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ARIMA Models

3.1 Introduction

In Chapters 1 and 2, we introduced autocorrelation and cross-correlation func-
tions (ACFs and CCFs) as tools for clarifying relations that may occur within
and between time series at various lags. In addition, we explained how to
build linear models based on classical regression theory for exploiting the as-
sociations indicated by large values of the ACF or CCF. The time domain, or
regression, methods of this chapter are appropriate when we are dealing with
possibly nonstationary, shorter time series; these series are the rule rather
than the exception in many applications. In addition, if the emphasis is on
forecasting future values, then the problem is easily treated as a regression
problem. This chapter develops a number of regression techniques for time se-
ries that are all related to classical ordinary and weighted or correlated least
squares.

Classical regression is often insu�cient for explaining all of the interesting
dynamics of a time series. For example, the ACF of the residuals of the sim-
ple linear regression fit to the global temperature data (see Example 2.4 of
Chapter 2) reveals additional structure in the data that the regression did not
capture. Instead, the introduction of correlation as a phenomenon that may
be generated through lagged linear relations leads to proposing the autore-
gressive (AR) and autoregressive moving average (ARMA) models. Adding
nonstationary models to the mix leads to the autoregressive integrated mov-
ing average (ARIMA) model popularized in the landmark work by Box and
Jenkins (1970). The Box–Jenkins method for identifying a plausible ARIMA
model is given in this chapter along with techniques for parameter estimation
and forecasting for these models. A partial theoretical justification of the use
of ARMA models is discussed in Appendix B, §B.4.
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84 3 ARIMA Models

3.2 Autoregressive Moving Average Models

The classical regression model of Chapter 2 was developed for the static case,
namely, we only allow the dependent variable to be influenced by current
values of the independent variables. In the time series case, it is desirable
to allow the dependent variable to be influenced by the past values of the
independent variables and possibly by its own past values. If the present can
be plausibly modeled in terms of only the past values of the independent
inputs, we have the enticing prospect that forecasting will be possible.

Introduction to Autoregressive Models

Autoregressive models are based on the idea that the current value of the
series, x

t

, can be explained as a function of p past values, x
t�1, xt�2, . . . , xt�p

,
where p determines the number of steps into the past needed to forecast
the current value. As a typical case, recall Example 1.10 in which data were
generated using the model

x

t

= x

t�1 � .90x
t�2 + w

t

,

where w

t

is white Gaussian noise with �2
w

= 1. We have now assumed the
current value is a particular linear function of past values. The regularity that
persists in Figure 1.9 gives an indication that forecasting for such a model
might be a distinct possibility, say, through some version such as

x

n

n+1 = x

n

� .90x
n�1,

where the quantity on the left-hand side denotes the forecast at the next
period n + 1 based on the observed data, x1, x2, . . . , xn

. We will make this
notion more precise in our discussion of forecasting (§3.5).

The extent to which it might be possible to forecast a real data series from
its own past values can be assessed by looking at the autocorrelation function
and the lagged scatterplot matrices discussed in Chapter 2. For example, the
lagged scatterplot matrix for the Southern Oscillation Index (SOI), shown
in Figure 2.7, gives a distinct indication that lags 1 and 2, for example, are
linearly associated with the current value. The ACF shown in Figure 1.14
shows relatively large positive values at lags 1, 2, 12, 24, and 36 and large
negative values at 18, 30, and 42. We note also the possible relation between
the SOI and Recruitment series indicated in the scatterplot matrix shown in
Figure 2.8. We will indicate in later sections on transfer function and vector
AR modeling how to handle the dependence on values taken by other series.

The preceding discussion motivates the following definition.

Definition 3.1 An autoregressive model of order p, abbreviated AR(p),
is of the form

x

t

= �1xt�1 + �2xt�2 + · · ·+ �
p

x

t�p

+ w

t

, (3.1)
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3.2 Autoregressive Moving Average Models 85

where x

t

is stationary, and �1,�2, . . . ,�p are constants (�
p

6= 0). Although it
is not necessary yet, we assume that w

t

is a Gaussian white noise series with
mean zero and variance �2

w

, unless otherwise stated. The mean of x
t

in (3.1)
is zero. If the mean, µ, of x

t

is not zero, replace x

t

by x

t

� µ in (3.1),

x

t

� µ = �1(xt�1 � µ) + �2(xt�2 � µ) + · · ·+ �
p

(x
t�p

� µ) + w

t

,

or write
x

t

= ↵+ �1xt�1 + �2xt�2 + · · ·+ �
p

x

t�p

+ w

t

, (3.2)

where ↵ = µ(1� �1 � · · ·� �
p

).

We note that (3.2) is similar to the regression model of §2.2, and hence
the term auto (or self) regression. Some technical di�culties, however, develop
from applying that model because the regressors, x

t�1, . . . , xt�p

, are random
components, whereas zzz

t

was assumed to be fixed. A useful form follows by
using the backshift operator (2.33) to write the AR(p) model, (3.1), as

(1� �1B � �2B
2 � · · ·� �

p

B

p)x
t

= w

t

, (3.3)

or even more concisely as
�(B)x

t

= w

t

. (3.4)

The properties of �(B) are important in solving (3.4) for x
t

. This leads to the
following definition.

Definition 3.2 The autoregressive operator is defined to be

�(B) = 1� �1B � �2B
2 � · · ·� �

p

B

p

. (3.5)

We initiate the investigation of AR models by considering the first-order
model, AR(1), given by x

t

= �x
t�1 +w

t

. Iterating backwards k times, we get

x

t

= �x
t�1 + w

t

= �(�x
t�2 + w

t�1) + w

t

= �2x
t�2 + �w

t�1 + w

t

...

= �kx
t�k

+
k�1
X

j=0

�jw
t�j

.

This method suggests that, by continuing to iterate backward, and provided
that |�| < 1 and x

t

is stationary, we can represent an AR(1) model as a linear
process given by1

x

t

=
1
X

j=0

�jw
t�j

. (3.6)

1
Note that lim

k!1 E

⇣

x

t

�

P

k�1
j=0 �

j

w

t�j

⌘2
= lim

k!1 �

2k
E

�

x

2
t�k

�

= 0, so (3.6)

exists in the mean square sense (see Appendix A for a definition).
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86 3 ARIMA Models

The AR(1) process defined by (3.6) is stationary with mean

E(x
t

) =
1
X

j=0

�jE(w
t�j

) = 0,

and autocovariance function,

�(h) = cov(x
t+h

, x

t

) = E

2

4

 1
X

j=0

�jw
t+h�j

! 1
X

k=0

�kw
t�k

!

3

5

= E

⇥�

w

t+h

+ · · ·+ �hw
t

+ �h+1
w

t�1 + · · · � (w
t

+ �w
t�1 + · · · )⇤

= �2
w

1
X

j=0

�h+j�j = �2
w

�h
1
X

j=0

�2j =
�2
w

�h

1� �2
, h � 0.

(3.7)

Recall that �(h) = �(�h), so we will only exhibit the autocovariance function
for h � 0. From (3.7), the ACF of an AR(1) is

⇢(h) =
�(h)

�(0)
= �h, h � 0, (3.8)

and ⇢(h) satisfies the recursion

⇢(h) = � ⇢(h� 1), h = 1, 2, . . . . (3.9)

We will discuss the ACF of a general AR(p) model in §3.4.
Example 3.1 The Sample Path of an AR(1) Process

Figure 3.1 shows a time plot of two AR(1) processes, one with � = .9 and
one with � = �.9; in both cases, �2

w

= 1. In the first case, ⇢(h) = .9h, for
h � 0, so observations close together in time are positively correlated with
each other. This result means that observations at contiguous time points
will tend to be close in value to each other; this fact shows up in the top
of Figure 3.1 as a very smooth sample path for x

t

. Now, contrast this with
the case in which � = �.9, so that ⇢(h) = (�.9)h, for h � 0. This result
means that observations at contiguous time points are negatively correlated
but observations two time points apart are positively correlated. This fact
shows up in the bottom of Figure 3.1, where, for example, if an observation,
x

t

, is positive, the next observation, x
t+1, is typically negative, and the next

observation, x
t+2, is typically positive. Thus, in this case, the sample path

is very choppy.
The following R code can be used to obtain a figure similar to Figure 3.1:

par(mfrow=c(2,1))
plot(arima.sim(list(order=c(1,0,0), ar=.9), n=100), ylab="x",

main=(expression(AR(1)~~~phi==+.9)))
plot(arima.sim(list(order=c(1,0,0), ar=-.9), n=100), ylab="x",

main=(expression(AR(1)~~~phi==-.9)))
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AR(1)  I = +.9

0 20 40 60 80 100

−6
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AR(1)  I = −.9

0 20 40 60 80 100

−6
−4

−2
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6

Fig. 3.1. Simulated AR(1) models: � = .9 (top); � = �.9 (bottom).

Example 3.2 Explosive AR Models and Causality

In Example 1.18, it was discovered that the random walk x

t

= x

t�1 + w

t

is not stationary. We might wonder whether there is a stationary AR(1)
process with |�| > 1. Such processes are called explosive because the values
of the time series quickly become large in magnitude. Clearly, because |�|j
increases without bound as j ! 1,

P

k�1
j=0 �

j

w

t�j

will not converge (in mean
square) as k ! 1, so the intuition used to get (3.6) will not work directly.
We can, however, modify that argument to obtain a stationary model as
follows. Write x

t+1 = �x
t

+ w

t+1, in which case,

x

t

= ��1
x

t+1 � ��1
w

t+1 = ��1
�

��1
x

t+2 � ��1
w

t+2

�� ��1
w

t+1

...

= ��k

x

t+k

�
k�1
X

j=1

��j

w

t+j

, (3.10)

by iterating forward k steps. Because |�|�1
< 1, this result suggests the

stationary future dependent AR(1) model
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88 3 ARIMA Models

x

t

= �
1
X

j=1

��j

w

t+j

. (3.11)

The reader can verify that this is stationary and of the AR(1) form x

t

=
�x

t�1 + w

t

. Unfortunately, this model is useless because it requires us to
know the future to be able to predict the future. When a process does not
depend on the future, such as the AR(1) when |�| < 1, we will say the process
is causal. In the explosive case of this example, the process is stationary, but
it is also future dependent, and not causal.

Example 3.3 Every Explosion Has a Cause

Excluding explosive models from consideration is not a problem because the
models have causal counterparts. For example, if

x

t

= �x
t�1 + w

t

with |�| > 1

and w

t

⇠ iid N(0,�2
w

), then using (3.11), {x
t

} is a non-causal stationary
Gaussian process with E(x

t

) = 0 and

�
x

(h) = cov(x
t+h

, x

t

) = cov

0

@�
1
X

j=1

��j

w

t+h+j

, �
1
X

k=1

��k

w

t+k

1

A

= �2
w

��2 ��h

/(1� ��2).

Thus, using (3.7), the causal process defined by

y

t

= ��1
y

t�1 + v

t

where v

t

⇠ iid N(0,�2
w

��2) is stochastically equal to the x

t

process (i.e.,
all finite distributions of the processes are the same). For example, if x

t

=
2x

t�1+w

t

with �2
w

= 1, then y

t

= 1
2yt�1+ v

t

with �2
v

= 1/4 is an equivalent
causal process (see Problem 3.3). This concept generalizes to higher orders,
but it is easier to show using Chapter 4 techniques; see Example 4.7.

