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Time Series Regression and Exploratory
Data Analysis

2.1 Introduction

The linear model and its applications are at least as dominant in the time
series context as in classical statistics. Regression models are important for
time domain models discussed in Chapters 3, 5, and 6, and in the frequency
domain models considered in Chapters 4 and 7. The primary ideas depend
on being able to express a response series, say x;, as a linear combination
of inputs, say 21, 2¢2, - - - , 2tq- Istimating the coefficients 1, 2, ..., 84 in the
linear combinations by least squares provides a method for modeling x; in
terms of the inputs.

In the time domain applications of Chapter 3, for example, we will express
x4 as a linear combination of previous values x;_1,%:—2,...,%¢—p, of the cur-
rently observed series. The outputs x; may also depend on lagged values of
another series, say yi—1,¥yi—2,...,Yi—q, that have influence. It is easy to see
that forecasting becomes an option when prediction models can be formulated
in this form. Time series smoothing and filtering can be expressed in terms
of local regression models. Polynomials and regression splines also provide
important techniques for smoothing.

If one admits sines and cosines as inputs, the frequency domain ideas that
lead to the periodogram and spectrum of Chapter 4 follow from a regression
model. Extensions to filters of infinite extent can be handled using regression
in the frequency domain. In particular, many regression problems in the fre-
quency domain can be carried out as a function of the periodic components
of the input and output series, providing useful scientific intuition into fields
like acoustics, oceanographics, engineering, biomedicine, and geophysics.

The above considerations motivate us to include a separate chapter on
regression and some of its applications that is written on an elementary level
and is formulated in terms of time series. The assumption of linearity, sta-
tionarity, and homogeneity of variances over time is critical in the regression
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context, and therefore we include some material on transformations and other
techniques useful in exploratory data analysis.

2.2 Classical Regression in the Time Series Context

We begin our discussion of linear regression in the time series context by
assuming some output or dependent time series, say,

where we first regard the inputs as fixed and known.
This assumption, necessary for applying conventional linear regression, will
be relaxed later on. We express this relation through the linear regression
model

e = Brza + Pozea + - 4 Byzeg + Wy, (2.1)

where (1, 2,..., 8, are unknown fixed regression coefficients, and

we will
relax the iid assumption later. A more general setting within which to embed
mean square estimation and linear regression is given in Appendix B, where
we introduce Hilbert spaces and the Projection Theorem.

Example 2.1 Estimating a Linear Trend

This is in the form of the regression model (2.1) when we make the identifica-
tion ¢ = 2, z;; = 1 and E@IEN. Note that we are making the assumption that
the errors, wy, are an iid normal sequence, which may not be true. We will
address this problem further in §2.3; the problem of autocorrelated errors is
discussed in detail in §5.5. Also note that we could have used, for example,
t =1,...,130, without affecting the interpretation of the slope coefficient,
Bo; only the intercept would be affected.

example. Finally, Figure 2.1 shows the global temperature data, say x;, with
the estimated trend, say Z; = —11.2 + .006¢, superimposed. It is apparent
that the estimated trend line obtained via simple linear regression does not
quite capture the trend of the data and better models will be needed.

To perform this analysis in R, use the following commands:
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Global Temperature Deviation

1880 1900 1920 1940 1960 1980 2000

Time
Fig. 2.1. Global temperature deviations shown in Figure 1.2 with fitted linear trend
line.

summary(fit <- lm(gtemp~time(gtemp))) # regress gtemp on time
plot(gtemp, type="o", ylab="Global Temperature Deviation")
abline(fit) # add regression line to the plot

The linear model described by (2.1) above can be conveniently written in
a more general notation by defining the column vectors z; = (241, 242, - - -, 2tq)’
and B = (f1,B2,...,04)", where ’ denotes transpose, so (2.1) can be written

in the alternate form
e 22)

where w; ~ iid N(0,02). It is natural to consider estimating the unknown
coefficient vector 8 by minimizing the error sum of squares
n n
Q=Y w;=> (v, —B=z), (2.3)
t=1 t=1

with respect to 51, B2, ..., By

his minimization can be accomplished by differentiating (2.3)
with respect to the vector B8 or by using the properties of projections. In the
notation above, this procedure gives the normal equations

