and the Projection Theorem.

Example 2.1 Estimating a Linear Trend

Consider the global temperature data, say xt, shown in Figure 1.2 and Fig-
ure 2.1. As discussed in Example 1.2, there is an apparent upward trend in
the series that has been used to argue the global warming hypothesis. We
might use simple linear regression to estimate that trend by fitting the model

xt = �1 + �2t+ wt, t = 1880, 1857, . . . , 2009.

This is in the form of the regression model (2.1) when we make the identifica-
tion q = 2, zt1 = 1 and zt2 = t. Note that we are making the assumption that
the errors, wt, are an iid normal sequence, which may not be true. We will
address this problem further in §2.3; the problem of autocorrelated errors is
discussed in detail in §5.5. Also note that we could have used, for example,
t = 1, . . . , 130, without a↵ecting the interpretation of the slope coe�cient,
�2; only the intercept, �1, would be a↵ected.

Using simple linear regression, we obtained the estimated coe�cients b�1 =
�11.2, and b

�2 = .006 (with a standard error of .0003) yielding a highly
significant estimated increase of .6 degrees centigrade per 100 years. We
discuss the precise way in which the solution was accomplished after the
example. Finally, Figure 2.1 shows the global temperature data, say xt, with
the estimated trend, say bxt = �11.2 + .006t, superimposed. It is apparent
that the estimated trend line obtained via simple linear regression does not
quite capture the trend of the data and better models will be needed.

To perform this analysis in R, use the following commands:
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Fig. 2.1. Global temperature deviations shown in Figure 1.2 with fitted linear trend

line.

summary(fit <- lm(gtemp~time(gtemp))) # regress gtemp on time
plot(gtemp, type="o", ylab="Global Temperature Deviation")
abline(fit) # add regression line to the plot

The linear model described by (2.1) above can be conveniently written in
a more general notation by defining the column vectors zzzt = (zt1, zt2, . . . , ztq)0

and ��� = (�1,�2, . . . ,�q)0, where 0 denotes transpose, so (2.1) can be written
in the alternate form

xt = ���

0zzzt + wt. (2.2)

where wt ⇠ iid N(0,�2
w). It is natural to consider estimating the unknown

coe�cient vector ��� by minimizing the error sum of squares

Q =
n
X

t=1

w2
t =

n
X

t=1

(xt � ���

0zzzt)
2, (2.3)

with respect to �1,�2, . . . ,�q. Minimizing Q yields the ordinary least squares
estimator of ���. This minimization can be accomplished by di↵erentiating (2.3)
with respect to the vector ��� or by using the properties of projections. In the
notation above, this procedure gives the normal equations

✓ n
X

t=1

zzztzzz
0
t

◆

b

��� =
n
X

t=1

zzztxt. (2.4)

The notation can be simplified by defining Z = [zzz1 | zzz2 | · · · | zzzn]0 as the
n ⇥ q matrix composed of the n samples of the input variables, the ob-
served n ⇥ 1 vector xxx = (x1, x2, . . . , xn)0 and the n ⇥ 1 vector of errors
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50 2 Time Series Regression and Exploratory Data Analysis

www = (w1, w2, . . . , wn)0. In this case, model (2.2) may be written as

xxx = Z��� +www. (2.5)

The normal equations, (2.4), can now be written as

(Z 0Z) b��� = Z 0xxx (2.6)

and the solution
b

��� = (Z 0Z)�1Z 0xxx (2.7)

when the matrix Z 0Z is nonsingular. The minimized error sum of squares
(2.3), denoted SSE, can be written as

SSE =
n
X

t=1

(xt � b���
0
zzzt)

2

= (xxx� Zb���)0(xxx� Zb���)

= xxx0xxx� b���0
Z 0xxx

= xxx0xxx� xxx0Z(Z 0Z)�1Z 0xxx,

(2.8)

to give some useful versions for later reference. The ordinary least squares
estimators are unbiased, i.e., E(b���) = ���, and have the smallest variance within
the class of linear unbiased estimators.

If the errors wt are normally distributed, b��� is also the maximum likelihood
estimator for ��� and is normally distributed with

cov(b���) = �

2
w

✓ n
X

t=1

zzztzzz
0
t

◆�1

= �

2
w(Z

0Z)�1 = �

2
wC, (2.9)

where
C = (Z 0Z)�1 (2.10)

is a convenient notation for later equations. An unbiased estimator for the
variance �

2
w is

s2w = MSE =
SSE

n� q
, (2.11)

where MSE denotes the mean squared error, which is contrasted with the
maximum likelihood estimator b�2

w = SSE/n. Under the normal assumption,
s2w is distributed proportionally to a chi-squared random variable with n� q

degrees of freedom, denoted by �

2
n�q, and independently of b�. It follows that

tn�q =
(b�i � �i)

sw
p
cii

(2.12)

has the t-distribution with n � q degrees of freedom; cii denotes the i-th
diagonal element of C, as defined in (2.10).
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2.2 Classical Regression in the Time Series Context 51

Table 2.1. Analysis of Variance for Regression

Source df Sum of Squares Mean Square

z

t,r+1, . . . , zt,q q � r SSR = SSE

r

� SSE MSR = SSR/(q � r)

Error n� q SSE MSE = SSE/(n� q)

Total n� r SSE

r

Various competing models are of interest to isolate or select the best subset
of independent variables. Suppose a proposed model specifies that only a
subset r < q independent variables, say, zzzt:r = (zt1, zt2, . . . , ztr)0 is influencing
the dependent variable xt. The reduced model is

xxx = Zr���r +www (2.13)

where ���r = (�1,�2, . . . ,�r)0 is a subset of coe�cients of the original q variables
and Zr = [zzz1:r | · · · | zzzn:r]0 is the n ⇥ r matrix of inputs. The null hypothesis
in this case is H0: �r+1 = · · · = �q = 0. We can test the reduced model (2.13)
against the full model (2.2) by comparing the error sums of squares under the
two models using the F -statistic

Fq�r,n�q =
(SSEr � SSE)/(q � r)