The technique of iterating backward to get an idea of the stationary so-
lution of AR models works well when p = 1, but not for larger orders. A
general technique is that of matching coe�cients. Consider the AR(1) model
in operator form

�(B)x
t

= w

t

, (3.12)

where �(B) = 1 � �B, and |�| < 1. Also, write the model in equation (3.6)
using operator form as

x

t

=
1
X

j=0

 
j

w

t�j

=  (B)w
t

, (3.13)
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3.2 Autoregressive Moving Average Models 89

where  (B) =
P1

j=0  j

B

j and  
j

= �j . Suppose we did not know that

 
j

= �j . We could substitute  (B)w
t

from (3.13) for x
t

in (3.12) to obtain

�(B) (B)w
t

= w

t

. (3.14)

The coe�cients of B on the left-hand side of (3.14) must be equal to those
on right-hand side of (3.14), which means

(1� �B)(1 +  1B +  2B
2 + · · ·+  

j

B

j + · · · ) = 1. (3.15)

Reorganizing the coe�cients in (3.15),

1 + ( 1 � �)B + ( 2 �  1�)B
2 + · · ·+ ( 

j

�  
j�1�)B

j + · · · = 1,

we see that for each j = 1, 2, . . ., the coe�cient of Bj on the left must be zero
because it is zero on the right. The coe�cient of B on the left is ( 1��), and
equating this to zero,  1 � � = 0, leads to  1 = �. Continuing, the coe�cient
of B2 is ( 2 �  1�), so  2 = �2. In general,

 
j

=  
j�1�,

with  0 = 1, which leads to the solution  
j

= �j .
Another way to think about the operations we just performed is to consider

the AR(1) model in operator form, �(B)x
t

= w

t

. Now multiply both sides by
��1(B) (assuming the inverse operator exists) to get

��1(B)�(B)x
t

= ��1(B)w
t

,

or
x

t

= ��1(B)w
t

.

We know already that

��1(B) = 1 + �B + �2B2 + · · ·+ �jBj + · · · ,

that is, ��1(B) is  (B) in (3.13). Thus, we notice that working with operators
is like working with polynomials. That is, consider the polynomial �(z) =
1� �z, where z is a complex number and |�| < 1. Then,

��1(z) =
1

(1� �z)
= 1 + �z + �2z2 + · · ·+ �jzj + · · · , |z|  1,

and the coe�cients of Bj in ��1(B) are the same as the coe�cients of zj in
��1(z). In other words, we may treat the backshift operator, B, as a com-
plex number, z. These results will be generalized in our discussion of ARMA
models. We will find the polynomials corresponding to the operators useful in
exploring the general properties of ARMA models.
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Introduction to Moving Average Models

As an alternative to the autoregressive representation in which the x

t

on the
left-hand side of the equation are assumed to be combined linearly, the moving
average model of order q, abbreviated as MA(q), assumes the white noise w

t

on the right-hand side of the defining equation are combined linearly to form
the observed data.

Definition 3.3 The moving average model of order q, or MA(q) model,
is defined to be

x

t

= w

t

+ ✓1wt�1 + ✓2wt�2 + · · ·+ ✓
q

w

t�q

, (3.16)

where there are q lags in the moving average and ✓1, ✓2, . . . , ✓q (✓
q

6= 0) are
parameters.2 Although it is not necessary yet, we assume that w

t

is a Gaussian
white noise series with mean zero and variance �2

w

, unless otherwise stated.

The system is the same as the infinite moving average defined as the linear
process (3.13), where  0 = 1,  

j

= ✓
j

, for j = 1, . . . , q, and  
j

= 0 for other
values. We may also write the MA(q) process in the equivalent form

x

t

= ✓(B)w
t

, (3.17)

using the following definition.

Definition 3.4 The moving average operator is

✓(B) = 1 + ✓1B + ✓2B
2 + · · ·+ ✓

q

B

q

. (3.18)

Unlike the autoregressive process, the moving average process is stationary
for any values of the parameters ✓1, . . . , ✓q; details of this result are provided
in §3.4.
Example 3.4 The MA(1) Process

Consider the MA(1) model x
t

= w

t

+ ✓w
t�1. Then, E(x

t

) = 0,

�(h) =

8

>

<

>

:

(1 + ✓2)�2
w

h = 0,

✓�2
w

h = 1,

0 h > 1,

and the ACF is

⇢(h) =

8

<

:

✓

(1+✓2)
h = 1,

0 h > 1.

Note |⇢(1)|  1/2 for all values of ✓ (Problem 3.1). Also, x
t

is correlated with
x

t�1, but not with x

t�2, xt�3, . . . . Contrast this with the case of the AR(1)

2
Some texts and software packages write the MA model with negative coe�cients;

that is, x

t

= w

t

� ✓1wt�1 � ✓2wt�2 � · · ·� ✓

q

w

t�q

.
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MA(1)  T = +.5

0 20 40 60 80 100

−2
−1

0
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MA(1)  T = −.5
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−2
−1

0
1

2

Fig. 3.2. Simulated MA(1) models: ✓ = .5 (top); ✓ = �.5 (bottom).

model in which the correlation between x

t

and x

t�k

is never zero. When
✓ = .5, for example, x

t

and x

t�1 are positively correlated, and ⇢(1) = .4.
When ✓ = �.5, x

t

and x

t�1 are negatively correlated, ⇢(1) = �.4. Figure 3.2
shows a time plot of these two processes with �2

w

= 1. The series in where
✓ = .5 is smoother than the series where ✓ = �.5.

A figure similar to Figure 3.2 can be created in R as follows:
par(mfrow = c(2,1))
plot(arima.sim(list(order=c(0,0,1), ma=.5), n=100), ylab="x",

main=(expression(MA(1)~~~theta==+.5)))
plot(arima.sim(list(order=c(0,0,1), ma=-.5), n=100), ylab="x",

main=(expression(MA(1)~~~theta==-.5)))

Example 3.5 Non-uniqueness of MA Models and Invertibility

Using Example 3.4, we note that for an MA(1) model, ⇢(h) is the same for
✓ and 1

✓ ; try 5 and 1
5 , for example. In addition, the pair �2

w

= 1 and ✓ = 5
yield the same autocovariance function as the pair �2

w

= 25 and ✓ = 1/5,
namely,
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92 3 ARIMA Models

�(h) =

8

>

<

>

:

26 h = 0,

5 h = 1,

0 h > 1.

Thus, the MA(1) processes

x

t

= w

t

+ 1
5wt�1, w

t

⇠ iid N(0, 25)

and
y

t

= v

t

+ 5v
t�1, v

t

⇠ iid N(0, 1)

are the same because of normality (i.e., all finite distributions are the same).
We can only observe the time series, x

t

or y

t

, and not the noise, w
t

or v

t

,
so we cannot distinguish between the models. Hence, we will have to choose
only one of them. For convenience, by mimicking the criterion of causality
for AR models, we will choose the model with an infinite AR representation.
Such a process is called an invertible process.

To discover which model is the invertible model, we can reverse the roles
of x

t

and w

t

(because we are mimicking the AR case) and write the MA(1)
model as w

t

= �✓w
t�1 + x

t

. Following the steps that led to (3.6), if |✓| < 1,
then w

t

=
P1

j=0(�✓)jxt�j

, which is the desired infinite AR representation

of the model. Hence, given a choice, we will choose the model with �2
w

= 25
and ✓ = 1/5 because it is invertible.

As in the AR case, the polynomial, ✓(z), corresponding to the moving
average operators, ✓(B), will be useful in exploring general properties of MA
processes. For example, following the steps of equations (3.12)–(3.15), we can
write the MA(1) model as x

t

= ✓(B)w
t

, where ✓(B) = 1 + ✓B. If |✓| < 1,
then we can write the model as ⇡(B)x

t

= w

t

, where ⇡(B) = ✓�1(B). Let
✓(z) = 1 + ✓z, for |z|  1, then ⇡(z) = ✓�1(z) = 1/(1 + ✓z) =

P1
j=0(�✓)jzj ,

and we determine that ⇡(B) =
P1

j=0(�✓)jBj .

Autoregressive Moving Average Models

We now proceed with the general development of autoregressive, moving aver-
age, and mixed autoregressive moving average (ARMA), models for stationary
time series.

Definition 3.5 A time series {x
t

; t = 0,±1,±2, . . .} is ARMA(p, q) if it is
stationary and

x

t

= �1xt�1 + · · ·+ �
p

x

t�p

+ w

t

+ ✓1wt�1 + · · ·+ ✓
q

w

t�q

, (3.19)

with �
p

6= 0, ✓
q

6= 0, and �2
w

> 0. The parameters p and q are called the
autoregressive and the moving average orders, respectively. If x

t

has a nonzero
mean µ, we set ↵ = µ(1� �1 � · · ·� �

p

) and write the model as

x

t

= ↵+ �1xt�1 + · · ·+ �
p

x

t�p

+ w

t

+ ✓1wt�1 + · · ·+ ✓
q

w

t�q

. (3.20)
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Although it is not necessary yet, we assume that w
t

is a Gaussian white noise
series with mean zero and variance �2

w

, unless otherwise stated.

As previously noted, when q = 0, the model is called an autoregressive
model of order p, AR(p), and when p = 0, the model is called a moving average
model of order q, MA(q). To aid in the investigation of ARMA models, it will
be useful to write them using the AR operator, (3.5), and the MA operator,
(3.18). In particular, the ARMA(p, q) model in (3.19) can then be written in
concise form as

�(B)x
t

= ✓(B)w
t

. (3.21)

Before we discuss the conditions under which (3.19) is causal and invertible,
we point out a potential problem with the ARMA model.

Example 3.6 Parameter Redundancy

Consider a white noise process x

t

= w

t

. Equivalently, we can write this as
.5x

t�1 = .5w
t�1 by shifting back one unit of time and multiplying by .5.

Now, subtract the two representations to obtain

x

t

� .5x
t�1 = w

t

� .5w
t�1,

or
x

t

= .5x
t�1 � .5w

t�1 + w

t

, (3.22)

which looks like an ARMA(1, 1) model. Of course, x
t

is still white noise;
nothing has changed in this regard [i.e., x

t

= w

t

is the solution to (3.22)],
but we have hidden the fact that x

t

is white noise because of the parameter
redundancy or over-parameterization. Write the parameter redundant model
in operator form as �(B)x

t

= ✓(B)w
t

, or

(1� .5B)x
t

= (1� .5B)w
t

.

Apply the operator �(B)�1 = (1� .5B)�1 to both sides to obtain

x

t

= (1� .5B)�1(1� .5B)x
t

= (1� .5B)�1(1� .5B)w
t

= w

t

,

which is the original model. We can easily detect the problem of over-
parameterization with the use of the operators or their associated polynomi-
als. That is, write the AR polynomial �(z) = (1� .5z), the MA polynomial
✓(z) = (1 � .5z), and note that both polynomials have a common factor,
namely (1 � .5z). This common factor immediately identifies the parame-
ter redundancy. Discarding the common factor in each leaves �(z) = 1 and
✓(z) = 1, from which we conclude �(B) = 1 and ✓(B) = 1, and we deduce
that the model is actually white noise. The consideration of parameter redun-
dancy will be crucial when we discuss estimation for general ARMA models.
As this example points out, we might fit an ARMA(1, 1) model to white
noise data and find that the parameter estimates are significant. If we were
unaware of parameter redundancy, we might claim the data are correlated
when in fact they are not (Problem 3.20).
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94 3 ARIMA Models

Example 3.2, Example 3.5, and Example 3.6 point to a number of problems
with the general definition of ARMA(p, q) models, as given by (3.19), or,
equivalently, by (3.21). To summarize, we have seen the following problems:

(i) parameter redundant models,
(ii) stationary AR models that depend on the future, and
(iii) MA models that are not unique.

To overcome these problems, we will require some additional restrictions
on the model parameters. First, we make the following definitions.

Definition 3.6 The AR and MA polynomials are defined as

�(z) = 1� �1z � · · ·� �
p

z

p

, �
p

6= 0, (3.23)

and
✓(z) = 1 + ✓1z + · · ·+ ✓

q

z

q

, ✓
q

6= 0, (3.24)

respectively, where z is a complex number.

To address the first problem, we will henceforth refer to an ARMA(p, q)
model to mean that it is in its simplest form. That is, in addition to the
original definition given in equation (3.19), we will also require that �(z)
and ✓(z) have no common factors. So, the process, x

t

= .5x
t�1 � .5w

t�1 +w

t

,
discussed in Example 3.6 is not referred to as an ARMA(1, 1) process because,
in its reduced form, x

t

is white noise.
To address the problem of future-dependent models, we formally introduce

the concept of causality.