(Z ztz;> B = Zztxt. (2.4)
t=1 t=1

The notation can be simplified by defining Z = [z1]|22]| -+ |2, as the
n X ¢ matrix composed of the n samples of the input variables, the ob-
served n x 1 vector £ = (x1,22,...,2,)" and the n x 1 vector of errors
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w = (w1, ws, ..., wy,) . In this case, model (2.2) may be written as
r=27ZB+w. (2.5)
The normal equations, (2.4), can now be written as
(Z'2)B=Z'zx (2.6)

and the solution

-~

B=(22)"Z'z (2.7)

when the matrix Z’Z is nonsingular. The minimized error sum of squares
(2.3), denoted SSE, can be written as

n

SSE = Z(mt — Blzt)2

t=1
= (&~ ZB)' (= — ZB) (2.8)
=1’z — B/Z'a:
=zx—22(2'2) 7'z,

ference.
nd have the smallest variance within

ed, ,B is also the maximum likelihood
estimator for B and is normally distributed with

cov(B) = o2 (Z) — (227 = o2c, (29)

where
C=(z22z)" (2.10)

is a convenient notation for later equations. AT unbiased estimator for the

variance oy, is

where M SFE denotes the mean squared error, which is contrasted with the
maximum likelihood estimator 52 = SSE/n. Under the normal assumption,
s2 is distributed proportionally to a chi-squared random variable with n — ¢
degrees of freedom, denoted by X%_q, and independently of . It follows that

p (B: — Bi)
T sun/Ci

has the t-distribution with n — ¢ degrees of freedom; c¢;; denotes the i-th
diagonal element of C, as defined in (2.10).

(2.12)
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Table 2.1. Analysis of Variance for Regression

Source df Sum of Squares Mean Square
Ztrtly---s2tq q—1 SSR=SSE.—SSE MSR=SSR/(q—r)
Error n—gq SSE MSE = SSE/(n—q)
Total n—r SSE,

Various competing models are of interest to isolate or select the best subset
of independent variables. Suppose a proposed model specifies that only a
subset r < ¢ independent variables, say, z¢.,. = (2t1, 22, - - ., 2¢-)” is influencing
the dependent variable z;. The reduced model is

r=20+w (2.13)
where B, = (51, B2, - .., )" is a subset of coefficients of the original ¢ variables
and Z,. = [z1.] -+ | Zn:r|’ 18 the n X r matrix of inputs. The null hypothesis

in this case is Ho: 8,41 = --- = 38, = 0.

which has the central F-distribution with ¢ — r and n — ¢ degrees of freedom
when (2.13) is the correct model. Note that SSE, is the error sum of squares
under the reduced model (2.13) and it can be computed by replacing Z with
Z, in (2.8). The statistic, which follows from applying the likelihood ratio
criterion, has the improvement per number of parameters added in the nu-
merator compared with the error sum of squares under the full model in the
denominator. The information involved in the test procedure is often summa-
rized in an Analysis of Variance (ANOVA) table as given in Table 2.1 for this
particular case. The difference in the numerator is often called the regression
sum of squares

In terms of Table 2.1, it is conventional to write the F-statistic (2.14) as
the ratio of the two mean squares, obtaining

MSR

M—SE’ (2.15)

Fyrin—q =

where MSR, the mean squared regression, is the numerator of (2.14). A special
case of interest is 7 = 1 and z;; = 1, when the model in (2.13) becomes

xy = B1 + wy,
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p= S0 oS5E @.10)
where the residual sum of squares under the reduced model
in this case is just the sum of squared deviations from the mean z. The mea-
sure R? is also the squared multiple correlation between z; and the variables

Rt2, Zt3s - - -y Rtq-

The techniques discussed in the previous paragraph can be used to test
various models against one another using the F' test given in (2.14), (2.15),
and the ANOVA table.

Definition 2.1 Akaike’s Information Criterion (AIC)

(2.19)
wh odel.

. The
ide A , except

that it decreases monotonically as k increases. Therefore, we ought to penalize
the error variance by a term proportional to the number of parameters. The
choice for the penalty term given by (2.19) is not the only one, and a consid-
erable literature is available advocating different penalty terms. A corrected

! Formally, AIC is defined as —2log Ly, + 2k where Ly is the maximized likelihood
and k is the number of parameters in the model. For the normal regression prob-
lem, AIC can be reduced to the form given by (2.19). AIC is an estimate of the
Kullback-Leibler discrepency between a true model and a candidate model; see
Problem 2.4 and Problem 2.5 for further details.



2.2 Classical Regression in the Time Series Context 53

form, suggested by Sugiura (1978), and expanded by Hurvich and Tsai (1989),
can be based on small-sample distributional results for the linear regression
model (details are provided in Problem 2.4 and Problem 2.5). The corrected
form is defined as follows.

Definition 2.2 AIC, Bias Corrected (AICc)

AlCc = log 52 + 1K (2.20)
n

“k—2

where 03 is given by (2.18), k is the number of parameters in the model, and
n s the sample size.