SSE/(n� q)
, (2.14)

which has the central F -distribution with q � r and n� q degrees of freedom
when (2.13) is the correct model. Note that SSEr is the error sum of squares
under the reduced model (2.13) and it can be computed by replacing Z with
Zr in (2.8). The statistic, which follows from applying the likelihood ratio
criterion, has the improvement per number of parameters added in the nu-
merator compared with the error sum of squares under the full model in the
denominator. The information involved in the test procedure is often summa-
rized in an Analysis of Variance (ANOVA) table as given in Table 2.1 for this
particular case. The di↵erence in the numerator is often called the regression
sum of squares

In terms of Table 2.1, it is conventional to write the F -statistic (2.14) as
the ratio of the two mean squares, obtaining

Fq�r,n�q =
MSR

MSE
, (2.15)

where MSR, themean squared regression, is the numerator of (2.14). A special
case of interest is r = 1 and zt1 ⌘ 1, when the model in (2.13) becomes

xt = �1 + wt,

and we may measure the proportion of variation accounted for by the other
variables using
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52 2 Time Series Regression and Exploratory Data Analysis

R2 =
SSE1 � SSE

SSE1
, (2.16)

where the residual sum of squares under the reduced model

SSE1 =
n
X

t=1

(xt � x̄)2, (2.17)

in this case is just the sum of squared deviations from the mean x̄. The mea-
sure R2 is also the squared multiple correlation between xt and the variables
zt2, zt3, . . . , ztq.

The techniques discussed in the previous paragraph can be used to test
various models against one another using the F test given in (2.14), (2.15),
and the ANOVA table. These tests have been used in the past in a stepwise
manner, where variables are added or deleted when the values from the F -
test either exceed or fail to exceed some predetermined levels. The procedure,
called stepwise multiple regression, is useful in arriving at a set of useful
variables. An alternative is to focus on a procedure for model selection that
does not proceed sequentially, but simply evaluates each model on its own
merits. Suppose we consider a normal regression model with k coe�cients
and denote the maximum likelihood estimator for the variance as

b�

2
k =

SSEk

n
, (2.18)

where SSEk denotes the residual sum of squares under the model with k
regression coe�cients. Then, Akaike (1969, 1973, 1974) suggested measuring
the goodness of fit for this particular model by balancing the error of the fit
against the number of parameters in the model; we define the following.1

Definition 2.1 Akaike’s Information Criterion (AIC)

AIC = log b�2
k +

n+ 2k

n
, (2.19)

where b�2
k is given by (2.18) and k is the number of parameters in the model.

The value of k yielding the minimum AIC specifies the best model. The
idea is roughly that minimizing b�2

k would be a reasonable objective, except
that it decreases monotonically as k increases. Therefore, we ought to penalize
the error variance by a term proportional to the number of parameters. The
choice for the penalty term given by (2.19) is not the only one, and a consid-
erable literature is available advocating di↵erent penalty terms. A corrected

1
Formally, AIC is defined as �2 logL

k

+ 2k where L

k

is the maximized likelihood

and k is the number of parameters in the model. For the normal regression prob-

lem, AIC can be reduced to the form given by (2.19). AIC is an estimate of the

Kullback-Leibler discrepency between a true model and a candidate model; see

Problem 2.4 and Problem 2.5 for further details.
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2.2 Classical Regression in the Time Series Context 53

form, suggested by Sugiura (1978), and expanded by Hurvich and Tsai (1989),
can be based on small-sample distributional results for the linear regression
model (details are provided in Problem 2.4 and Problem 2.5). The corrected
form is defined as follows.

Definition 2.2 AIC, Bias Corrected (AICc)

AICc = log b�2
k +

n+ k

n� k � 2
, (2.20)

where b�2
k is given by (2.18), k is the number of parameters in the model, and

n is the sample size.

We may also derive a correction term based on Bayesian arguments, as in
Schwarz (1978), which leads to the following.

Definition 2.3 Bayesian Information Criterion (BIC)

BIC = log b�2
k +

k log n

n
, (2.21)

using the same notation as in Definition 2.2.

BIC is also called the Schwarz Information Criterion (SIC); see also Ris-
sanen (1978) for an approach yielding the same statistic based on a minimum
description length argument. Various simulation studies have tended to ver-
ify that BIC does well at getting the correct order in large samples, whereas
AICc tends to be superior in smaller samples where the relative number of
parameters is large; see McQuarrie and Tsai (1998) for detailed comparisons.
In fitting regression models, two measures that have been used in the past are
adjusted R-squared, which is essentially s2w, and Mallows Cp, Mallows (1973),
which we do not consider in this context.

Example 2.2 Pollution, Temperature and Mortality

The data shown in Figure 2.2 are extracted series from a study by Shumway
et al. (1988) of the possible e↵ects of temperature and pollution on weekly
mortality in Los Angeles County. Note the strong seasonal components in all
of the series, corresponding to winter-summer variations and the downward
trend in the cardiovascular mortality over the 10-year period.

A scatterplot matrix, shown in Figure 2.3, indicates a possible linear rela-
tion between mortality and the pollutant particulates and a possible relation
to temperature. Note the curvilinear shape of the temperature mortality
curve, indicating that higher temperatures as well as lower temperatures are
associated with increases in cardiovascular mortality.

Based on the scatterplot matrix, we entertain, tentatively, four models
where Mt denotes cardiovascular mortality, Tt denotes temperature and Pt

denotes the particulate levels. They are
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Fig. 2.2. Average weekly cardiovascular mortality (top), temperature (middle)

and particulate pollution (bottom) in Los Angeles County. There are 508 six-day

smoothed averages obtained by filtering daily values over the 10 year period 1970-

1979.

Mt = �1 + �2t+ wt (2.22)

Mt = �1 + �2t+ �3(Tt � T·) + wt (2.23)

Mt = �1 + �2t+ �3(Tt � T·) + �4(Tt � T·)
2 + wt (2.24)

Mt = �1 + �2t+ �3(Tt � T·) + �4(Tt � T·)
2 + �5Pt + wt (2.25)

where we adjust temperature for its mean, T· = 74.6, to avoid scaling prob-
lems. It is clear that (2.22) is a trend only model, (2.23) is linear temperature,
(2.24) is curvilinear temperature and (2.25) is curvilinear temperature and
pollution. We summarize some of the statistics given for this particular case
in 2.2. The values of R2 were computed by noting that SSE1 = 50, 687 using
(2.17).

We note that each model does substantially better than the one before it
and that the model including temperature, temperature squared, and partic-
ulates does the best, accounting for some 60% of the variability and with the
best value for AIC and BIC (because of the large sample size, AIC and AICc
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Fig. 2.3. Scatterplot matrix showing plausible relations between mortality, temper-

ature, and pollution.