Definition 3.7 An ARMA(p, q) model is said to be causal, if the time series
{x

t

; t = 0,±1,±2, . . .} can be written as a one-sided linear process:

x

t

=
1
X

j=0

 
j

w

t�j

=  (B)w
t

, (3.25)

where  (B) =
P1

j=0  j

B

j, and
P1

j=0 | j

| < 1; we set  0 = 1.

In Example 3.2, the AR(1) process, x
t

= �x
t�1 + w

t

, is causal only when
|�| < 1. Equivalently, the process is causal only when the root of �(z) = 1��z
is bigger than one in absolute value. That is, the root, say, z0, of �(z) is
z0 = 1/� (because �(z0) = 0) and |z0| > 1 because |�| < 1. In general, we
have the following property.

Property 3.1 Causality of an ARMA(p, q) Process
An ARMA(p, q) model is causal if and only if �(z) 6= 0 for |z|  1. The

coe�cients of the linear process given in (3.25) can be determined by solving

 (z) =
1
X

j=0

 
j

z

j =
✓(z)

�(z)
, |z|  1.
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Another way to phrase Property 3.1 is that an ARMA process is causal

only when the roots of �(z) lie outside the unit circle; that is, �(z) = 0
only when |z| > 1. Finally, to address the problem of uniqueness discussed
in Example 3.5, we choose the model that allows an infinite autoregressive
representation.

Definition 3.8 An ARMA(p, q) model is said to be invertible, if the time
series {x

t

; t = 0,±1,±2, . . .} can be written as

⇡(B)x
t

=
1
X

j=0

⇡
j

x

t�j

= w

t

, (3.26)

where ⇡(B) =
P1

j=0 ⇡jB
j, and

P1
j=0 |⇡j | < 1; we set ⇡0 = 1.

Analogous to Property 3.1, we have the following property.

Property 3.2 Invertibility of an ARMA(p, q) Process
An ARMA(p, q) model is invertible if and only if ✓(z) 6= 0 for |z|  1. The

coe�cients ⇡
j

of ⇡(B) given in (3.26) can be determined by solving

⇡(z) =
1
X

j=0

⇡
j

z

j =
�(z)

✓(z)
, |z|  1.

Another way to phrase Property 3.2 is that an ARMA process is invertible

only when the roots of ✓(z) lie outside the unit circle; that is, ✓(z) = 0 only
when |z| > 1. The proof of Property 3.1 is given in Appendix B (the proof of
Property 3.2 is similar and, hence, is not provided). The following examples
illustrate these concepts.

Example 3.7 Parameter Redundancy, Causality, Invertibility

Consider the process

x

t

= .4x
t�1 + .45x

t�2 + w

t

+ w

t�1 + .25w
t�2,

or, in operator form,

(1� .4B � .45B2)x
t

= (1 +B + .25B2)w
t

.

At first, x
t

appears to be an ARMA(2, 2) process. But, the associated
polynomials

�(z) = 1� .4z � .45z2 = (1 + .5z)(1� .9z)

✓(z) = (1 + z + .25z2) = (1 + .5z)2

have a common factor that can be canceled. After cancellation, the poly-
nomials become �(z) = (1 � .9z) and ✓(z) = (1 + .5z), so the model is an
ARMA(1, 1) model, (1� .9B)x

t

= (1 + .5B)w
t

, or
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x

t

= .9x
t�1 + .5w

t�1 + w

t

. (3.27)

The model is causal because �(z) = (1 � .9z) = 0 when z = 10/9, which
is outside the unit circle. The model is also invertible because the root of
✓(z) = (1 + .5z) is z = �2, which is outside the unit circle.

To write the model as a linear process, we can obtain the  -weights using
Property 3.1, �(z) (z) = ✓(z), or

(1� .9z)( 0 +  1z +  2z
2 + · · · ) = (1 + .5z).

Matching coe�cients we get  0 = 1,  1 = .5+ .9 = 1.4, and  
j

= .9 
j�1 for

j > 1. Thus,  
j

= 1.4(.9)j�1 for j � 1 and (3.27) can be written as

x

t

= w

t

+ 1.4
1
X

j=1

.9j�1
w

t�j

.

Similarly, the invertible representation using Property 3.2 is

x

t

= 1.4
1
X

j=1

(�.5)j�1
x

t�j

+ w

t

.

Example 3.8 Causal Conditions for an AR(2) Process

For an AR(1) model, (1��B)x
t

= w

t

, to be causal, the root of �(z) = 1��z
must lie outside of the unit circle. In this case, the root (or zero) occurs at
z0 = 1/� [i.e., �(z0) = 0], so it is easy to go from the causal requirement on
the root, |1/�| > 1, to a requirement on the parameter, |�| < 1. It is not so
easy to establish this relationship for higher order models.

For example, the AR(2) model, (1� �1B � �2B2)x
t

= w

t

, is causal when
the two roots of �(z) = 1 � �1z � �2z2 lie outside of the unit circle. Using
the quadratic formula, this requirement can be written as

�

�

�

�

�

�1 ±
p

�21 + 4�2
�2�2

�

�

�

�

�

> 1.

The roots of �(z) may be real and distinct, real and equal, or a complex
conjugate pair. If we denote those roots by z1 and z2, we can write �(z) =
(1�z

�1
1 z)(1�z

�1
2 z); note that �(z1) = �(z2) = 0. The model can be written

in operator form as (1� z

�1
1 B)(1� z

�1
2 B)x

t

= w

t

. From this representation,
it follows that �1 = (z�1

1 + z

�1
2 ) and �2 = �(z1z2)�1

. This relationship and
the fact that |z1| > 1 and |z2| > 1 can be used to establish the following
equivalent condition for causality:

�1 + �2 < 1, �2 � �1 < 1, and |�2| < 1. (3.28)

This causality condition specifies a triangular region in the parameter space;
see Figure 3.3 We leave the details of the equivalence to the reader (Prob-
lem 3.5).
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−2 −1 0 1 2
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.0
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0

0.
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1.
0

φ1

φ 2

real roots

complex roots

Causal Region of an AR(2)

Fig. 3.3. Causal region for an AR(2) in terms of the parameters.

3.3 Di↵erence Equations

The study of the behavior of ARMA processes and their ACFs is greatly
enhanced by a basic knowledge of di↵erence equations, simply because they
are di↵erence equations. This topic is also useful in the study of time domain
models and stochastic processes in general. We will give a brief and heuristic
account of the topic along with some examples of the usefulness of the theory.
For details, the reader is referred to Mickens (1990).

Suppose we have a sequence of numbers u0, u1, u2, . . . such that

u

n

� ↵u
n�1 = 0, ↵ 6= 0, n = 1, 2, . . . . (3.29)

For example, recall (3.9) in which we showed that the ACF of an AR(1)
process is a sequence, ⇢(h), satisfying

⇢(h)� �⇢(h� 1) = 0, h = 1, 2, . . . .

Equation (3.29) represents a homogeneous di↵erence equation of order 1. To
solve the equation, we write:

u1 = ↵u0

u2 = ↵u1 = ↵2
u0

...

u

n

= ↵u
n�1 = ↵n

u0.

Given an initial condition u0 = c, we may solve (3.29), namely, u
n

= ↵n

c.

In operator notation, (3.29) can be written as (1� ↵B)u
n

= 0. The poly-
nomial associated with (3.29) is ↵(z) = 1 � ↵z, and the root, say, z0, of this
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polynomial is z0 = 1/↵; that is ↵(z0) = 0. We know a solution (in fact, the
solution) to (3.29), with initial condition u0 = c, is

u

n

= ↵n

c =
�

z

�1
0

�

n

c. (3.30)

That is, the solution to the di↵erence equation (3.29) depends only on the
initial condition and the inverse of the root to the associated polynomial ↵(z).

Now suppose that the sequence satisfies

u

n

� ↵1un�1 � ↵2un�2 = 0, ↵2 6= 0, n = 2, 3, . . . (3.31)

This equation is a homogeneous di↵erence equation of order 2. The corre-
sponding polynomial is

↵(z) = 1� ↵1z � ↵2z
2
,

which has two roots, say, z1 and z2; that is, ↵(z1) = ↵(z2) = 0. We will
consider two cases. First suppose z1 6= z2. Then the general solution to (3.31)
is

u

n

= c1z
�n

1 + c2z
�n

2 , (3.32)

where c1 and c2 depend on the initial conditions. The claim that is a solution
can be verified by direct substitution of (3.32) into (3.31):

�

c1z
�n

1 + c2z
�n

2

�� ↵1

�

c1z
�(n�1)
1 + c2z

�(n�1)
2

�� ↵2

�

c1z
�(n�2)
1 + c2z

�(n�2)
2

�

= c1z
�n

1

�

1� ↵1z1 � ↵2z
2
1

�

+ c2z
�n

2

�

1� ↵1z2 � ↵2z
2
2

�

= c1z
�n

1 ↵(z1) + c2z
�n

2 ↵(z2) = 0.

Given two initial conditions u0 and u1, we may solve for c1 and c2:

u0 = c1 + c2 and u1 = c1z
�1
1 + c2z

�1
2 ,

where z1 and z2 can be solved for in terms of ↵1 and ↵2 using the quadratic
formula, for example.

When the roots are equal, z1 = z2 (= z0), a general solution to (3.31) is

u

n

= z

�n

0 (c1 + c2n). (3.33)

This claim can also be verified by direct substitution of (3.33) into (3.31):

z

�n

0 (c1 + c2n)� ↵1

�

z

�(n�1)
0 [c1 + c2(n� 1)]

�� ↵2

�

z

�(n�2)
0 [c1 + c2(n� 2)]

�

= z

�n

0 (c1 + c2n)
�

1� ↵1z0 � ↵2z
2
0

�

+ c2z
�n+1
0 (↵1 + 2↵2z0)

= c2z
�n+1
0 (↵1 + 2↵2z0) .

To show that (↵1 + 2↵2z0) = 0, write 1 � ↵1z � ↵2z
2 = (1 � z

�1
0 z)2, and

take derivatives with respect to z on both sides of the equation to obtain
(↵1 + 2↵2z) = 2z�1

0 (1 � z

�1
0 z). Thus, (↵1 + 2↵2z0) = 2z�1

0 (1 � z

�1
0 z0) = 0,
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as was to be shown. Finally, given two initial conditions, u0 and u1, we can
solve for c1 and c2:

u0 = c1 and u1 = (c1 + c2)z
�1
0 .

It can also be shown that these solutions are unique.
To summarize these results, in the case of distinct roots, the solution to

the homogeneous di↵erence equation of degree two was

u

n

= z

�n

1 ⇥ (a polynomial in n of degree m1 � 1)

+ z

�n

2 ⇥ (a polynomial in n of degree m2 � 1),
(3.34)

wherem1 is the multiplicity of the root z1 andm2 is the multiplicity of the root
z2. In this example, of course, m1 = m2 = 1, and we called the polynomials
of degree zero c1 and c2, respectively. In the case of the repeated root, the
solution was

u

n

= z

�n

0 ⇥ (a polynomial in n of degree m0 � 1), (3.35)

where m0 is the multiplicity of the root z0; that is, m0 = 2. In this case, we
wrote the polynomial of degree one as c1 + c2n. In both cases, we solved for
c1 and c2 given two initial conditions, u0 and u1.

Example 3.9 The ACF of an AR(2) Process

Suppose x
t

= �1xt�1+�2xt�2+w

t

is a causal AR(2) process. Multiply each
side of the model by x

t�h

for h > 0, and take expectation:

E(x
t

x

t�h

) = �1E(x
t�1xt�h

) + �2E(x
t�2xt�h

) + E(w
t

x

t�h

).

The result is

�(h) = �1�(h� 1) + �2�(h� 2), h = 1, 2, . . . . (3.36)

In (3.36), we used the fact that E(x
t

) = 0 and for h > 0,

E(w
t

x

t�h

) = E

⇣

w

t

1
X

j=0

 
j

w

t�h�j

⌘

= 0.

Divide (3.36) through by �(0) to obtain the di↵erence equation for the ACF
of the process:

⇢(h)� �1⇢(h� 1)� �2⇢(h� 2) = 0, h = 1, 2, . . . . (3.37)

The initial conditions are ⇢(0) = 1 and ⇢(�1) = �1/(1 � �2), which is
obtained by evaluating (3.37) for h = 1 and noting that ⇢(1) = ⇢(�1).