We may also derive a correction term based on Bayesian arguments, as in
Schwarz (1978), which leads to the following.

Definition 2.3 Bayesian Information Criterion (BIC)

(2.21)

using the same notation a

BIC is also called the Schwarz Information Criterion (SIC); see also Ris-
sanen (1978) for an approach yielding the same statistic based on a minimum
description length argument. Various simulation studies have tended to ver-
ify that BIC does well at getting the correct order in large samples, whereas
AICc tends to be superior in smaller samples where the relative number of
parameters is large; see McQuarrie and Tsai (1998) for detailed comparisons.
In fitting regression models, two measures that have been used in the past are
adjusted R-squared, which is essentially s2, and Mallows Cp, Mallows (1973),
which we do not consider in this context.

Example 2.2 Pollution, Temperature and Mortality

Based on the scatterplot matrix, we entertain, tentatively, four models
where M; denotes cardiovascular mortality, 7} denotes temperature and P;
denotes the particulate levels. They are
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Fig. 2.2. Average weekly cardiovascular mortality (top), temperature (middle)
and particulate pollution (bottom) in Los Angeles County. There are 508 six-day
smoothed averages obtained by filtering daily values over the 10 year period 1970-
1979.

My = B1 + Bat + wy

My = B1 + Bot + B3(Ty — T.) + wy

M; = By + Bat + B3(Ty — T.) + Ba(Ty — T.)* + w

My = By + Bat + B3(Ty — T.) + (T — T.)* + B5 Pr + wy

where we adjust temperature for its mean, 7. = 74.6, to avoid scaling prob-

We summarize some of the statistics given for this particular case
in 2.2. The values of R? were computed by noting that SSE; = 50, 687 using
(2.17).

We note that

(because of the large sample size, AIC and AICc
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Fig. 2.3. Scatterplot matrix showing plausible relations between mortality, temper-

ature, and pollution.

Table 2.2. Summary Statistics for Mortality Models

Model k& SSE df MSE R? AIC BIC
(2.22) 2 40,020 506 79.0 .21 5.38 5.40
(2.23) 3 31,413 505 62.2 .38 5.14 5.17
(2.24) 4 27985 504 55.5 .45 5.03 5.07
(2.25) 5 20,508 503 40.8 .60 4.72 4.77

are nearly the same).

be compared to the full model using ¢ = 5,7 = 2, n = 508, so

F3 503 =

Note that one can compare any two models using the
residual sums of squares and (2.14). Hence, a model with only trend could

(40,020 — 20,508) /3

20, 508,/503

= 160,
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which exceeds F3 503(.001) = 5.51. We obtain the best prediction model,

M, = 81.59 — .027( go2yt — 473 032) (T; — 74.6)
+ 023 .003) (T — 74.6)* + .255( 010) P,

for mortality, where the standard errors, computed from (2.9)-(2.11), are
given in parentheses.

code to plot the series, display the scatterplot matrix,
the final regression model (2.25), and compute the corresponding values of
AIC, AICc and BIC.? Finally, the use of na.action in 1Im() is to retain the
time series attributes for the residuals and fitted values.

par (mfrow=c(3,1))

plot(cmort, main="Cardiovascular Mortality", xlab="", ylab="")
plot(tempr, main="Temperature", xlab="", ylab="")

plot(part, main="Particulates", xlab="", ylab="")

dev.new() # open a new graphic device for the scatterplot matriz
pairs(cbind(Mortality=cmort, Temperature=tempr, Particulates=part))
temp = tempr-mean(tempr) # center temperature

temp2 = temp~2

trend = time(cmort) # time

fit = Im(cmort™ trend + temp + temp2 + part, na.action=NULL)

summary (fit) # regression results

summary (aov(fit)) # ANOVA table  (compare to next line)

summary (aov (lm(cmort~cbind (trend, temp, temp2, part)))) # Table 2.1
num = length(cmort) # sample size

ATIC(fit)/num - log(2*pi) # AIC

BIC(fit)/num - log(2*pi) # BIC

(AICc = log(sum(resid(fit)~2)/num) + (num+5)/(num-5-2)) # AICc

As previously mentioned, it is possible to include lagged variables in time
series regression models and we will continue to discuss this type of problem
throughout the text. This concept is explored further in Problem 2.2 and
Problem 2.11. The following is a simple example of lagged regression.