Table 2.2. Summary Statistics for Mortality Models

Model k SSE df MSE R

2
AIC BIC

(2.22) 2 40,020 506 79.0 .21 5.38 5.40

(2.23) 3 31,413 505 62.2 .38 5.14 5.17

(2.24) 4 27,985 504 55.5 .45 5.03 5.07

(2.25) 5 20,508 503 40.8 .60 4.72 4.77

are nearly the same). Note that one can compare any two models using the
residual sums of squares and (2.14). Hence, a model with only trend could
be compared to the full model using q = 5, r = 2, n = 508, so

F3,503 =
(40, 020� 20, 508)/3

20, 508/503
= 160,
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which exceeds F3,503(.001) = 5.51. We obtain the best prediction model,

cMt = 81.59� .027(.002)t� .473(.032)(Tt � 74.6)

+ .023(.003)(Tt � 74.6)2 + .255(.019)Pt,

for mortality, where the standard errors, computed from (2.9)–(2.11), are
given in parentheses. As expected, a negative trend is present in time as well
as a negative coe�cient for adjusted temperature. The quadratic e↵ect of
temperature can clearly be seen in the scatterplots of Figure 2.3. Pollution
weights positively and can be interpreted as the incremental contribution to
daily deaths per unit of particulate pollution. It would still be essential to
check the residuals bwt = Mt � cMt for autocorrelation (of which there is a
substantial amount), but we defer this question to to §5.6 when we discuss
regression with correlated errors.

Below is the R code to plot the series, display the scatterplot matrix, fit
the final regression model (2.25), and compute the corresponding values of
AIC, AICc and BIC.2 Finally, the use of na.action in lm() is to retain the
time series attributes for the residuals and fitted values.
par(mfrow=c(3,1))
plot(cmort, main="Cardiovascular Mortality", xlab="", ylab="")
plot(tempr, main="Temperature", xlab="", ylab="")
plot(part, main="Particulates", xlab="", ylab="")
dev.new() # open a new graphic device for the scatterplot matrix
pairs(cbind(Mortality=cmort, Temperature=tempr, Particulates=part))
temp = tempr-mean(tempr) # center temperature
temp2 = temp^2
trend = time(cmort) # time
fit = lm(cmort~ trend + temp + temp2 + part, na.action=NULL)
summary(fit) # regression results
summary(aov(fit)) # ANOVA table (compare to next line)
summary(aov(lm(cmort~cbind(trend, temp, temp2, part)))) # Table 2.1
num = length(cmort) # sample size
AIC(fit)/num - log(2*pi) # AIC
BIC(fit)/num - log(2*pi) # BIC
(AICc = log(sum(resid(fit)^2)/num) + (num+5)/(num-5-2)) # AICc

As previously mentioned, it is possible to include lagged variables in time
series regression models and we will continue to discuss this type of problem
throughout the text. This concept is explored further in Problem 2.2 and
Problem 2.11. The following is a simple example of lagged regression.

2
The easiest way to extract AIC and BIC from an lm() run in R is to use the

command AIC() or BIC(). Our definitions di↵er from R by terms that do not

change from model to model. In the example, we show how to obtain (2.19) and

(2.21) from the R output. It is more di�cult to obtain AICc.
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Example 2.3 Regression With Lagged Variables

In Example 1.25, we discovered that the Southern Oscillation Index (SOI)
measured at time t� 6 months is associated with the Recruitment series at
time t, indicating that the SOI leads the Recruitment series by six months.
Although there is evidence that the relationship is not linear (this is discussed
further in Example 2.7), we may consider the following regression,

Rt = �1 + �2St�6 + wt, (2.26)

where Rt denotes Recruitment for month t and St�6 denotes SOI six months
prior. Assuming the wt sequence is white, the fitted model is

bRt = 65.79� 44.28(2.78)St�6 (2.27)

with b�w = 22.5 on 445 degrees of freedom. This result indicates the strong
predictive ability of SOI for Recruitment six months in advance. Of course,
it is still essential to check the the model assumptions, but again we defer
this until later.

Performing lagged regression in R is a little di�cult because the series
must be aligned prior to running the regression. The easiest way to do this is
to create a data frame that we call fish using ts.intersect, which aligns
the lagged series.
fish = ts.intersect(rec, soiL6=lag(soi,-6), dframe=TRUE)
summary(lm(rec~soiL6, data=fish, na.action=NULL))

2.3 Exploratory Data Analysis

In general, it is necessary for time series data to be stationary, so averag-
ing lagged products over time, as in the previous section, will be a sensible
thing to do. With time series data, it is the dependence between the values
of the series that is important to measure; we must, at least, be able to es-
timate autocorrelations with precision. It would be di�cult to measure that
dependence if the dependence structure is not regular or is changing at every
time point. Hence, to achieve any meaningful statistical analysis of time series
data, it will be crucial that, if nothing else, the mean and the autocovariance
functions satisfy the conditions of stationarity (for at least some reasonable
stretch of time) stated in Definition 1.7. Often, this is not the case, and we
will mention some methods in this section for playing down the e↵ects of
nonstationarity so the stationary properties of the series may be studied.

A number of our examples came from clearly nonstationary series. The
Johnson & Johnson series in Figure 1.1 has a mean that increases exponen-
tially over time, and the increase in the magnitude of the fluctuations around
this trend causes changes in the covariance function; the variance of the pro-
cess, for example, clearly increases as one progresses over the length of the
series. Also, the global temperature series shown in Figure 1.2 contains some
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evidence of a trend over time; human-induced global warming advocates seize
on this as empirical evidence to advance their hypothesis that temperatures
are increasing.

Perhaps the easiest form of nonstationarity to work with is the trend sta-
tionary model wherein the process has stationary behavior around a trend.
We may write this type of model as

xt = µt + yt (2.28)

where xt are the observations, µt denotes the trend, and yt is a stationary
process. Quite often, strong trend, µt, will obscure the behavior of the sta-
tionary process, yt, as we shall see in numerous examples. Hence, there is some
advantage to removing the trend as a first step in an exploratory analysis of
such time series. The steps involved are to obtain a reasonable estimate of the
trend component, say bµt, and then work with the residuals

byt = xt � bµt. (2.29)

Consider the following example.