Using the results for the homogeneous di↵erence equation of order two, let
z1 and z2 be the roots of the associated polynomial, �(z) = 1� �1z � �2z2.
Because the model is causal, we know the roots are outside the unit circle:
|z1| > 1 and |z2| > 1. Now, consider the solution for three cases:
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(i) When z1 and z2 are real and distinct, then

⇢(h) = c1z
�h

1 + c2z
�h

2 ,

so ⇢(h) ! 0 exponentially fast as h ! 1.
(ii) When z1 = z2 (= z0) are real and equal, then

⇢(h) = z

�h

0 (c1 + c2h),

so ⇢(h) ! 0 exponentially fast as h ! 1.
(iii) When z1 = z̄2 are a complex conjugate pair, then c2 = c̄1 (because ⇢(h)

is real), and
⇢(h) = c1z

�h

1 + c̄1z̄
�h

1 .

Write c1 and z1 in polar coordinates, for example, z1 = |z1|ei✓, where ✓
is the angle whose tangent is the ratio of the imaginary part and the real
part of z1 (sometimes called arg(z1); the range of ✓ is [�⇡,⇡]). Then,
using the fact that ei↵ + e

�i↵ = 2 cos(↵), the solution has the form

⇢(h) = a|z1|�h cos(h✓ + b),

where a and b are determined by the initial conditions. Again, ⇢(h) damp-
ens to zero exponentially fast as h ! 1, but it does so in a sinusoidal
fashion. The implication of this result is shown in the next example.

Example 3.10 An AR(2) with Complex Roots

Figure 3.4 shows n = 144 observations from the AR(2) model

x

t

= 1.5x
t�1 � .75x

t�2 + w

t

,

with �2
w

= 1, and with complex roots chosen so the process exhibits pseudo-
cyclic behavior at the rate of one cycle every 12 time points. The autore-
gressive polynomial for this model is �(z) = 1 � 1.5z + .75z2. The roots of
�(z) are 1± i/

p
3, and ✓ = tan�1(1/

p
3) = 2⇡/12 radians per unit time. To

convert the angle to cycles per unit time, divide by 2⇡ to get 1/12 cycles per
unit time. The ACF for this model is shown in §3.4, Figure 3.5.

To calculate the roots of the polynomial and solve for arg in R:
z = c(1,-1.5,.75) # coefficients of the polynomial
(a = polyroot(z)[1]) # print one root: 1+0.57735i = 1 + i/sqrt(3)
arg = Arg(a)/(2*pi) # arg in cycles/pt
1/arg # = 12, the pseudo period

To reproduce Figure 3.4:
set.seed(90210)
ar2 = arima.sim(list(order=c(2,0,0), ar=c(1.5,-.75)), n = 144)
plot(1:144/12, ar2, type="l", xlab="Time (one unit = 12 points)")
abline(v=0:12, lty="dotted", lwd=2)

To calculate and display the ACF for this model:
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0 2 4 6 8 10 12

−5
0

5

Time (one unit = 12 points)

ar
2

Fig. 3.4. Simulated AR(2) model, n = 144 with �1 = 1.5 and �2 = �.75.

ACF = ARMAacf(ar=c(1.5,-.75), ma=0, 50)
plot(ACF, type="h", xlab="lag")
abline(h=0)

We now exhibit the solution for the general homogeneous di↵erence equa-
tion of order p:

u

n

� ↵1un�1 � · · ·� ↵
p

u

n�p

= 0, ↵
p

6= 0, n = p, p+ 1, . . . . (3.38)

The associated polynomial is

↵(z) = 1� ↵1z � · · ·� ↵
p

z

p

.

Suppose ↵(z) has r distinct roots, z1 with multiplicity m1, z2 with multiplicity
m2, . . . , and z

r

with multiplicity m

r

, such that m1 +m2 + · · ·+m

r

= p. The
general solution to the di↵erence equation (3.38) is

u

n

= z

�n

1 P1(n) + z

�n

2 P2(n) + · · ·+ z

�n

r

P

r

(n), (3.39)

where P

j

(n), for j = 1, 2, . . . , r, is a polynomial in n, of degree m

j

� 1. Given
p initial conditions u0, . . . , up�1, we can solve for the P

j

(n) explicitly.

Example 3.11 The    -weights for an ARMA Model

For a causal ARMA(p, q) model, �(B)x
t

= ✓(B)w
t

, where the zeros of �(z)
are outside the unit circle, recall that we may write

x

t

=
1
X

j=0

 
j

w

t�j

,
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where the  -weights are determined using Property 3.1.
For the pure MA(q) model,  0 = 1,  

j

= ✓
j

, for j = 1, . . . , q, and  
j

= 0,
otherwise. For the general case of ARMA(p, q) models, the task of solving
for the  -weights is much more complicated, as was demonstrated in Exam-
ple 3.7. The use of the theory of homogeneous di↵erence equations can help
here. To solve for the  -weights in general, we must match the coe�cients
in �(z) (z) = ✓(z):

(1� �1z � �2z
2 � · · · )( 0 +  1z +  2z

2 + · · · ) = (1 + ✓1z + ✓2z
2 + · · · ).

The first few values are

 0 = 1
 1 � �1 0 = ✓1

 2 � �1 1 � �2 0 = ✓2
 3 � �1 2 � �2 1 � �3 0 = ✓3

...

where we would take �
j

= 0 for j > p, and ✓
j

= 0 for j > q. The  -weights
satisfy the homogeneous di↵erence equation given by

 
j

�
p

X

k=1

�
k

 
j�k

= 0, j � max(p, q + 1), (3.40)

with initial conditions

 
j

�
j

X

k=1

�
k

 
j�k

= ✓
j

, 0  j < max(p, q + 1). (3.41)

The general solution depends on the roots of the AR polynomial �(z) =
1��1z� · · ·��

p

z

p, as seen from (3.40). The specific solution will, of course,
depend on the initial conditions.

Consider the ARMA process given in (3.27), x
t

= .9x
t�1 + .5w

t�1 + w

t

.

Because max(p, q + 1) = 2, using (3.41), we have  0 = 1 and  1 = .9 + .5 =
1.4. By (3.40), for j = 2, 3, . . . , the  -weights satisfy  

j

� .9 
j�1 = 0. The

general solution is  
j

= c .9j . To find the specific solution, use the initial
condition  1 = 1.4, so 1.4 = .9c or c = 1.4/.9. Finally,  

j

= 1.4(.9)j�1, for
j � 1, as we saw in Example 3.7.

To view, for example, the first 50  -weights in R, use:
ARMAtoMA(ar=.9, ma=.5, 50) # for a list
plot(ARMAtoMA(ar=.9, ma=.5, 50)) # for a graph

3.4 Autocorrelation and Partial Autocorrelation

We begin by exhibiting the ACF of an MA(q) process, x
t

= ✓(B)w
t

, where
✓(B) = 1+✓1B+ · · ·+✓

q

B

q. Because x
t

is a finite linear combination of white
noise terms, the process is stationary with mean
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E(x
t

) =
q

X

j=0

✓
j

E(w
t�j

) = 0,

where we have written ✓0 = 1, and with autocovariance function

�(h) = cov (x
t+h

, x

t

) = cov
⇣

q

X

j=0

✓
j

w

t+h�j

,

q

X

k=0

✓
k

w

t�k

⌘

=

(

�2
w

P

q�h

j=0 ✓j✓j+h

, 0  h  q

0 h > q.

(3.42)

Recall that �(h) = �(�h), so we will only display the values for h � 0. The
cutting o↵ of �(h) after q lags is the signature of the MA(q) model. Dividing
(3.42) by �(0) yields the ACF of an MA(q):

⇢(h) =

8

>

<

>

:

P

q�h

j=0 ✓j✓j+h

1 + ✓21 + · · ·+ ✓2
q

1  h  q

0 h > q.

(3.43)

For a causal ARMA(p, q) model, �(B)x
t

= ✓(B)w
t

, where the zeros of
�(z) are outside the unit circle, write

x

t

=
1
X

j=0

 
j

w

t�j

. (3.44)

It follows immediately that E(x
t

) = 0. Also, the autocovariance function of
x

t

can be written as

�(h) = cov(x
t+h

, x

t

) = �2
w

1
X

j=0

 
j

 
j+h

, h � 0. (3.45)

We could then use (3.40) and (3.41) to solve for the  -weights. In turn, we
could solve for �(h), and the ACF ⇢(h) = �(h)/�(0). As in Example 3.9, it is
also possible to obtain a homogeneous di↵erence equation directly in terms of
�(h). First, we write

�(h) = cov(x
t+h

, x

t

) = cov
⇣

p

X

j=1

�
j

x

t+h�j

+
q

X

j=0

✓
j

w

t+h�j

, x

t

⌘

=
p

X

j=1

�
j

�(h� j) + �2
w

q

X

j=h

✓
j

 
j�h

, h � 0,

(3.46)

where we have used the fact that, for h � 0,
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cov(w
t+h�j

, x

t

) = cov
⇣

w

t+h�j

,

1
X

k=0

 
k

w

t�k

⌘

=  
j�h

�2
w

.

From (3.46), we can write a general homogeneous equation for the ACF of a
causal ARMA process:

�(h)� �1�(h� 1)� · · ·� �
p

�(h� p) = 0, h � max(p, q + 1), (3.47)

with initial conditions

�(h)�
p

X

j=1

�
j

�(h� j) = �2
w

q

X

j=h

✓
j

 
j�h

, 0  h < max(p, q + 1). (3.48)

Dividing (3.47) and (3.48) through by �(0) will allow us to solve for the ACF,
⇢(h) = �(h)/�(0).

Example 3.12 The ACF of an AR(p)

In Example 3.9 we considered the case where p = 2. For the general case, it
follows immediately from (3.47) that

⇢(h)� �1⇢(h� 1)� · · ·� �
p

⇢(h� p) = 0, h � p. (3.49)

Let z1, . . . , zr denote the roots of �(z), each with multiplicity m1, . . . ,mr

,
respectively, where m1+· · ·+m

r

= p. Then, from (3.39), the general solution
is

⇢(h) = z

�h

1 P1(h) + z

�h

2 P2(h) + · · ·+ z

�h

r

P

r

(h), h � p, (3.50)

where P

j

(h) is a polynomial in h of degree m

j

� 1.
Recall that for a causal model, all of the roots are outside the unit circle,

|z
i

| > 1, for i = 1, . . . , r. If all the roots are real, then ⇢(h) dampens ex-
ponentially fast to zero as h ! 1. If some of the roots are complex, then
they will be in conjugate pairs and ⇢(h) will dampen, in a sinusoidal fash-
ion, exponentially fast to zero as h ! 1. In the case of complex roots, the
time series will appear to be cyclic in nature. This, of course, is also true for
ARMA models in which the AR part has complex roots.

Example 3.13 The ACF of an ARMA(1, 1)
Consider the ARMA(1, 1) process x

t

= �x
t�1 + ✓w

t�1 + w

t

, where |�| < 1.
Based on (3.47), the autocovariance function satisfies

�(h)� ��(h� 1) = 0, h = 2, 3, . . . ,

and it follows from (3.29)–(3.30) that the general solution is

�(h) = c�h, h = 1, 2, . . . . (3.51)

To obtain the initial conditions, we use (3.48):
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�(0) = ��(1) + �2
w

[1 + ✓�+ ✓2] and �(1) = ��(0) + �2
w

✓.

Solving for �(0) and �(1), we obtain:

�(0) = �2
w

1 + 2✓�+ ✓2

1� �2
and �(1) = �2

w

(1 + ✓�)(�+ ✓)

1� �2
.

To solve for c, note that from (3.51), �(1) = c� or c = �(1)/�. Hence, the
specific solution for h � 1 is

�(h) =
�(1)

�
�h = �2

w

(1 + ✓�)(�+ ✓)

1� �2
�h�1

.