2 The easiest way to extract AIC and BIC from an 1m() run in R is to use the
command AIC() or BIC(). Our definitions differ from R by terms that do not
change from model to model. In the example, we show how to obtain (2.19) and
(2.21) from the R output. It is more difficult to obtain AICc.
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Example 2.3 Regression With Lagged Variables
In Example 1.25, we discovered that the

Although there is evidence that the relationship is not linear (this is discussed
further in Example 2.7), we may consider the following regression,

B it a0

where R; denotes Recruitment for month ¢ and S;_g denotes SOI six months
prior. Assuming the w; sequence is white, the fitted model is

Ry = 65.79 — 44.28 5. 78)S; g (2.27)

with 7, = 22.5 on 445 degrees of freedom. This result indicates the strong
predictive ability of SOI for Recruitment six months in advance. Of course,
it is still essential to check the the model assumptions, but again we defer
this until later.

Performing lagged regression in R is a little difficult because the series
must be aligned prior to running the regression. The easiest way to do this is
to create a data frame that we call fish using ts.intersect, which aligns
the lagged series.
fish = ts.intersect(rec, soil6=lag(soi,-6), dframe=TRUE)
summary (lm(rec”soil6, data=fish, na.action=NULL))

2.3 Exploratory Data Analysis

In general, it is necessary for time series data to be stationary, so averag-
ing lagged products over time, as in the previous section, will be a sensible
thing to do.

ften, this is not the case, and we
will mention some methods in this section for playing down the effects of
nonstationarity so the stationary properties of the series may be studied.

A number of our examples came from clearly nonstationary series. The
Johnson & Johnson series in Figure 1.1 has a mean that increases exponen-
tially over time, and the increase in the magnitude of the fluctuations around
this trend causes changes in the covariance function; the variance of the pro-
cess, for example, clearly increases as one progresses over the length of the
series. Also, the global temperature series shown in Figure 1.2 contains some



58 2 Time Series Regression and Exploratory Data Analysis

evidence of a trend over time; human-induced global warming advocates seize
on this as empirical evidence to advance their hypothesis that temperatures
are increasing.

Consider the following exampl

Example 2.4 Detrending Global Temperature
Here we suppose the model is of the form of (2.28),

Ty = Ht + Yy,

i L 1, i o e 1 e b
=it
Il s s he i v s

The top graph of Figure 2.4 shows the detrended series. Figure 2.5 shows the
ACF of the original data (top panel) as well as the ACF of the detrended
data (middle panel).

3 Because the error term, v, is not assumed to be iid, the reader may feel that
weighted least squares is called for in this case. The problem is, we do not know
the behavior of y; and that is precisely what we are trying to assess at this stage.
A notable result by Grenander and Rosenblatt (1957, Ch 7), however, is that
under mild conditions on ¥, for polynomial regression or periodic regression,
asymptotically, ordinary least squares is equivalent to weighted least squares.
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Fig. 2.4. Detrended (top) and differenced (bottom) global temperature series. The
original data are shown in Figure 1.2 and Figure 2.1.

To detrend in the series in R, use the following commands. We also show
how to difference and plot the differenced data; we discuss differencing af-
ter this example. In addition, we show how to generate the sample ACFs
displayed in Figure 2.5.
fit = Im(gtemp~time(gtemp), na.action=NULL) # regress gtemp on time
par (mfrow=c(2,1))
plot(resid(fit), type="o", main="detrended")
plot(diff(gtemp), type="o", main="first difference")
par (mfrow=c(3,1)) # plot ACFs
acf(gtemp, 48, main="gtemp")
acf(resid(fit), 48, main="detrended")
acf(diff (gtemp), 48, main="first difference")

In Example 1.11 and the corresponding Figure 1.10 we saw that a random
walk might also be a good model for trend. That is, rather than modeling
trend as fixed (as in Example 2.4),

=t 2
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Fig. 2.5. Sample ACFs of the global temperature (top), and of the detrended
(middle) and the differenced (bottom) series.

where w; is white noise and is independent of ;.
that is,

T —Te—1 = (pe +y) — (fe—1 + Ye—1) (2.31)
=0+ w + Y — Ye—1.

It is easy to show z; = y; — y4—1 is stationary using footnote 3 of Chapter 1
on page 20. That is, because y; is stationary,

Yz (h) = cov(2i4hn, 2¢) = COV(Yrph — Ytth—1,Yt — Yt—1)
= 2’7y(h) - ’7y<h + 1) - ’Yy(h - 1)

is independent of time; we leave it as an exercise (Problem 2.7) to show that
xy — x4 in (2.31) is stationary.
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ifferencing is also
a viable tool if the trend is fixed, as in Example 2.4. That is, e.g., if uy =
B1 + B2t in the model (2.28), differencing the data produces stationarity (see
Problem 2.6):
Ty — -1 = (e +ye) — (-1 + Ye—1) = B2 + Yt — Yi—1-

Because differencing plays a central role in time series analysis, it receives

its own notation. [GHASAGIRGHEEHSGHOEAAS

v e

In order to define higher differences, we need a variation in notation that
we will use often in our discussion of ARIMA models in Chapter 3.