Example 2.4 Detrending Global Temperature
Here we suppose the model is of the form of (2.28),

xt = µt + yt,

where, as we suggested in the analysis of the global temperature data pre-
sented in Example 2.1, a straight line might be a reasonable model for the
trend, i.e.,

µt = �1 + �2 t.

In that example, we estimated the trend using ordinary least squares3 and
found

bµt = �11.2 + .006 t.

Figure 2.1 shows the data with the estimated trend line superimposed. To
obtain the detrended series we simply subtract bµt from the observations, xt,
to obtain the detrended series

byt = xt + 11.2� .006 t.

The top graph of Figure 2.4 shows the detrended series. Figure 2.5 shows the
ACF of the original data (top panel) as well as the ACF of the detrended
data (middle panel).

3
Because the error term, y

t

, is not assumed to be iid, the reader may feel that

weighted least squares is called for in this case. The problem is, we do not know

the behavior of y

t

and that is precisely what we are trying to assess at this stage.

A notable result by Grenander and Rosenblatt (1957, Ch 7), however, is that

under mild conditions on y

t

, for polynomial regression or periodic regression,

asymptotically, ordinary least squares is equivalent to weighted least squares.
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Fig. 2.4. Detrended (top) and di↵erenced (bottom) global temperature series. The

original data are shown in Figure 1.2 and Figure 2.1.

To detrend in the series in R, use the following commands. We also show
how to di↵erence and plot the di↵erenced data; we discuss di↵erencing af-
ter this example. In addition, we show how to generate the sample ACFs
displayed in Figure 2.5.
fit = lm(gtemp~time(gtemp), na.action=NULL) # regress gtemp on time
par(mfrow=c(2,1))
plot(resid(fit), type="o", main="detrended")
plot(diff(gtemp), type="o", main="first difference")
par(mfrow=c(3,1)) # plot ACFs
acf(gtemp, 48, main="gtemp")
acf(resid(fit), 48, main="detrended")
acf(diff(gtemp), 48, main="first difference")

In Example 1.11 and the corresponding Figure 1.10 we saw that a random
walk might also be a good model for trend. That is, rather than modeling
trend as fixed (as in Example 2.4), we might model trend as a stochastic
component using the random walk with drift model,

µt = � + µt�1 + wt, (2.30)
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Fig. 2.5. Sample ACFs of the global temperature (top), and of the detrended

(middle) and the di↵erenced (bottom) series.

where wt is white noise and is independent of yt. If the appropriate model is
(2.28), then di↵erencing the data, xt, yields a stationary process; that is,

xt � xt�1 = (µt + yt)� (µt�1 + yt�1) (2.31)

= � + wt + yt � yt�1.

It is easy to show zt = yt � yt�1 is stationary using footnote 3 of Chapter 1
on page 20. That is, because yt is stationary,

�z(h) = cov(zt+h, zt) = cov(yt+h � yt+h�1, yt � yt�1)

= 2�y(h)� �y(h+ 1)� �y(h� 1)

is independent of time; we leave it as an exercise (Problem 2.7) to show that
xt � xt�1 in (2.31) is stationary.



i
i

“tsa3” — 2015/8/18 — 22:47 — page 61 — #71 i
i

i
i

i
i

2.3 Exploratory Data Analysis 61

One advantage of di↵erencing over detrending to remove trend is that
no parameters are estimated in the di↵erencing operation. One disadvantage,
however, is that di↵erencing does not yield an estimate of the stationary
process yt as can be seen in (2.31). If an estimate of yt is essential, then
detrending may be more appropriate. If the goal is to coerce the data to
stationarity, then di↵erencing may be more appropriate. Di↵erencing is also
a viable tool if the trend is fixed, as in Example 2.4. That is, e.g., if µt =
�1 + �2 t in the model (2.28), di↵erencing the data produces stationarity (see
Problem 2.6):

xt � xt�1 = (µt + yt)� (µt�1 + yt�1) = �2 + yt � yt�1.

Because di↵erencing plays a central role in time series analysis, it receives
its own notation. The first di↵erence is denoted as

rxt = xt � xt�1. (2.32)

As we have seen, the first di↵erence eliminates a linear trend. A second di↵er-
ence, that is, the di↵erence of (2.32), can eliminate a quadratic trend, and so
on. In order to define higher di↵erences, we need a variation in notation that
we will use often in our discussion of ARIMA models in Chapter 3.

Definition 2.4 We define the backshift operator by

Bxt = xt�1

and extend it to powers B2xt = B(Bxt) = Bxt�1 = xt�2, and so on. Thus,

Bkxt = xt�k. (2.33)

It is clear that we may then rewrite (2.32) as

rxt = (1�B)xt, (2.34)

and we may extend the notion further. For example, the second di↵erence
becomes

r2xt = (1�B)2xt = (1� 2B +B2)xt

= xt � 2xt�1 + xt�2

by the linearity of the operator. To check, just take the di↵erence of the first
di↵erence r(rxt) = r(xt � xt�1) = (xt � xt�1)� (xt�1 � xt�2).

Definition 2.5 Di↵erences of order d are defined as

rd = (1�B)d, (2.35)

where we may expand the operator (1�B)d algebraically to evaluate for higher
integer values of d. When d = 1, we drop it from the notation.
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The first di↵erence (2.32) is an example of a linear filter applied to elim-
inate a trend. Other filters, formed by averaging values near xt, can pro-
duce adjusted series that eliminate other kinds of unwanted fluctuations, as
in Chapter 3. The di↵erencing technique is an important component of the
ARIMA model of Box and Jenkins (1970) (see also Box et al., 1994), to be
discussed in Chapter 3.

Example 2.5 Di↵erencing Global Temperature
The first di↵erence of the global temperature series, also shown in Figure 2.4,
produces di↵erent results than removing trend by detrending via regression.
For example, the di↵erenced series does not contain the long middle cycle
we observe in the detrended series. The ACF of this series is also shown in
Figure 2.5. In this case it appears that the di↵erenced process shows minimal
autocorrelation, which may imply the global temperature series is nearly a
random walk with drift. It is interesting to note that if the series is a random
walk with drift, the mean of the di↵erenced series, which is an estimate of
the drift, is about .0066 (but with a large standard error):
mean(diff(gtemp)) # = 0.00659 (drift)
sd(diff(gtemp))/sqrt(length(diff(gtemp))) # = 0.00966 (SE)

An alternative to di↵erencing is a less-severe operation that still assumes
stationarity of the underlying time series. This alternative, called fractional
di↵erencing, extends the notion of the di↵erence operator (2.35) to fractional
powers �.5 < d < .5, which still define stationary processes. Granger and
Joyeux (1980) and Hosking (1981) introduced long memory time series, which
corresponds to the case when 0 < d < .5. This model is often used for en-
vironmental time series arising in hydrology. We will discuss long memory
processes in more detail in §5.2.