Finally, dividing through by �(0) yields the ACF

⇢(h) =
(1 + ✓�)(�+ ✓)

1 + 2✓�+ ✓2
�h�1

, h � 1. (3.52)

Notice that the general pattern of ⇢(h) in (3.52) is not di↵erent from that
of an AR(1) given in (3.8). Hence, it is unlikely that we will be able to
tell the di↵erence between an ARMA(1,1) and an AR(1) based solely on an
ACF estimated from a sample. This consideration will lead us to the partial
autocorrelation function.

The Partial Autocorrelation Function (PACF)

We have seen in (3.43), for MA(q) models, the ACF will be zero for lags
greater than q. Moreover, because ✓

q

6= 0, the ACF will not be zero at lag
q. Thus, the ACF provides a considerable amount of information about the
order of the dependence when the process is a moving average process. If the
process, however, is ARMA or AR, the ACF alone tells us little about the
orders of dependence. Hence, it is worthwhile pursuing a function that will
behave like the ACF of MA models, but for AR models, namely, the partial
autocorrelation function (PACF).

To motivate the idea, consider a causal AR(1) model, x
t

= �x
t�1 + w

t

.
Then,

�
x

(2) = cov(x
t

, x

t�2) = cov(�x
t�1 + w

t

, x

t�2)

= cov(�2x
t�2 + �w

t�1 + w

t

, x

t�2) = �2�
x

(0).

This result follows from causality because x

t�2 involves {w
t�2, wt�3, . . .},

which are all uncorrelated with w

t

and w

t�1. The correlation between x

t

and x

t�2 is not zero, as it would be for an MA(1), because x
t

is dependent on
x

t�2 through x

t�1. Suppose we break this chain of dependence by removing
(or partial out) the e↵ect x

t�1. That is, we consider the correlation between
x

t

� �x
t�1 and x

t�2 � �x
t�1, because it is the correlation between x

t

and
x

t�2 with the linear dependence of each on x

t�1 removed. In this way, we
have broken the dependence chain between x

t

and x

t�2. In fact,
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cov(x
t

� �x
t�1, xt�2 � �x

t�1) = cov(w
t

, x

t�2 � �x
t�1) = 0.

Hence, the tool we need is partial autocorrelation, which is the correlation
between x

s

and x

t

with the linear e↵ect of everything “in the middle” removed.
To formally define the PACF for mean-zero stationary time series, let bx

t+h

,
for h � 2, denote the regression3 of x

t+h

on {x
t+h�1, xt+h�2, . . . , xt+1}, which

we write as

bx

t+h

= �1xt+h�1 + �2xt+h�2 + · · ·+ �
h�1xt+1. (3.53)

No intercept term is needed in (3.53) because the mean of x
t

is zero (other-
wise, replace x

t

by x

t

� µ

x

in this discussion). In addition, let bx
t

denote the
regression of x

t

on {x
t+1, xt+2, . . . , xt+h�1}, then

bx

t

= �1xt+1 + �2xt+2 + · · ·+ �
h�1xt+h�1. (3.54)

Because of stationarity, the coe�cients, �1, . . . ,�h�1 are the same in (3.53)
and (3.54); we will explain this result in the next section.

Definition 3.9 The partial autocorrelation function (PACF) of a sta-
tionary process, x

t

, denoted �
hh

, for h = 1, 2, . . . , is

�11 = corr(x
t+1, xt

) = ⇢(1) (3.55)

and
�
hh

= corr(x
t+h

� bx
t+h

, x

t

� bx
t

), h � 2. (3.56)

Both (x
t+h

�bx
t+h

) and (x
t

�bx
t

) are uncorrelated with {x
t+1, . . . , xt+h�1}.

The PACF, �
hh

, is the correlation between x

t+h

and x

t

with the linear depen-
dence of {x

t+1, . . . , xt+h�1} on each, removed. If the process x

t

is Gaussian,
then �

hh

= corr(x
t+h

, x

t

| x
t+1, . . . , xt+h�1); that is, �

hh

is the correlation
coe�cient between x

t+h

and x

t

in the bivariate distribution of (x
t+h

, x

t

) con-
ditional on {x

t+1, . . . , xt+h�1}.
Example 3.14 The PACF of an AR(1)

Consider the PACF of the AR(1) process given by x

t

= �x
t�1+w

t

, with |�| <
1. By definition, �11 = ⇢(1) = �. To calculate �22, consider the regression of
x

t+2 on x

t+1, say, bxt+2 = �x
t+1. We choose � to minimize

E(x
t+2 � bxt+2)

2 = E(x
t+2 � �x

t+1)
2 = �(0)� 2��(1) + �2�(0).

Taking derivatives with respect to � and setting the result equal to zero, we
have � = �(1)/�(0) = ⇢(1) = �. Next, consider the regression of x

t

on x

t+1,
say bx

t

= �x
t+1. We choose � to minimize

3
The term regression here refers to regression in the population sense. That is,

bx

t+h

is the linear combination of {x

t+h�1, xt+h�2, . . . , xt+1} that minimizes the

mean squared error E(x

t+h

�

P

h�1
j=1 ↵

j

x

t+j

)

2
.
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Fig. 3.5. The ACF and PACF of an AR(2) model with �1 = 1.5 and �2 = �.75.

E(x
t

� bx
t

)2 = E(x
t

� �x
t+1)

2 = �(0)� 2��(1) + �2�(0).

This is the same equation as before, so � = �. Hence,

�22 = corr(x
t+2 � bxt+2, xt

� bx
t

) = corr(x
t+2 � �x

t+1, xt

� �x
t+1)

= corr(w
t+2, xt

� �x
t+1) = 0

by causality. Thus, �22 = 0. In the next example, we will see that in this
case, �

hh

= 0 for all h > 1.

Example 3.15 The PACF of an AR(p)

The model implies x

t+h

=
P

p

j=1 �jxt+h�j

+ w

t+h

, where the roots of
�(z) are outside the unit circle. When h > p, the regression of x

t+h

on
{x

t+1, . . . , xt+h�1}, is
bx

t+h

=
p

X

j=1

�
j

x

t+h�j

.

We have not proved this obvious result yet, but we will prove it in the next
section. Thus, when h > p,

�
hh

= corr(x
t+h

� bx
t+h

, x

t

� bx
t

) = corr(w
t+h

, x

t

� bx
t

) = 0,

because, by causality, x
t

� bx
t

depends only on {w
t+h�1, wt+h�2, . . .}; recall

equation (3.54). When h  p, �
pp

is not zero, and �11, . . . ,�p�1,p�1 are not
necessarily zero. We will see later that, in fact, �

pp

= �
p

. Figure 3.5 shows
the ACF and the PACF of the AR(2) model presented in Example 3.10.

To reproduce Figure 3.5 in R, use the following commands:
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Table 3.1. Behavior of the ACF and PACF for ARMA Models

AR(p) MA(q) ARMA(p, q)

ACF Tails o↵ Cuts o↵ Tails o↵
after lag q

PACF Cuts o↵ Tails o↵ Tails o↵
after lag p

ACF = ARMAacf(ar=c(1.5,-.75), ma=0, 24)[-1]
PACF = ARMAacf(ar=c(1.5,-.75), ma=0, 24, pacf=TRUE)
par(mfrow=c(1,2))
plot(ACF, type="h", xlab="lag", ylim=c(-.8,1)); abline(h=0)
plot(PACF, type="h", xlab="lag", ylim=c(-.8,1)); abline(h=0)

Example 3.16 The PACF of an Invertible MA(q)

For an invertible MA(q), we can write x

t

= �P1
j=1 ⇡jxt�j

+ w

t

. Moreover,
no finite representation exists. From this result, it should be apparent that
the PACF will never cut o↵, as in the case of an AR(p).

For an MA(1), x
t

= w

t

+ ✓w
t�1, with |✓| < 1, calculations similar to

Example 3.14 will yield �22 = �✓2/(1 + ✓2 + ✓4). For the MA(1) in general,
we can show that

�
hh

= � (�✓)h(1� ✓2)

1� ✓2(h+1)
, h � 1.

In the next section, we will discuss methods of calculating the PACF. The
PACF for MA models behaves much like the ACF for AR models. Also, the
PACF for AR models behaves much like the ACF for MA models. Because
an invertible ARMA model has an infinite AR representation, the PACF will
not cut o↵. We may summarize these results in Table 3.1.

Example 3.17 Preliminary Analysis of the Recruitment Series

We consider the problem of modeling the Recruitment series shown in Fig-
ure 1.5. There are 453 months of observed recruitment ranging over the
years 1950-1987. The ACF and the PACF given in Figure 3.6 are con-
sistent with the behavior of an AR(2). The ACF has cycles correspond-
ing roughly to a 12-month period, and the PACF has large values for
h = 1, 2 and then is essentially zero for higher order lags. Based on Ta-
ble 3.1, these results suggest that a second-order (p = 2) autoregres-
sive model might provide a good fit. Although we will discuss estimation
in detail in §3.6, we ran a regression (see §2.2) using the data triplets
{(x; z1, z2) : (x3;x2, x1), (x4;x3, x2), . . . , (x453;x452, x451)} to fit a model of
the form

x

t

= �0 + �1xt�1 + �2xt�2 + w

t
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Fig. 3.6. ACF and PACF of the Recruitment series. Note that the lag axes are in

terms of season (12 months in this case).

for t = 3, 4, . . . , 453. The values of the estimates were b�0 = 6.74(1.11),
b�1 = 1.35(.04), b�2 = �.46(.04), and b�

2
w

= 89.72, where the estimated standard
errors are in parentheses.

The following R code can be used for this analysis. We use the script acf2
to print and plot the ACF and PACF; see Appendix R for details.
acf2(rec, 48) # will produce values and a graphic
(regr = ar.ols(rec, order=2, demean=FALSE, intercept=TRUE))
regr$asy.se.coef # standard errors of the estimates

3.5 Forecasting

In forecasting, the goal is to predict future values of a time series, x
n+m

, m =
1, 2, . . ., based on the data collected to the present, xxx = {x

n

, x

n�1, . . . , x1}.
Throughout this section, we will assume x

t

is stationary and the model pa-
rameters are known. The problem of forecasting when the model parameters
are unknown will be discussed in the next section; also, see Problem 3.26. The
minimum mean square error predictor of x

n+m

is

x

n

n+m

= E(x
n+m

�

�

xxx) (3.57)

because the conditional expectation minimizes the mean square error

E [x
n+m

� g(xxx)]2 , (3.58)
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where g(xxx) is a function of the observations xxx; see Problem 3.14.
First, we will restrict attention to predictors that are linear functions of

the data, that is, predictors of the form

x

n

n+m

= ↵0 +
n

X

k=1

↵
k

x

k

, (3.59)

where ↵0,↵1, . . . ,↵n

are real numbers. Linear predictors of the form (3.59)
that minimize the mean square prediction error (3.58) are called best linear
predictors (BLPs). As we shall see, linear prediction depends only on the
second-order moments of the process, which are easy to estimate from the
data. Much of the material in this section is enhanced by the theoretical
material presented in Appendix B. For example, Theorem B.3 states that
if the process is Gaussian, minimum mean square error predictors and best
linear predictors are the same. The following property, which is based on the
Projection Theorem, Theorem B.1 of Appendix B, is a key result.

Property 3.3 Best Linear Prediction for Stationary Processes
Given data x1, . . . , xn

, the best linear predictor, xn

n+m

= ↵0 +
P

n

k=1 ↵k

x

k

,

of x
n+m

, for m � 1, is found by solving

E

⇥�

x

n+m

� x

n

n+m

�

x

k

⇤

= 0, k = 0, 1, . . . , n, (3.60)

where x0 = 1, for ↵0,↵1, . . .↵n

.

The equations specified in (3.60) are called the prediction equations, and
they are used to solve for the coe�cients {↵0,↵1, . . . ,↵n

}. If E(x
t

) = µ, the
first equation (k = 0) of (3.60) implies

E(xn

n+m

) = E(x
n+m

) = µ.

Thus, taking expectation in (3.59), we have

µ = ↵0 +
n

X

k=1

↵
k

µ or ↵0 = µ

⇣

1�
n

X

k=1

↵
k

⌘

.