Definition 2.4 WEMieRENabaCkSGoperatomb

(2.33)

It is clear that we may then rewrite (2.32) as

==, 39

and we may extend the notion further. For example, the second difference
becomes

V2z; = (1 — B)?x; = (1 — 2B + B?)a,

=Ty —2x4 1 + T2

by the linearity of the operator. To check, just take the difference of the first
difference V(Vxy) = V(2 — 24-1) = (x4 — x4—1) — (T1—1 — T4—2).

Definition 2.5 DiffereReesIoNORIGE ANGRAMaeMN

where we may expand the operator (1—B)? algebraically to evaluate for higher
integer values of d. When d = 1, we drop it from the notation.
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The first difference (2.32) is an example of a linear filter applied to elim-
inate a trend. Other filters, formed by averaging values near x;, can pro-
duce adjusted series that eliminate other kinds of unwanted fluctuations, as
in Chapter 3. The differencing technique is an important component of the
ARIMA model of Box and Jenkins (1970) (see also Box et al., 1994), to be
discussed in Chapter 3.

Example 2.5 Differencing Global Temperature

An alternative to differencing is a less-severe operation that still assumes
stationarity of the underlying time series. This alternative, called fractional
differencing, extends the notion of the difference operator (2.35) to fractional
powers —.5 < d < .5, which still define stationary processes. Granger and
Joyeux (1980) and Hosking (1981) introduced long memory time series, which
corresponds to the case when 0 < d < .5. This model is often used for en-
vironmental time series arising in hydrology. We will discuss long memory

ye = logxy, (2.36)

which tends to suppress larger fluctuations that occur over portions of the
series where the underlying values are larger. Other possibilities are power
transformations in the Box—Cox family of the form

A
- {(wt D/A A0, 237
log x4 A=0.
Methods for choosing the power A are available (see Johnson and Wichern,
1992, §4.7) but we do not pursue them here. Often, transformations are also
used to improve the approximation to normality or to improve linearity in
predicting the value of one series from another.
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Fig. 2.6. Glacial varve thicknesses (top) from Massachusetts for n = 634 years
compared with log transformed thicknesses (bottom).

Example 2.6 Paleoclimatic Glacial Varves

We may also plot the
histogram of the original and transformed data, as in Problem 2.8, to argue
that the approximation to normality is improved. The ordinary first differ-
ences (2.34) are also computed in Problem 2.8, and we note that the first
differences have a significant negative correlation at lag h = 1. Later, in
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Chapter 5, we will show that perhaps the varve series has long memory and
will propose using fractional differencing.
Figure 2.6 was generated in R as follows:
par (mfrow=c(2,1))
plot(varve, main="varve", ylab="")
plot(log(varve), main="log(varve)", ylab="" )

Next, we consider another preliminary data processing technique that is
used for the purpose of visualizing the relations between series at different lags,
namely, scatterplot matrices. In the definition of the ACF, we are essentially
interested in relations between x; and x;_j; the autocorrelation function tells
us whether a substantial linear relation exists between the series and its own
lagged values.

Example 2.7 Scatterplot Matrices, SOI and Recruitment

In Figure 2.7, we notice that the lowess fits are approximately linear,
so that the sample autocorrelations are meaningful. Also, we see strong
positive linear relations at lags h = 1,2,11,12, that is, between S; and
St_1,8t_92,5t_11,5:_12, and a negative linear relation at lags h = 6, 7. These
results match up well with peaks noticed in the ACF in Figure 1.14.

Similarly, we might want to look at values of one series, say Recruitment,
denoted R; plotted against another series at various lags, say the SOI, S;_,
to look for possible nonlinear relations between the two series.

ndicating the SOI
ients are negative,

implying that increases in the SOI lead to decreases in the Recruitment. The
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Fig. 2.7. Scatterplot matrix relating current SOI values, S, to past SOI values,
Si—n, at lags h = 1,2,...,12. The values in the upper right corner are the sample
autocorrelations and the lines are a lowess fit.