Often, obvious aberrations are present that can contribute nonstationary
as well as nonlinear behavior in observed time series. In such cases, transfor-
mations may be useful to equalize the variability over the length of a single
series. A particularly useful transformation is

yt = log xt, (2.36)

which tends to suppress larger fluctuations that occur over portions of the
series where the underlying values are larger. Other possibilities are power
transformations in the Box–Cox family of the form

yt =

(

(x�
t � 1)/� � 6= 0,

log xt � = 0.
(2.37)

Methods for choosing the power � are available (see Johnson and Wichern,
1992, §4.7) but we do not pursue them here. Often, transformations are also
used to improve the approximation to normality or to improve linearity in
predicting the value of one series from another.
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Fig. 2.6. Glacial varve thicknesses (top) from Massachusetts for n = 634 years

compared with log transformed thicknesses (bottom).

Example 2.6 Paleoclimatic Glacial Varves
Melting glaciers deposit yearly layers of sand and silt during the spring melt-
ing seasons, which can be reconstructed yearly over a period ranging from the
time deglaciation began in New England (about 12,600 years ago) to the time
it ended (about 6,000 years ago). Such sedimentary deposits, called varves,
can be used as proxies for paleoclimatic parameters, such as temperature,
because, in a warm year, more sand and silt are deposited from the receding
glacier. Figure 2.6 shows the thicknesses of the yearly varves collected from
one location in Massachusetts for 634 years, beginning 11,834 years ago. For
further information, see Shumway and Verosub (1992). Because the variation
in thicknesses increases in proportion to the amount deposited, a logarithmic
transformation could remove the nonstationarity observable in the variance
as a function of time. Figure 2.6 shows the original and transformed varves,
and it is clear that this improvement has occurred. We may also plot the
histogram of the original and transformed data, as in Problem 2.8, to argue
that the approximation to normality is improved. The ordinary first di↵er-
ences (2.34) are also computed in Problem 2.8, and we note that the first
di↵erences have a significant negative correlation at lag h = 1. Later, in
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Chapter 5, we will show that perhaps the varve series has long memory and
will propose using fractional di↵erencing.

Figure 2.6 was generated in R as follows:
par(mfrow=c(2,1))
plot(varve, main="varve", ylab="")
plot(log(varve), main="log(varve)", ylab="" )

Next, we consider another preliminary data processing technique that is
used for the purpose of visualizing the relations between series at di↵erent lags,
namely, scatterplot matrices. In the definition of the ACF, we are essentially
interested in relations between xt and xt�h; the autocorrelation function tells
us whether a substantial linear relation exists between the series and its own
lagged values. The ACF gives a profile of the linear correlation at all possible
lags and shows which values of h lead to the best predictability. The restriction
of this idea to linear predictability, however, may mask a possible nonlinear
relation between current values, xt, and past values, xt�h. This idea extends
to two series where one may be interested in examining scatterplots of yt
versus xt�h

Example 2.7 Scatterplot Matrices, SOI and Recruitment
To check for nonlinear relations of this form, it is convenient to display a
lagged scatterplot matrix, as in Figure 2.7, that displays values of the SOI,
St, on the vertical axis plotted against St�h on the horizontal axis. The
sample autocorrelations are displayed in the upper right-hand corner and
superimposed on the scatterplots are locally weighted scatterplot smoothing
(lowess) lines that can be used to help discover any nonlinearities. We discuss
smoothing in the next section, but for now, think of lowess as a robust method
for fitting nonlinear regression.

In Figure 2.7, we notice that the lowess fits are approximately linear,
so that the sample autocorrelations are meaningful. Also, we see strong
positive linear relations at lags h = 1, 2, 11, 12, that is, between St and
St�1, St�2, St�11, St�12, and a negative linear relation at lags h = 6, 7. These
results match up well with peaks noticed in the ACF in Figure 1.14.

Similarly, we might want to look at values of one series, say Recruitment,
denoted Rt plotted against another series at various lags, say the SOI, St�h,
to look for possible nonlinear relations between the two series. Because, for
example, we might wish to predict the Recruitment series, Rt, from current
or past values of the SOI series, St�h, for h = 0, 1, 2, ... it would be worthwhile
to examine the scatterplot matrix. Figure 2.8 shows the lagged scatterplot
of the Recruitment series Rt on the vertical axis plotted against the SOI
index St�h on the horizontal axis. In addition, the figure exhibits the sample
cross-correlations as well as lowess fits.

Figure 2.8 shows a fairly strong nonlinear relationship between Recruit-
ment, Rt, and the SOI series at St�5, St�6, St�7, St�8, indicating the SOI
series tends to lead the Recruitment series and the coe�cients are negative,
implying that increases in the SOI lead to decreases in the Recruitment. The
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Fig. 2.7. Scatterplot matrix relating current SOI values, S

t

, to past SOI values,

S

t�h

, at lags h = 1, 2, ..., 12. The values in the upper right corner are the sample

autocorrelations and the lines are a lowess fit.

nonlinearity observed in the scatterplots (with the help of the superimposed
lowess fits) indicate that the behavior between Recruitment and the SOI is
di↵erent for positive values of SOI than for negative values of SOI.

Simple scatterplot matrices for one series can be obtained in R using the
lag.plot command. Figure 2.7 and Figure 2.8 may be reproduced using the
following scripts provided with astsa (see Appendix R for details):
lag1.plot(soi, 12) # Figure 2.7
lag2.plot(soi, rec, 8) # Figure 2.8

As a final exploratory tool, we discuss assessing periodic behavior in time
series data using regression analysis and the periodogram; this material may
be thought of as an introduction to spectral analysis, which we discuss in
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Fig. 2.8. Scatterplot matrix of the Recruitment series, R

t

, on the vertical axis

plotted against the SOI series, S

t�h

, on the horizontal axis at lags h = 0, 1, . . . , 8.