Hence, the form of the BLP is

x

n

n+m

= µ+
n

X

k=1

↵
k

(x
k

� µ).

Thus, until we discuss estimation, there is no loss of generality in considering
the case that µ = 0, in which case, ↵0 = 0.

First, consider one-step-ahead prediction. That is, given {x1, . . . , xn

}, we
wish to forecast the value of the time series at the next time point, x

n+1. The
BLP of x

n+1 is of the form
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x

n

n+1 = �
n1xn

+ �
n2xn�1 + · · ·+ �

nn

x1, (3.61)

where, for purposes that will become clear shortly, we have written ↵
k

in
(3.59), as �

n,n+1�k

in (3.61), for k = 1, . . . , n. Using Property 3.3, the coe�-
cients {�

n1,�n2, . . . ,�nn} satisfy

E

h⇣

x

n+1 �
n

X

j=1

�
nj

x

n+1�j

⌘

x

n+1�k

i

= 0, k = 1, . . . , n,

or
n

X

j=1

�
nj

�(k � j) = �(k), k = 1, . . . , n. (3.62)

The prediction equations (3.62) can be written in matrix notation as

�
n

���
n

= ���
n

, (3.63)

where �
n

= {�(k � j)}n
j,k=1 is an n ⇥ n matrix, ���

n

= (�
n1, . . . ,�nn)0 is an

n⇥ 1 vector, and ���
n

= (�(1), . . . , �(n))0 is an n⇥ 1 vector.
The matrix �

n

is nonnegative definite. If �
n

is singular, there are many
solutions to (3.63), but, by the Projection Theorem (Theorem B.1), xn

n+1 is
unique. If �

n

is nonsingular, the elements of ���
n

are unique, and are given by

���
n

= ��1
n

���
n

. (3.64)

For ARMA models, the fact that �2
w

> 0 and �(h) ! 0 as h ! 1 is enough to
ensure that �

n

is positive definite (Problem 3.12). It is sometimes convenient
to write the one-step-ahead forecast in vector notation

x

n

n+1 = ���0
n

xxx, (3.65)

where xxx = (x
n

, x

n�1, . . . , x1)0.
The mean square one-step-ahead prediction error is

P

n

n+1 = E(x
n+1 � x

n

n+1)
2 = �(0)� ���0

n

��1
n

���
n

. (3.66)

To verify (3.66) using (3.64) and (3.65),

E(x
n+1 � x

n

n+1)
2 = E(x

n+1 � ���0
n

xxx)2 = E(x
n+1 � ���0

n

��1
n

xxx)2

= E(x2
n+1 � 2���0

n

��1
n

xxxx

n+1 + ���0
n

��1
n

xxxxxx

0��1
n

���
n

)

= �(0)� 2���0
n

��1
n

���
n

+ ���0
n

��1
n

�
n

��1
n

���
n

= �(0)� ���0
n

��1
n

���
n

.
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Example 3.18 Prediction for an AR(2)

Suppose we have a causal AR(2) process x
t

= �1xt�1+�2xt�2+w

t

, and one
observation x1. Then, using equation (3.64), the one-step-ahead prediction
of x2 based on x1 is

x

1
2 = �11x1 =

�(1)

�(0)
x1 = ⇢(1)x1.

Now, suppose we want the one-step-ahead prediction of x3 based on two
observations x1 and x2; i.e., x2

3 = �21x2 + �22x1. We could use (3.62)

�21�(0) + �22�(1) = �(1)

�21�(1) + �22�(0) = �(2)

to solve for �21 and �22, or use the matrix form in (3.64) and solve

✓

�21
�22

◆

=

✓

�(0) �(1)
�(1) �(0)

◆�1✓
�(1)
�(2)

◆

,

but, it should be apparent from the model that x2
3 = �1x2 + �2x1. Because

�1x2 + �2x1 satisfies the prediction equations (3.60),

E{[x3 � (�1x2 + �2x1)]x1} = E(w3x1) = 0,

E{[x3 � (�1x2 + �2x1)]x2} = E(w3x2) = 0,

it follows that, indeed, x2
3 = �1x2 + �2x1, and by the uniqueness of the

coe�cients in this case, that �21 = �1 and �22 = �2. Continuing in this way,
it is easy to verify that, for n � 2,

x

n

n+1 = �1xn

+ �2xn�1.

That is, �
n1 = �1,�n2 = �2, and �nj = 0, for j = 3, 4, . . . , n.

From Example 3.18, it should be clear (Problem 3.40) that, if the time
series is a causal AR(p) process, then, for n � p,

x

n

n+1 = �1xn

+ �2xn�1 + · · ·+ �
p

x

n�p+1. (3.67)

For ARMA models in general, the prediction equations will not be as simple
as the pure AR case. In addition, for n large, the use of (3.64) is prohibitive
because it requires the inversion of a large matrix. There are, however, iterative
solutions that do not require any matrix inversion. In particular, we mention
the recursive solution due to Levinson (1947) and Durbin (1960).

Property 3.4 The Durbin–Levinson Algorithm
Equations (3.64) and (3.66) can be solved iteratively as follows:

�00 = 0, P

0
1 = �(0). (3.68)



i
i

“tsa3” — 2015/8/18 — 22:47 — page 113 — #123 i
i

i
i

i
i

3.5 Forecasting 113

For n � 1,

�
nn

=
⇢(n)�Pn�1

k=1 �n�1,k ⇢(n� k)

1�Pn�1
k=1 �n�1,k ⇢(k)

, P

n

n+1 = P

n�1
n

(1� �2
nn

), (3.69)

where, for n � 2,

�
nk

= �
n�1,k � �

nn

�
n�1,n�k

, k = 1, 2, . . . , n� 1. (3.70)

The proof of Property 3.4 is left as an exercise; see Problem 3.13.

Example 3.19 Using the Durbin–Levinson Algorithm

To use the algorithm, start with �00 = 0, P 0
1 = �(0). Then, for n = 1,

�11 = ⇢(1), P

1
2 = �(0)[1� �211].

For n = 2,

�22 =
⇢(2)� �11 ⇢(1)

1� �11 ⇢(1)
, �21 = �11 � �22�11,

P

2
3 = P

1
2 [1� �222] = �(0)[1� �211][1� �222].

For n = 3,

�33 =
⇢(3)� �21 ⇢(2)� �22 ⇢(1)

1� �21 ⇢(1)� �22 ⇢(2)
,

�32 = �22 � �33�21, �31 = �21 � �33�22,

P

3
4 = P

2
3 [1� �233] = �(0)[1� �211][1� �222][1� �233],

and so on. Note that, in general, the standard error of the one-step-ahead
forecast is the square root of

P

n

n+1 = �(0)
n

Y

j=1

[1� �2
jj

]. (3.71)

An important consequence of the Durbin–Levinson algorithm is (see Prob-
lem 3.13) as follows.

Property 3.5 Iterative Solution for the PACF
The PACF of a stationary process x

t

, can be obtained iteratively via (3.69)
as �

nn

, for n = 1, 2, . . . .

Using Property 3.5 and putting n = p in (3.61) and (3.67), it follows that
for an AR(p) model,

x

p

p+1 = �
p1 xp

+ �
p2 xp�1 + · · ·+ �

pp

x1

= �1 xp

+ �2 xp�1 + · · ·+ �
p

x1.
(3.72)

Result (3.72) shows that for an AR(p) model, the partial autocorrelation coef-
ficient at lag p, �

pp

, is also the last coe�cient in the model, �
p

, as was claimed
in Example 3.15.
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Example 3.20 The PACF of an AR(2)
We will use the results of Example 3.19 and Property 3.5 to calculate the
first three values, �11, �22, �33, of the PACF. Recall from Example 3.9 that
⇢(h) � �1⇢(h � 1) � �2⇢(h � 2) = 0 for h � 1. When h = 1, 2, 3, we have
⇢(1) = �1/(1� �2), ⇢(2) = �1⇢(1) + �2, ⇢(3)� �1⇢(2)� �2⇢(1) = 0. Thus,

�11 = ⇢(1) =
�1

1� �2

�22 =
⇢(2)� ⇢(1)2

1� ⇢(1)2
=

h

�1
⇣

�1

1��2

⌘

+ �2
i

�
⇣

�1

1��2

⌘2

1�
⇣

�1

1��2

⌘2 = �2

�21 = ⇢(1)[1� �2] = �1

�33 =
⇢(3)� �1⇢(2)� �2⇢(1)

1� �1⇢(1)� �2⇢(2)
= 0.

Notice that, as shown in (3.72), �22 = �2 for an AR(2) model.

So far, we have concentrated on one-step-ahead prediction, but Prop-
erty 3.3 allows us to calculate the BLP of x

n+m

for any m � 1. Given data,
{x1, . . . , xn

}, the m-step-ahead predictor is

x

n

n+m

= �(m)
n1 x

n

+ �(m)
n2 x

n�1 + · · ·+ �(m)
nn

x1, (3.73)

where {�(m)
n1 ,�(m)

n2 , . . . ,�(m)
nn

} satisfy the prediction equations,

n

X

j=1

�(m)
nj

E(x
n+1�j

x

n+1�k

) = E(x
n+m

x

n+1�k

), k = 1, . . . , n,

or
n

X

j=1

�(m)
nj

�(k � j) = �(m+ k � 1), k = 1, . . . , n. (3.74)

The prediction equations can again be written in matrix notation as

�
n

���(m)
n

= ���(m)
n

, (3.75)

where ���(m)
n

= (�(m), . . . , �(m+ n� 1))0, and ���(m)
n

= (�(m)
n1 , . . . ,�(m)

nn

)0 are
n⇥ 1 vectors.

The mean square m-step-ahead prediction error is

P

n

n+m

= E

�

x

n+m

� x

n

n+m

�2
= �(0)� ���(m)0

n

��1
n

���(m)
n

. (3.76)

Another useful algorithm for calculating forecasts was given by Brockwell
and Davis (1991, Chapter 5). This algorithm follows directly from applying
the projection theorem (Theorem B.1) to the innovations, x

t

� x

t�1
t

, for t =
1, . . . , n, using the fact that the innovations x

t

� x

t�1
t

and x

s

� x

s�1
s

are
uncorrelated for s 6= t (see Problem 3.41). We present the case in which x

t

is
a mean-zero stationary time series.
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Property 3.6 The Innovations Algorithm
The one-step-ahead predictors, xt

t+1, and their mean-squared errors, P t

t+1,
can be calculated iteratively as

x

0
1 = 0, P

0
1 = �(0)

x

t

t+1 =
t

X

j=1

✓
tj

(x
t+1�j

� x

t�j

t+1�j

), t = 1, 2, . . . (3.77)

P

t

t+1 = �(0)�
t�1
X

j=0

✓2
t,t�j

P

j

j+1 t = 1, 2, . . . , (3.78)

where, for j = 0, 1, . . . , t� 1,

✓
t,t�j

=
⇣

�(t� j)�
j�1
X

k=0

✓
j,j�k

✓
t,t�k

P

k

k+1

⌘

�

P

j

j+1. (3.79)

Given data x1, . . . , xn

, the innovations algorithm can be calculated suc-
cessively for t = 1, then t = 2 and so on, in which case the calculation of xn

n+1

and P

n

n+1 is made at the final step t = n. The m-step-ahead predictor and
its mean-square error based on the innovations algorithm (Problem 3.41) are
given by

x

n

n+m

=
n+m�1
X

j=m

✓
n+m�1,j(xn+m�j

� x

n+m�j�1
n+m�j

), (3.80)

P

n

n+m

= �(0)�
n+m�1
X

j=m

✓2
n+m�1,jP

n+m�j�1
n+m�j

, (3.81)

where the ✓
n+m�1,j are obtained by continued iteration of (3.79).

Example 3.21 Prediction for an MA(1)

The innovations algorithm lends itself well to prediction for moving average
processes. Consider an MA(1) model, x

t

= w

t

+ ✓w
t�1. Recall that �(0) =

(1 + ✓2)�2
w

, �(1) = ✓�2
w

, and �(h) = 0 for h > 1. Then, using Property 3.6,
we have

✓
n1 = ✓�2

w

/P

n�1
n

✓
nj

= 0, j = 2, . . . , n

P

0
1 = (1 + ✓2)�2

w

P

n

n+1 = (1 + ✓2 � ✓✓
n1)�

2
w

.