Simple scatterplot matrices for one series can be obtained in R using the
lag.plot command. Figure 2.7 and Figure 2.8 may be reproduced using the
following scripts provided with astsa (see Appendix R for details):
lagl.plot(soi, 12) # Figure 2.7
lag2.plot(soi, rec, 8) # Figure 2.8
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Fig. 2.8. Scatterplot matrix of the Recruitment series, R:, on the vertical axis
plotted against the SOI series, S;_n, on the horizontal axis at lags h = 0,1,...,8.
The values in the upper right corner are the sample cross-correlations and the lines
are a lowess fit.

detailiniChapter™® In Example 1.12, we briefly discussed the problem of

identifying cyclic or periodic signals in time series. A number of the time
series we have seen so far exhibit periodic behavior. For example, the data
from the pollution study example shown in Figure 2.2 exhibit strong yearly
cycles. Also, the Johnson & Johnson data shown in Figure 1.1 make one cycle
every year (four quarters) on top of an increasing trend and the speech data
in Figure 1.2 is highly repetitive. The monthly SOI and Recruitment series in
Figure 1.6 show strong yearly cycles, but hidden in the series are clues to the
El Nino cycle.
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Example 2.8 Using Regression to Discover a Signal in Noise
In Example 1.12, we generated n = 500 observations from the model

7, = Acos(2muwt + ¢) + w, (2.38)

where w = 1/50, A = 2, ¢ = .67, and o,, = 5; the data are shown on the bot-

tom panel of Figure 1.11 on page 16.
In

this case the parameters appear in (2.38) in a nonlinear way, so we use a
trigonometric identity* and write

Acos(2mwt + §) = By cos(2mut) + B sin(2mwt),
where f, = Acos(9) and f, = —Asin(¢). NORIIERROIENES)IEEHI5E
G ANE RS AL NHIEAR HOBRESSIONNOR civen by (no intorcept term is

needed here)

7 = By cos(2t/50) + B sin(2t/50) + w. (2.30)

Using linear regression on the generated data, the fitted model is

Ty = —.T1( 30y cos(27t/50) — 2.55 30) sin(27t/50) (2.40)
with 7, = 4.68, where the values in parentheses are the standard er-
rors. We note the actual values of the coefficients for this example are

f1 = 2cos(.6m) = —.62 and [y = —2sin(.6m) = —1.90. Becau

To reproduce the analysis and Figure 2.9 in R, use the following commands:
set.seed(1000) # so you can reproduce these results
x = 2*cos(2%pi*1:500/50 + .6%pi) + rnorm(500,0,5)
z1l = cos(2*pi*1:500/50); 22 = sin(2*pi*1:500/50)
summary(fit <- 1lm(x~0+z1+z2)) # zero to exclude the intercept
plot.ts(x, lty="dashed")
lines(fitted(fit), 1lwd=2)

Example 2.9 Using the Periodogram to Discover a Signal in Noise
The analysis in Example 2.8 may seem like cheating because fielasStmedwe

FiGwtie NAleO R e e BAMHIBEERDA 11 o o not know w, we could

try to fit the model (2.38) using nonlinear regression with w as a parameter.
Another method is to try various values of w in a systematic way. Using the

4 cos(a £ B) = cos(a) cos(B) F sin(a) sin(p).
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Fig. 2.9. Data generated by (2.38) [dashed line] with the fitted [solid] line, (2.40),
superimposed.

regression results of §2.2,

, and inspecting the results for large

whete)n = 500 and
values. For the endpoints, j = 0 and j = n/2, we have 31(0) = n~! Yo
and B (1) =n ' S0 (~1) 2y, and B2(0) = F2(3) = 0.

For this particular example, the values calculated in (2.41) and (2.42) are
B1(10/500) and B5(10/500). By doing this, we have regressed a series, x, of

® In the notation of §2.2, the estimates are of the form Y7 | x12z¢ / D1 27 where
zi = cos(2mtj/n) or z; = sin(27tj/n). In this setup, unless j =0 or j =n/2if n
is even, > 1 | 27 = n/2; see Problem 2.10.
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Fig. 2.10.

length n using n regression parameters, so that we will have a perfect fit.
The point, however, is that if the data contain any cyclic behavior we are
likely to catch it by performing these saturated regressions.