The values in the upper right corner are the sample cross-correlations and the lines

are a lowess fit.

detail in Chapter 4. In Example 1.12, we briefly discussed the problem of
identifying cyclic or periodic signals in time series. A number of the time
series we have seen so far exhibit periodic behavior. For example, the data
from the pollution study example shown in Figure 2.2 exhibit strong yearly
cycles. Also, the Johnson & Johnson data shown in Figure 1.1 make one cycle
every year (four quarters) on top of an increasing trend and the speech data
in Figure 1.2 is highly repetitive. The monthly SOI and Recruitment series in
Figure 1.6 show strong yearly cycles, but hidden in the series are clues to the
El Niño cycle.
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Example 2.8 Using Regression to Discover a Signal in Noise
In Example 1.12, we generated n = 500 observations from the model

xt = A cos(2⇡!t+ �) + wt, (2.38)

where ! = 1/50, A = 2, � = .6⇡, and �w = 5; the data are shown on the bot-
tom panel of Figure 1.11 on page 16. At this point we assume the frequency
of oscillation ! = 1/50 is known, but A and � are unknown parameters. In
this case the parameters appear in (2.38) in a nonlinear way, so we use a
trigonometric identity4 and write

A cos(2⇡!t+ �) = �1 cos(2⇡!t) + �2 sin(2⇡!t),

where �1 = A cos(�) and �2 = �A sin(�). Now the model (2.38) can be
written in the usual linear regression form given by (no intercept term is
needed here)

xt = �1 cos(2⇡t/50) + �2 sin(2⇡t/50) + wt. (2.39)

Using linear regression on the generated data, the fitted model is

bxt = �.71(.30) cos(2⇡t/50)� 2.55(.30) sin(2⇡t/50) (2.40)

with b�w = 4.68, where the values in parentheses are the standard er-
rors. We note the actual values of the coe�cients for this example are
�1 = 2 cos(.6⇡) = �.62 and �2 = �2 sin(.6⇡) = �1.90. Because the pa-
rameter estimates are significant and close to the actual values, it is clear
that we are able to detect the signal in the noise using regression, even
though the signal appears to be obscured by the noise in the bottom panel
of Figure 1.11. Figure 2.9 shows data generated by (2.38) with the fitted line,
(2.40), superimposed.

To reproduce the analysis and Figure 2.9 in R, use the following commands:
set.seed(1000) # so you can reproduce these results
x = 2*cos(2*pi*1:500/50 + .6*pi) + rnorm(500,0,5)
z1 = cos(2*pi*1:500/50); z2 = sin(2*pi*1:500/50)
summary(fit <- lm(x~0+z1+z2)) # zero to exclude the intercept
plot.ts(x, lty="dashed")
lines(fitted(fit), lwd=2)

Example 2.9 Using the Periodogram to Discover a Signal in Noise
The analysis in Example 2.8 may seem like cheating because we assumed we
knew the value of the frequency parameter !. If we do not know !, we could
try to fit the model (2.38) using nonlinear regression with ! as a parameter.
Another method is to try various values of ! in a systematic way. Using the

4
cos(↵± �) = cos(↵) cos(�)⌥ sin(↵) sin(�).
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Fig. 2.9. Data generated by (2.38) [dashed line] with the fitted [solid] line, (2.40),

superimposed.

regression results of §2.2, we can show the estimated regression coe�cients
in Example 2.8 take on the special form given by

b

�1 =

Pn
t=1 xt cos(2⇡t/50)
Pn

t=1 cos
2(2⇡t/50)

=
2

n

n
X

t=1

xt cos(2⇡t/50); (2.41)

b

�2 =

Pn
t=1 xt sin(2⇡t/50)
Pn

t=1 sin
2(2⇡t/50)

=
2

n

n
X

t=1

xt sin(2⇡t/50). (2.42)

This suggests looking at all possible regression parameter estimates,5 say

b

�1(j/n) =
2

n

n
X

t=1

xt cos(2⇡t j/n); (2.43)

b

�2(j/n) =
2

n

n
X

t=1

xt sin(2⇡t j/n), (2.44)

where, n = 500 and j = 1, . . . , n
2 � 1, and inspecting the results for large

values. For the endpoints, j = 0 and j = n/2, we have b�1(0) = n�1
Pn

t=1 xt

and b�1(
1
2 ) = n�1

Pn
t=1(�1)txt, and b�2(0) = b

�2(
1
2 ) = 0.

For this particular example, the values calculated in (2.41) and (2.42) are
b

�1(10/500) and b�2(10/500). By doing this, we have regressed a series, xt, of

5
In the notation of §2.2, the estimates are of the form

P

n

t=1 xt

z

t

�

P

n

t=1 z
2
t

where

z

t

= cos(2⇡tj/n) or z

t

= sin(2⇡tj/n). In this setup, unless j = 0 or j = n/2 if n

is even,

P

n

t=1 z
2
t

= n/2; see Problem 2.10.
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Fig. 2.10. The scaled periodogram, (2.45), of the 500 observations generated by

(2.38); the data are displayed in Figure 1.11 and Figure 2.9.

length n using n regression parameters, so that we will have a perfect fit.
The point, however, is that if the data contain any cyclic behavior we are
likely to catch it by performing these saturated regressions.

Next, note that the regression coe�cients b�1(j/n) and b�2(j/n), for each
j, are essentially measuring the correlation of the data with a sinusoid os-
cillating at j cycles in n time points.6 Hence, an appropriate measure of the
presence of a frequency of oscillation of j cycles in n time points in the data
would be

P (j/n) = b

�

2
1(j/n) + b

�

2
2(j/n), (2.45)

which is basically a measure of squared correlation. The quantity (2.45)
is sometimes called the periodogram, but we will call P (j/n) the scaled
periodogram and we will investigate its properties in Chapter 4. Figure 2.10
shows the scaled periodogram for the data generated by (2.38), and it easily
discovers the periodic component with frequency ! = .02 = 10/500 even
though it is di�cult to visually notice that component in Figure 1.11 due to
the noise.