Finally, from (3.77), the one-step-ahead predictor is

x

n

n+1 = ✓
�

x

n

� x

n�1
n

�

�2
w

/P

n�1
n

.
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Forecasting ARMA Processes

The general prediction equations (3.60) provide little insight into forecasting
for ARMA models in general. There are a number of di↵erent ways to express
these forecasts, and each aids in understanding the special structure of ARMA
prediction. Throughout, we assume x

t

is a causal and invertible ARMA(p, q)
process, �(B)x

t

= ✓(B)w
t

, where w

t

⇠ iid N(0,�2
w

). In the non-zero mean
case, E(x

t

) = µ

x

, simply replace x

t

with x

t

� µ

x

in the model. First, we
consider two types of forecasts. We write x

n

n+m

to mean the minimum mean
square error predictor of x

n+m

based on the data {x
n

, . . . , x1}, that is,

x

n

n+m

= E(x
n+m

�

�

x

n

, . . . , x1).

For ARMA models, it is easier to calculate the predictor of x
n+m

, assuming
we have the complete history of the process {x

n

, x

n�1, . . . , x1, x0, x�1, . . .}.
We will denote the predictor of x

n+m

based on the infinite past as

ex

n+m

= E(x
n+m

�

�

x

n

, x

n�1, . . . , x1, x0, x�1, . . .).

In general, xn

n+m

and ex
n+m

are not the same, but the idea here is that, for
large samples, ex

n+m

will provide a good approximation to x

n

n+m

.
Now, write x

n+m

in its causal and invertible forms:

x

n+m

=
1
X

j=0

 
j

w

n+m�j

,  0 = 1 (3.82)

w

n+m

=
1
X

j=0

⇡
j

x

n+m�j

, ⇡0 = 1. (3.83)

Then, taking conditional expectations in (3.82), we have

ex

n+m

=
1
X

j=0

 
j

ew

n+m�j

=
1
X

j=m

 
j

w

n+m�j

, (3.84)

because, by causality and invertibility,

ew

t

= E(w
t

�

�

x

n

, x

n�1, . . . , x0, x�1, . . .) =

(

0 t > n

w

t

t  n.

Similarly, taking conditional expectations in (3.83), we have

0 = ex
n+m

+
1
X

j=1

⇡
j

ex

n+m�j

,

or
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ex

n+m

= �
m�1
X

j=1

⇡
j

ex

n+m�j

�
1
X

j=m

⇡
j

x

n+m�j

, (3.85)

using the fact E(x
t

�

�

x

n

, x

n�1, . . . , x0, x�1, . . .) = x

t

, for t  n. Prediction is
accomplished recursively using (3.85), starting with the one-step-ahead pre-
dictor, m = 1, and then continuing for m = 2, 3, . . .. Using (3.84), we can
write

x

n+m

� ex
n+m

=
m�1
X

j=0

 
j

w

n+m�j

,

so the mean-square prediction error can be written as

P

n

n+m

= E(x
n+m

� ex
n+m

)2 = �2
w

m�1
X

j=0

 2
j

. (3.86)

Also, we note, for a fixed sample size, n, the prediction errors are correlated.
That is, for k � 1,

E{(x
n+m

� ex
n+m

)(x
n+m+k

� ex
n+m+k

)} = �2
w

m�1
X

j=0

 
j

 
j+k

. (3.87)

Example 3.22 Long-Range Forecasts

Consider forecasting an ARMA process with mean µ

x

. Replacing x

n+m

with
x

n+m

� µ

x

in (3.82), and taking conditional expectation as is in (3.84), we
deduce that the m-step-ahead forecast can be written as

ex

n+m

= µ

x

+
1
X

j=m

 
j

w

n+m�j

. (3.88)

Noting that the  -weights dampen to zero exponentially fast, it is clear that

ex

n+m

! µ

x

(3.89)

exponentially fast (in the mean square sense) as m ! 1. Moreover, by
(3.86), the mean square prediction error

P

n

n+m

! �2
w

1
X

j=0

 2
j

= �
x

(0) = �2
x

, (3.90)

exponentially fast as m ! 1; recall (3.45).
It should be clear from (3.89) and (3.90) that ARMA forecasts quickly

settle to the mean with a constant prediction error as the forecast horizon,
m, grows. This e↵ect can be seen in Figure 3.7 on page 119 where the Re-
cruitment series is forecast for 24 months; see Example 3.24.
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When n is small, the general prediction equations (3.60) can be used easily.
When n is large, we would use (3.85) by truncating, because we do not observe
x0, x�1, x�2, . . ., and only the data x1, x2, . . . , xn

are available. In this case,
we can truncate (3.85) by setting

P1
j=n+m

⇡
j

x

n+m�j

= 0. The truncated
predictor is then written as

ex

n

n+m

= �
m�1
X

j=1

⇡
j

ex

n

n+m�j

�
n+m�1
X

j=m

⇡
j

x

n+m�j

, (3.91)

which is also calculated recursively, m = 1, 2, . . .. The mean square prediction
error, in this case, is approximated using (3.86).

For AR(p) models, and when n > p, equation (3.67) yields the exact
predictor, xn

n+m

, of x
n+m

, and there is no need for approximations. That is,
for n > p, exn

n+m

= ex

n+m

= x

n

n+m

. Also, in this case, the one-step-ahead
prediction error is E(x

n+1 � x

n

n+1)
2 = �2

w

. For pure MA(q) or ARMA(p, q)
models, truncated prediction has a fairly nice form.

Property 3.7 Truncated Prediction for ARMA
For ARMA(p, q) models, the truncated predictors for m = 1, 2, . . . , are

ex

n

n+m

= �1ex
n

n+m�1 + · · ·+�
p

ex

n

n+m�p

+ ✓1 ew
n

n+m�1 + · · ·+ ✓
q

ew

n

n+m�q

, (3.92)

where exn

t

= x

t

for 1  t  n and exn

t

= 0 for t  0. The truncated prediction
errors are given by: ewn

t

= 0 for t  0 or t > n, and

ew

n

t

= �(B)exn

t

� ✓1 ew
n

t�1 � · · ·� ✓
q

ew

n

t�q

for 1  t  n.

Example 3.23 Forecasting an ARMA(1, 1) Series

Given data x1, . . . , xn

, for forecasting purposes, write the model as

x

n+1 = �x
n

+ w

n+1 + ✓w
n

.

Then, based on (3.92), the one-step-ahead truncated forecast is

ex

n

n+1 = �x
n

+ 0 + ✓ ewn

n

.

For m � 2, we have
ex

n

n+m

= �exn

n+m�1,

which can be calculated recursively, m = 2, 3, . . . .
To calculate ewn

n

, which is needed to initialize the successive forecasts, the
model can be written as w

t

= x

t

� �x
t�1 � ✓w

t�1 for t = 1, . . . , n. For
truncated forecasting using (3.92), put ewn

0 = 0, x0 = 0, and then iterate the
errors forward in time
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Fig. 3.7. Twenty-four month forecasts for the Recruitment series. The actual data

shown are from about January 1980 to September 1987, and then the forecasts plus

and minus one standard error are displayed.

ew

n

t

= x

t

� �x
t�1 � ✓ ewn

t�1, t = 1, . . . , n.

The approximate forecast variance is computed from (3.86) using the  -
weights determined as in Example 3.11. In particular, the  -weights satisfy
 
j

= (�+ ✓)�j�1, for j � 1. This result gives

P

n

n+m

= �2
w



1 + (�+ ✓)2
m�1
X

j=1

�2(j�1)

�

= �2
w



1 +
(�+ ✓)2(1� �2(m�1))

(1� �2)

�

.

To assess the precision of the forecasts, prediction intervals are typically
calculated along with the forecasts. In general, (1�↵) prediction intervals are
of the form

x

n

n+m

± c

↵

2

q

P

n

n+m

, (3.93)

where c↵/2 is chosen to get the desired degree of confidence. For example,
if the process is Gaussian, then choosing c↵/2 = 2 will yield an approxi-
mate 95% prediction interval for x

n+m

. If we are interested in establishing
prediction intervals over more than one time period, then c↵/2 should be ad-
justed appropriately, for example, by using Bonferroni’s inequality [see (4.55)
in Chapter 4 or Johnson and Wichern, 1992, Chapter 5].

Example 3.24 Forecasting the Recruitment Series

Using the parameter estimates as the actual parameter values, Figure 3.7
shows the result of forecasting the Recruitment series given in Example 3.17
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over a 24-month horizon,m = 1, 2, . . . , 24. The actual forecasts are calculated
as

x

n

n+m

= 6.74 + 1.35xn

n+m�1 � .46xn

n+m�2

for n = 453 and m = 1, 2, . . . , 12. Recall that x

s

t

= x

t

when t  s. The
forecasts errors P

n

n+m

are calculated using (3.86). Recall that b�2
w

= 89.72,
and using (3.40) from Example 3.11, we have  

j

= 1.35 
j�1 � .46 

j�2 for
j � 2, where  0 = 1 and  1 = 1.35. Thus, for n = 453,

P

n

n+1 = 89.72,
P

n

n+2 = 89.72(1 + 1.352),
P

n

n+3 = 89.72(1 + 1.352 + [1.352 � .46]2),

and so on.
Note how the forecast levels o↵ quickly and the prediction intervals are

wide, even though in this case the forecast limits are only based on one
standard error; that is, xn

n+m

±p
P

n

n+m

.
To reproduce the analysis and Figure 3.7, use the following commands:

regr = ar.ols(rec, order=2, demean=FALSE, intercept=TRUE)
fore = predict(regr, n.ahead=24)
ts.plot(rec, fore$pred, col=1:2, xlim=c(1980,1990),

ylab="Recruitment")
lines(fore$pred, type="p", col=2)
lines(fore$pred+fore$se, lty="dashed", col=4)
lines(fore$pred-fore$se, lty="dashed", col=4)

We complete this section with a brief discussion of backcasting. In back-
casting, we want to predict x1�m

, for m = 1, 2, . . ., based on the data
{x1, . . . , xn

}. Write the backcast as

x

n

1�m

=
n

X

j=1

↵
j

x

j

. (3.94)

Analogous to (3.74), the prediction equations (assuming µ

x

= 0) are

n

X

j=1

↵
j

E(x
j

x

k

) = E(x1�m

x

k

), k = 1, . . . , n, (3.95)

or
n

X

j=1

↵
j

�(k � j) = �(m+ k � 1), k = 1, . . . , n. (3.96)

These equations are precisely the prediction equations for forward prediction.

That is, ↵
j

⌘ �(m)
nj

, for j = 1, . . . , n, where the �(m)
nj

are given by (3.75).
Finally, the backcasts are given by

x

n

1�m

= �(m)
n1 x1 + · · ·+ �(m)

nn

x

n

, m = 1, 2, . . . . (3.97)
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Example 3.25 Backcasting an ARMA(1, 1)
Consider an ARMA(1, 1) process, x

t

= �x
t�1 + ✓w

t�1 +w

t

; we will call this
the forward model. We have just seen that best linear prediction backward
in time is the same as best linear prediction forward in time for stationary
models. Because we are assuming ARMA models are Gaussian, we also have
that minimum mean square error prediction backward in time is the same
as forward in time for ARMA models.4 Thus, the process can equivalently
be generated by the backward model,

x

t

= �x
t+1 + ✓v

t+1 + v

t

,

where {v
t

} is a Gaussian white noise process with variance �2
w

. We may write
x

t

=
P1

j=0  j

v

t+j

, where  0 = 1; this means that x

t

is uncorrelated with
{v

t�1, vt�2, . . .}, in analogy to the forward model.
Given data {x1, . . . ., xn

}, truncate v

n

n

= E(v
n

|x1, . . . ., xn

) to zero and
then iterate backward. That is, put evn

n

= 0, as an initial approximation, and
then generate the errors backward

ev

n

t

= x

t

� �x
t+1 � ✓evn

t+1, t = (n� 1), (n� 2), . . . , 1.