P(j/n) = Biliiimtuda (i /7). (2.45)

Figure 2.10
shows the scaled periodogram for the data generated by (2.38), and it easily
discovers the periodic component with frequency w = .02 = 10/500 even

though it is difficult to visually notice that component in Figure 1.11 due to
the noise.
Finally, we mention that it is not necessary to run a large regression
n/2
2= Bi(j/n) cos(2nti/n) + Bo(i/m)sin(2wtj/n)  (2.46)

Jj=0

to obtain the values of f1(j/n) and fSa2(j/n) [with B2(0) = B2(1/2) = 0]
because they can be computed quickly if n (assumed even here) is a highly

¢ Sample correlations are of the form >, ez / (3, 27 Y, 23)1/2 .
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composite integer. There is no error in (2.46) because there are n observations
and n parameters; the regression fit will be perfect. The discrete Fourier
transform (DFT) is a complex-valued weighted average of the data given by

d(j/n) =n"1? Z x¢ exp(—2mitj/n)

t=1
=n"1/2 <Z xycos(2mtj/n) —i Z Ty sin(27rtj/n)>
t=1 t=1

where the frequencies j/n are called the Fourier or fundamental frequencies.
Because of a large number of redundancies in the calculation, (2.47) may be
computed quickly using the fast Fourier transform (FFT)7, which is available
in many computing packages such as Matlab®, S-PLUS® and R. Note that®

(2.47)

2

2
1< 1<
-)y2 == (Z a4 cos(2mtj /n)> + = (Z g;t sin(27rtj/n)> (2.48)
" \i= " \i=
and it is this quantity that is called the periodogram; we will write
We may calculate the scaled periodogram, (2.45), using the periodogram as

e = A1 »

We will discuss this approach in more detail and provide examples with data
in Chapter 4.

Figure 2.10 can be created in R using the following commands (and the
data already generated in x):

I = abs(EEE(x))"2/500 # the periodogram
P = (4/500)*I[1:250] # the scaled periodogram
f = 0:249/500 # frequencties

plot(f, P, type="1", xlab="Frequency", ylab="Scaled Periodogram")

2.4 Smoothing in the Time Series Context

In §1.4, we introduced the concept of smoothing a time series, and in Ex-
ample 1.9, we discussed using a moving average to smooth white noise. This
method is useful in discovering certain traits in a time series, such as long-term

" Different packages scale the FFT differently; consult the documentation. R cal-
culates (2.47) without scaling by n~'/2.
8 If z = a — ib is complex, then |z|* = 2Z = (a — ib)(a + ib) = a* + b°.
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Fig. 2.11. The weekly cardiovascular mortality series discussed in Example 2.2
smoothed using a five-week moving average and a 53-week moving average.

trend and seasonal components. In particular, if ; represents the observations,
then

k
my = Z a;Ti—j, (2.50)
j=—k

where a; =a_; > 0 and Z?I_ p @j = 1 is a symmetric moving average of the
data.

Example 2.10 Moving Average Smoother

To reproduce Figure 2.11 in R:
mab = filter(cmort, sides=2, rep(1,5)/5)
mab3 = filter(cmort, sides=2, rep(1,53)/53)
plot(cmort, type="p", ylab="mortality")
lines(ma5); lines(mab53)

9 Sometimes, the end weights, a_; and ax are set equal to half the value of the
other weights.
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Fig. 2.12. The weekly cardiovascular mortality series with a cubic trend and cubic
trend plus periodic regression.

Many other techniques are available for smoothing time series data based
on methods from scatterplot smoothers. The general setup for a time plot is

ze= fot (251)

where f; is some smooth function of time, and y; is a stationary process.

We have seen the results of a linear fit on the global temperature data in
Example 2.1. For periodic data, one might employ periodic regression

fr = ap + a; cos(2mwqt) 4 B sin(27ww t)
+ - 4y cos(2mwpt) + By sin(2mwpt), (2.53)
where wi,...,w, are distinct, specified frequencies. In addition, one might

consider combining (2.52) and (2.53). These smoothers can be applied using
classical linear regression.

Example 2.11 Polynomial and Periodic Regression Smoothers
Figure 2.12 shows the weekly mortality series with an estimated (via ordinary
least squares) cubic smoother

J?t = 30 + 3115 + Eztz + 33153
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superimposed to emphasize the trend, and an estimated (via ordinary least
squares) cubic smoother plus a periodic regression

Ji = Bo + But + Bat® + Bst® + @y cos(2mt/52) + @y sin (2t /52)

superimposed to emphasize trend and seasonality.
The R commands for this example are as follows (we note that the sampling
rate is 1/52, so that wk below is essentially ¢/52).
wk = time(cmort) - mean(time(cmort))
wk2 = wk™2; wk3 = wk"3
cs = cos(2xpi*wk); sn = sin(2*pi*wk)
regl = Im(cmort~wk + wk2 + wk3, na.action=NULL)
reg2 = Im(cmort™wk + wk2 + wk3 + cs + sn, na.action=NULL)
plot(cmort, type="p", ylab="mortality")
lines(fitted(regl)); lines(fitted(reg2))

Modern regression techniques can be used to fit general smoothers to the
pairs of points (¢,z;) where the estimate of f; is smooth. Many of the tech-
niques can easily be applied to time series data using the R or S-PLUS sta-
tistical packages; see Venables and Ripley (1994, Chapter 10) for details on
applying these methods in S-PLUS (R is similar). A problem with the tech-
niques used in Example 2.11 is that they assume f; is the same function over
the range of time, ¢; we might say that the technique is global.