Finally, we mention that it is not necessary to run a large regression

xt =

n/2
X

j=0

�1(j/n) cos(2⇡tj/n) + �2(j/n) sin(2⇡tj/n) (2.46)

to obtain the values of �1(j/n) and �2(j/n) [with �2(0) = �2(1/2) = 0]
because they can be computed quickly if n (assumed even here) is a highly

6
Sample correlations are of the form

P

t

x

t

z

t

� �

P

t

x

2
t

P

t

z

2
t

�1/2
.
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composite integer. There is no error in (2.46) because there are n observations
and n parameters; the regression fit will be perfect. The discrete Fourier
transform (DFT) is a complex-valued weighted average of the data given by

d(j/n) = n�1/2
n
X

t=1

xt exp(�2⇡itj/n)

= n�1/2

 

n
X

t=1

xt cos(2⇡tj/n)� i
n
X

t=1

xt sin(2⇡tj/n)

! (2.47)

where the frequencies j/n are called the Fourier or fundamental frequencies.
Because of a large number of redundancies in the calculation, (2.47) may be
computed quickly using the fast Fourier transform (FFT)7, which is available
in many computing packages such as Matlab R�, S-PLUS R� and R. Note that8

|d(j/n)|2 =
1

n

 

n
X

t=1

xt cos(2⇡tj/n)

!2

+
1

n

 

n
X

t=1

xt sin(2⇡tj/n)

!2

(2.48)

and it is this quantity that is called the periodogram; we will write

I(j/n) = |d(j/n)|2.

We may calculate the scaled periodogram, (2.45), using the periodogram as

P (j/n) =
4

n
I(j/n). (2.49)

We will discuss this approach in more detail and provide examples with data
in Chapter 4.

Figure 2.10 can be created in R using the following commands (and the
data already generated in x):
I = abs(fft(x))^2/500 # the periodogram
P = (4/500)*I[1:250] # the scaled periodogram
f = 0:249/500 # frequencies
plot(f, P, type="l", xlab="Frequency", ylab="Scaled Periodogram")

2.4 Smoothing in the Time Series Context

In §1.4, we introduced the concept of smoothing a time series, and in Ex-
ample 1.9, we discussed using a moving average to smooth white noise. This
method is useful in discovering certain traits in a time series, such as long-term

7
Di↵erent packages scale the FFT di↵erently; consult the documentation. R cal-

culates (2.47) without scaling by n

�1/2
.

8
If z = a� ib is complex, then |z|

2
= zz = (a� ib)(a+ ib) = a

2
+ b

2
.
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Fig. 2.11. The weekly cardiovascular mortality series discussed in Example 2.2

smoothed using a five-week moving average and a 53-week moving average.

trend and seasonal components. In particular, if xt represents the observations,
then

mt =
k
X

j=�k

ajxt�j , (2.50)

where aj = a�j � 0 and
Pk

j=�k aj = 1 is a symmetric moving average of the
data.

Example 2.10 Moving Average Smoother
For example, Figure 2.11 shows the weekly mortality series discussed in Ex-
ample 2.2, a five-point moving average (which is essentially a monthly average
with k = 2) that helps bring out the seasonal component and a 53-point mov-
ing average (which is essentially a yearly average with k = 26) that helps
bring out the (negative) trend in cardiovascular mortality. In both cases,
the weights, a�k, . . . , a0, . . . , ak, we used were all the same, and equal to
1/(2k + 1).9

To reproduce Figure 2.11 in R:
ma5 = filter(cmort, sides=2, rep(1,5)/5)
ma53 = filter(cmort, sides=2, rep(1,53)/53)
plot(cmort, type="p", ylab="mortality")
lines(ma5); lines(ma53)

9
Sometimes, the end weights, a�k

and a

k

are set equal to half the value of the

other weights.
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Fig. 2.12. The weekly cardiovascular mortality series with a cubic trend and cubic

trend plus periodic regression.

Many other techniques are available for smoothing time series data based
on methods from scatterplot smoothers. The general setup for a time plot is

xt = ft + yt, (2.51)

where ft is some smooth function of time, and yt is a stationary process. We
may think of the moving average smoother mt, given in (2.50), as an estimator
of ft. An obvious choice for ft in (2.51) is polynomial regression

ft = �0 + �1t+ · · ·+ �pt
p. (2.52)

We have seen the results of a linear fit on the global temperature data in
Example 2.1. For periodic data, one might employ periodic regression

ft = ↵0 + ↵1 cos(2⇡!1t) + �1 sin(2⇡!1t)

+ · · ·+ ↵p cos(2⇡!pt) + �p sin(2⇡!pt), (2.53)

where !1, . . . ,!p are distinct, specified frequencies. In addition, one might
consider combining (2.52) and (2.53). These smoothers can be applied using
classical linear regression.

Example 2.11 Polynomial and Periodic Regression Smoothers
Figure 2.12 shows the weekly mortality series with an estimated (via ordinary
least squares) cubic smoother

bft = b

�0 + b

�1t+ b

�2t
2 + b

�3t
3
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superimposed to emphasize the trend, and an estimated (via ordinary least
squares) cubic smoother plus a periodic regression

bft = b

�0 + b

�1t+ b

�2t
2 + b

�3t
3 + b↵1 cos(2⇡t/52) + b↵2 sin(2⇡t/52)

superimposed to emphasize trend and seasonality.
The R commands for this example are as follows (we note that the sampling

rate is 1/52, so that wk below is essentially t/52).
wk = time(cmort) - mean(time(cmort))
wk2 = wk^2; wk3 = wk^3
cs = cos(2*pi*wk); sn = sin(2*pi*wk)
reg1 = lm(cmort~wk + wk2 + wk3, na.action=NULL)
reg2 = lm(cmort~wk + wk2 + wk3 + cs + sn, na.action=NULL)
plot(cmort, type="p", ylab="mortality")
lines(fitted(reg1)); lines(fitted(reg2))

Modern regression techniques can be used to fit general smoothers to the
pairs of points (t, xt) where the estimate of ft is smooth. Many of the tech-
niques can easily be applied to time series data using the R or S-PLUS sta-
tistical packages; see Venables and Ripley (1994, Chapter 10) for details on
applying these methods in S-PLUS (R is similar). A problem with the tech-
niques used in Example 2.11 is that they assume ft is the same function over
the range of time, t; we might say that the technique is global. The moving
average smoothers in Example 2.10 fit the data better because the technique
is local; that is, moving average smoothers allow for the possibility that ft is
a di↵erent function over time. We describe some other local methods in the
following examples.