Example 2.12 Kernel Smoothing

where

wi(t) =K (5) /> K (%), (2.55)

are the weights and K (+) is a kernel function. This estimator, which was orig-
inally explored by Parzen (1962) and Rosenblatt (1956b), is often called the

WTO implement this in R, use the ksmooth
b, the smoother the result. In Figure 2.13,

the values of b for this example were b = 5/52 (roughly weighted two to three
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Fig. 2.13. Kernel smoothers of the mortality data.

week averages because b/2 is the inner quartile range of the kernel) for the
seasonal component, and b = 104/52 = 2 (roughly weighted yearly averages)
for the trend component.

Figure 2.13 can be reproduced in R (or S-PLUS) as follows.
plot(cmort, type="p", ylab="mortality")
lines(ksmooth(time (cmort), cmort, "normal", bandwidth=5/52))
lines (ksmooth(time(cmort), cmort, "mormal", bandwidth=2))

Example 2.13 Lowess and Nearest Neighbor Regression

sonal component. In general, supsmu uses a variable window for smoothing
(see Friedman, 1984), but it can be used for correlated data by fixing the
smoothing window, as was done here.

Lowess is a method of smoothing that is rather complex, but the basic idea
is close to nearest neighbor regression. Figure 2.14 shows smoothing of mor-
tality using the R or S-PLUS function lowess (see Cleveland, 1979).
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Fig. 2.14. Nearest neighbor (supsmu) and locally weighted regression (lowess)
smoothers of the mortality data.

Figure 2.14 can be reproduced in R or S-PLUS as follows.
par (mfrow=c(2,1))
plot(cmort, type="p", ylab="mortality", main="nearest neighbor")
lines(supsmu(time(cmort), cmort, span=.5))
lines(supsmu(time(cmort), cmort, span=.01))
plot(cmort, type="p", ylab="mortality", main="lowess")
lines(lowess(cmort, £=.02)); lines(lowess(cmort, £=2/3))

Example 2.14 Smoothing Splines
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Fig. 2.15. Smoothing splines fit to the mortality data.
n 2 1 2
3w £+ A/ (ft ) dt, (2.56)

_! here is a relationship between smoothing splines and

state space models, which is investigated in Problem 6.7.

In R, the smoothing parameter is called spar and it is monotonically re-
lated to \; type 7?smooth.spline to view the help file for details. Figure 2.15
shows smoothing spline fits on the mortality data using geferaliZedicFoss?
Validagion, which uses the data to “optimally” assess the smoothing param-
eter, for the seasonal component, and spar=1 for the trend. The figure can
be reproduced in R as follows.
plot(cmort, type="p", ylab="mortality")
lines(smooth.spline(time(cmort), cmort))
lines(smooth.spline(time(cmort), cmort, spar=1))

Example 2.15 Smoothing One Series as a Function of Another

In addition to smoothing time plots, smoothing techniques can be applied
to smoothing a time series as a function of another time series. In this ex-
ample, we smooth the scatterplot of two contemporaneously measured time
series, mortality as a function of temperature. In Example 2.2, we discov-
ered a nonlinear relationship between mortality and temperature. Continu-
ing along these lines, Figure 2.16 shows scatterplots of mortality, M;, and
temperature, Ty, along with M; smoothed as a function of T} using lowess
and using smoothing splines. In both cases, mortality increases at extreme
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Fig. 2.16. Smoothers of mortality as a function of temperature using lowess and
smoothing splines.

temperatures, but in an asymmetric way; mortality is higher at colder tem-
peratures than at hotter temperatures. The minimum mortality rate seems
to occur at approximately 80° F.
Figure 2.16 can be reproduced in R as follows.
par (mfrow=c(2,1), mar=c(3,2,1,0)+.5, mgp=c(1.6,.6,0))
plot(tempr, cmort, main="lowess", xlab="Temperature",
ylab="Mortality")
lines(lowess (tempr,cmort))
plot(tempr, cmort, main="smoothing splines", xlab="Temperature",
ylab="Mortality")
lines(smooth.spline(tempr, cmort))

That is, for
example, the smoothers shown in Figure 2.16 are calculated under the false
assumption that the pairs (M, T;), are iid pairs of observations. In addition,