Example 2.12 Kernel Smoothing
Kernel smoothing is a moving average smoother that uses a weight function,
or kernel, to average the observations. Figure 2.13 shows kernel smoothing
of the mortality series, where ft in (2.51) is estimated by

bft =
n
X

i=1

wi(t)xi, (2.54)

where

wi(t) = K
�

t�i
b

�

� n
X

j=1

K
�

t�j
b

�

. (2.55)

are the weights and K(·) is a kernel function. This estimator, which was orig-
inally explored by Parzen (1962) and Rosenblatt (1956b), is often called the
Nadaraya–Watson estimator (Watson, 1966); typically, the normal kernel,
K(z) = 1p

2⇡
exp(�z2/2), is used. To implement this in R, use the ksmooth

function. The wider the bandwidth, b, the smoother the result. In Figure 2.13,
the values of b for this example were b = 5/52 (roughly weighted two to three
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Fig. 2.13. Kernel smoothers of the mortality data.

week averages because b/2 is the inner quartile range of the kernel) for the
seasonal component, and b = 104/52 = 2 (roughly weighted yearly averages)
for the trend component.

Figure 2.13 can be reproduced in R (or S-PLUS) as follows.
plot(cmort, type="p", ylab="mortality")
lines(ksmooth(time(cmort), cmort, "normal", bandwidth=5/52))
lines(ksmooth(time(cmort), cmort, "normal", bandwidth=2))

Example 2.13 Lowess and Nearest Neighbor Regression
Another approach to smoothing a time plot is nearest neighbor regression.
The technique is based on k-nearest neighbors linear regression, wherein one
uses the data {xt�k/2, . . . , xt, . . . , xt+k/2} to predict xt using linear regres-

sion; the result is bft. For example, Figure 2.14 shows cardiovascular mortality
and the nearest neighbor method using the R (or S-PLUS) smoother supsmu.
We used k = n/2 to estimate the trend and k = n/100 to estimate the sea-
sonal component. In general, supsmu uses a variable window for smoothing
(see Friedman, 1984), but it can be used for correlated data by fixing the
smoothing window, as was done here.

Lowess is a method of smoothing that is rather complex, but the basic idea
is close to nearest neighbor regression. Figure 2.14 shows smoothing of mor-
tality using the R or S-PLUS function lowess (see Cleveland, 1979). First,
a certain proportion of nearest neighbors to xt are included in a weighting
scheme; values closer to xt in time get more weight. Then, a robust weighted
regression is used to predict xt and obtain the smoothed estimate of ft. The
larger the fraction of nearest neighbors included, the smoother the estimate
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Fig. 2.14. Nearest neighbor (supsmu) and locally weighted regression (lowess)
smoothers of the mortality data.

bft will be. In Figure 2.14, the smoother uses about two-thirds of the data
to obtain an estimate of the trend component, and the seasonal component
uses 2% of the data.

Figure 2.14 can be reproduced in R or S-PLUS as follows.
par(mfrow=c(2,1))
plot(cmort, type="p", ylab="mortality", main="nearest neighbor")
lines(supsmu(time(cmort), cmort, span=.5))
lines(supsmu(time(cmort), cmort, span=.01))
plot(cmort, type="p", ylab="mortality", main="lowess")
lines(lowess(cmort, f=.02)); lines(lowess(cmort, f=2/3))

Example 2.14 Smoothing Splines
An extension of polynomial regression is to first divide time t = 1, . . . , n,
into k intervals, [t0 = 1, t1], [t1 + 1, t2] , . . . , [tk�1 + 1, tk = n]. The values
t0, t1, . . . , tk are called knots. Then, in each interval, one fits a regression of
the form (2.52); typically, p = 3, and this is called cubic splines.

A related method is smoothing splines, which minimizes a compromise
between the fit and the degree of smoothness given by
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Fig. 2.15. Smoothing splines fit to the mortality data.

n
X

t=1

[xt � ft]
2 + �

Z

⇣

f
00

t

⌘2
dt, (2.56)

where ft is a cubic spline with a knot at each t. The degree of smoothness is
controlled by � > 0. There is a relationship between smoothing splines and
state space models, which is investigated in Problem 6.7.

In R, the smoothing parameter is called spar and it is monotonically re-
lated to �; type ?smooth.spline to view the help file for details. Figure 2.15
shows smoothing spline fits on the mortality data using generalized cross-
validation, which uses the data to “optimally” assess the smoothing param-
eter, for the seasonal component, and spar=1 for the trend. The figure can
be reproduced in R as follows.
plot(cmort, type="p", ylab="mortality")
lines(smooth.spline(time(cmort), cmort))
lines(smooth.spline(time(cmort), cmort, spar=1))

Example 2.15 Smoothing One Series as a Function of Another
In addition to smoothing time plots, smoothing techniques can be applied
to smoothing a time series as a function of another time series. In this ex-
ample, we smooth the scatterplot of two contemporaneously measured time
series, mortality as a function of temperature. In Example 2.2, we discov-
ered a nonlinear relationship between mortality and temperature. Continu-
ing along these lines, Figure 2.16 shows scatterplots of mortality, Mt, and
temperature, Tt, along with Mt smoothed as a function of Tt using lowess
and using smoothing splines. In both cases, mortality increases at extreme
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Fig. 2.16. Smoothers of mortality as a function of temperature using lowess and

smoothing splines.

temperatures, but in an asymmetric way; mortality is higher at colder tem-
peratures than at hotter temperatures. The minimum mortality rate seems
to occur at approximately 80� F.

Figure 2.16 can be reproduced in R as follows.
par(mfrow=c(2,1), mar=c(3,2,1,0)+.5, mgp=c(1.6,.6,0))
plot(tempr, cmort, main="lowess", xlab="Temperature",

ylab="Mortality")
lines(lowess(tempr,cmort))
plot(tempr, cmort, main="smoothing splines", xlab="Temperature",

ylab="Mortality")
lines(smooth.spline(tempr, cmort))

As a final word of caution, the methods mentioned in this section may not
take into account the fact that the data are serially correlated, and most of
the techniques have been designed for independent observations. That is, for
example, the smoothers shown in Figure 2.16 are calculated under the false
assumption that the pairs (Mt, Tt), are iid pairs of observations. In addition,