Then,
ex

n

0 = �x1 + ✓evn1 + evn0 = �x1 + ✓evn1 ,

because evn
t

= 0 for t  0. Continuing, the general truncated backcasts are
given by

ex

n

1�m

= �exn

2�m

, m = 2, 3, . . . .

3.6 Estimation

Throughout this section, we assume we have n observations, x1, . . . , xn

, from
a causal and invertible Gaussian ARMA(p, q) process in which, initially, the
order parameters, p and q, are known. Our goal is to estimate the parameters,
�1, . . . ,�p, ✓1, . . . , ✓q, and �2

w

. We will discuss the problem of determining p

and q later in this section.
We begin with method of moments estimators. The idea behind these esti-

mators is that of equating population moments to sample moments and then
solving for the parameters in terms of the sample moments. We immediately
see that, if E(x

t

) = µ, then the method of moments estimator of µ is the
sample average, x̄. Thus, while discussing method of moments, we will as-
sume µ = 0. Although the method of moments can produce good estimators,
they can sometimes lead to suboptimal estimators. We first consider the case

4
In the stationary Gaussian case, (a) the distribution of {x

n+1, xn

, . . . , x1} is the

same as (b) the distribution of {x0, x1 . . . , xn

}. In forecasting we use (a) to ob-

tain E(x

n+1 |xn

, . . . , x1); in backcasting we use (b) to obtain E(x0 |x1, . . . , xn

).

Because (a) and (b) are the same, the two problems are equivalent.
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in which the method leads to optimal (e�cient) estimators, that is, AR(p)
models.

When the process is AR(p),

x

t

= �1xt�1 + · · ·+ �
p

x

t�p

+ w

t

,

the first p+ 1 equations of (3.47) and (3.48) lead to the following:

Definition 3.10 The Yule–Walker equations are given by

�(h) = �1�(h� 1) + · · ·+ �
p

�(h� p), h = 1, 2, . . . , p, (3.98)

�2
w

= �(0)� �1�(1)� · · ·� �
p

�(p). (3.99)

In matrix notation, the Yule–Walker equations are

�
p

��� = ���
p

, �2
w

= �(0)� ���0���
p

, (3.100)

where �
p

= {�(k�j)}p
j,k=1 is a p⇥p matrix, ��� = (�1, . . . ,�p)0 is a p⇥1 vector,

and ���
p

= (�(1), . . . , �(p))0 is a p ⇥ 1 vector. Using the method of moments,
we replace �(h) in (3.100) by b�(h) [see equation (1.34)] and solve

b�b�b� = b��1
p

b�b�b�
p

, b�2
w

= b�(0)� b�b�b�0
p

b��1
p

b�b�b�
p

. (3.101)

These estimators are typically called the Yule–Walker estimators. For calcula-
tion purposes, it is sometimes more convenient to work with the sample ACF.
By factoring b�(0) in (3.101), we can write the Yule–Walker estimates as

b�b�b� = b

R

b

R

b

R

�1

p

b⇢b⇢b⇢
p

, b�2
w

= b�(0)
h

1� b⇢b⇢b⇢0
p

b

R

b

R

b

R

�1

p

b⇢b⇢b⇢
p

i

, (3.102)

where bR
p

= {b⇢(k � j)}p
j,k=1 is a p ⇥ p matrix and b⇢b⇢b⇢

p

= (b⇢(1), . . . , b⇢(p))0 is a
p⇥ 1 vector.

For AR(p) models, if the sample size is large, the Yule–Walker estimators
are approximately normally distributed, and b�2

w

is close to the true value of
�2
w

. We state these results in Property 3.8; for details, see Appendix B, §B.3.
Property 3.8 Large Sample Results for Yule–Walker Estimators

The asymptotic (n ! 1) behavior of the Yule–Walker estimators in the
case of causal AR(p) processes is as follows:

p
n

⇣

b�b�b�� ���
⌘

d! N
�

000,�2
w

��1
p

�

, b�2
w

p! �2
w

. (3.103)

The Durbin–Levinson algorithm, (3.68)-(3.70), can be used to calculate b�b�b�
without inverting b�

p

or bR
p

, by replacing �(h) by b�(h) in the algorithm. In

running the algorithm, we will iteratively calculate the h ⇥ 1 vector, b�b�b�
h

=

(b�
h1, . . . ,

b�
hh

)0, for h = 1, 2, . . .. Thus, in addition to obtaining the desired

forecasts, the Durbin–Levinson algorithm yields b�
hh

, the sample PACF. Using
(3.103), we can show the following property.
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Property 3.9 Large Sample Distribution of the PACF
For a causal AR(p) process, asymptotically (n ! 1),

p
n

b�
hh

d! N (0, 1) , for h > p. (3.104)

Example 3.26 Yule–Walker Estimation for an AR(2) Process

The data shown in Figure 3.4 were n = 144 simulated observations from the
AR(2) model

x

t

= 1.5x
t�1 � .75x

t�2 + w

t

,

where w

t

⇠ iid N(0, 1). For these data, b�(0) = 8.903, b⇢(1) = .849, and
b⇢(2) = .519. Thus,

b�b�b� =

 

b�1
b�2

!

=



1 .849
.849 1

��1✓
.849
.519

◆

=

✓

1.463
�.723

◆

and

b�2
w

= 8.903



1� (.849, .519)

✓

1.463
�.723

◆�

= 1.187.

By Property 3.8, the asymptotic variance–covariance matrix of b�b�b�,

1

144

1.187

8.903



1 .849
.849 1

��1

=



.0582 �.003
�.003 .0582

�

,

can be used to get confidence regions for, or make inferences about b�b�b� and
its components. For example, an approximate 95% confidence interval for
�2 is �.723 ± 2(.058), or (�.838,�.608), which contains the true value of
�2 = �.75.

For these data, the first three sample partial autocorrelations are b�11 =
b⇢(1) = .849, b�22 = b�2 = �.721, and b�33 = �.085. According to Property 3.9,

the asymptotic standard error of b�33 is 1/
p
144 = .083, and the observed

value, �.085, is about only one standard deviation from �33 = 0.

Example 3.27 Yule–Walker Estimation of the Recruitment Series

In Example 3.17 we fit an AR(2) model to the recruitment series using re-
gression. Below are the results of fitting the same model using Yule-Walker
estimation in R, which are nearly identical to the values in Example 3.17.
rec.yw = ar.yw(rec, order=2)
rec.yw$x.mean # = 62.26 (mean estimate)
rec.yw$ar # = 1.33, -.44 (parameter estimates)
sqrt(diag(rec.yw$asy.var.coef)) # = .04, .04 (standard errors)
rec.yw$var.pred # = 94.80 (error variance estimate)

To obtain the 24 month ahead predictions and their standard errors, and
then plot the results as in Example 3.24, use the R commands:
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rec.pr = predict(rec.yw, n.ahead=24)
U = rec.pr$pred + rec.pr$se
L = rec.pr$pred - rec.pr$se
minx = min(rec,L); maxx = max(rec,U)
ts.plot(rec, rec.pr$pred, xlim=c(1980,1990), ylim=c(minx,maxx))
lines(rec.pr$pred, col="red", type="o")
lines(U, col="blue", lty="dashed")
lines(L, col="blue", lty="dashed")

In the case of AR(p) models, the Yule–Walker estimators given in (3.102)
are optimal in the sense that the asymptotic distribution, (3.103), is the
best asymptotic normal distribution. This is because, given initial conditions,
AR(p) models are linear models, and the Yule–Walker estimators are essen-
tially least squares estimators. If we use method of moments for MA or ARMA
models, we will not get optimal estimators because such processes are nonlin-
ear in the parameters.

Example 3.28 Method of Moments Estimation for an MA(1)
Consider the time series

x

t

= w

t

+ ✓w
t�1,

where |✓| < 1. The model can then be written as

x

t

=
1
X

j=1

(�✓)jx
t�j

+ w

t

,

which is nonlinear in ✓. The first two population autocovariances are �(0) =
�2
w

(1 + ✓2) and �(1) = �2
w

✓, so the estimate of ✓ is found by solving:

b⇢(1) =
b�(1)

b�(0)
=

b✓

1 + b✓2
.

Two solutions exist, so we would pick the invertible one. If |b⇢(1)|  1
2 , the

solutions are real, otherwise, a real solution does not exist. Even though
|⇢(1)| < 1

2 for an invertible MA(1), it may happen that |b⇢(1)| � 1
2 because it

is an estimator. For example, the following simulation in R produces a value
of b⇢(1) = .507 when the true value is ⇢(1) = .9/(1 + .92) = .497.
set.seed(2)
ma1 = arima.sim(list(order = c(0,0,1), ma = 0.9), n = 50)
acf(ma1, plot=F)[1] # = .507 (lag 1 sample ACF)

When |b⇢(1)| < 1
2 , the invertible estimate is

b✓ =
1�p1� 4b⇢(1)2

2b⇢(1)
.

It can be shown that5

5
The result follows from Theorem A.7 given in Appendix A and the delta method.

See the proof of Theorem A.7 for details on the delta method.





i
i

“tsa3” — 2015/8/18 — 22:47 — page 125 — #135 i
i

i
i

i
i

3.6 Estimation 125

b✓ ⇠ AN

✓

✓,
1 + ✓2 + 4✓4 + ✓6 + ✓8

n(1� ✓2)2

◆

;

AN is read asymptotically normal and is defined in Definition A.5, page 515,
of Appendix A. The maximum likelihood estimator (which we discuss next)
of ✓, in this case, has an asymptotic variance of (1 � ✓2)/n. When ✓ = .5,
for example, the ratio of the asymptotic variance of the method of moments
estimator to the maximum likelihood estimator of ✓ is about 3.5. That is,
for large samples, the variance of the method of moments estimator is about
3.5 times larger than the variance of the MLE of ✓ when ✓ = .5.

Maximum Likelihood and Least Squares Estimation

To fix ideas, we first focus on the causal AR(1) case. Let

x

t

= µ+ �(x
t�1 � µ) + w

t

(3.105)

where |�| < 1 and w

t

⇠ iid N(0,�2
w

). Given data x1, x2, . . . , xn

, we seek the
likelihood

L(µ,�,�2
w

) = f

�

x1, x2, . . . , xn

�

�

µ,�,�2
w

�

.

In the case of an AR(1), we may write the likelihood as

L(µ,�,�2
w

) = f(x1)f(x2

�

�

x1) · · · f(xn

�

�

x

n�1),

where we have dropped the parameters in the densities, f(·), to ease the
notation. Because x

t

�

�

x

t�1 ⇠ N
�

µ+ �(x
t�1 � µ), �2

w

�

, we have

f(x
t

�

�

x

t�1) = f

w

[(x
t

� µ)� �(x
t�1 � µ)],

where f

w

(·) is the density of w
t

, that is, the normal density with mean zero
and variance �2

w

. We may then write the likelihood as

L(µ,�,�
w

) = f(x1)
n

Y

t=2

f

w

[(x
t

� µ)� �(x
t�1 � µ)] .

To find f(x1), we can use the causal representation

x1 = µ+
1
X

j=0

�jw1�j

to see that x1 is normal, with mean µ and variance �2
w

/(1� �2). Finally, for
an AR(1), the likelihood is

L(µ,�,�2
w

) = (2⇡�2
w

)�n/2(1� �2)1/2 exp



�S(µ,�)

2�2
w

�

, (3.106)
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where

S(µ,�) = (1� �2)(x1 � µ)2 +
n

X

t=2

[(x
t

� µ)� �(x
t�1 � µ)]2 . (3.107)

Typically, S(µ,�) is called the unconditional sum of squares. We could have
also considered the estimation of µ and � using unconditional least squares,
that is, estimation by minimizing S(µ,�).

Taking the partial derivative of the log of (3.106) with respect to �2
w

and
setting the result equal to zero, we see that for any given values of µ and �
in the parameter space, �2

w

= n

�1
S(µ,�) maximizes the likelihood. Thus, the

maximum likelihood estimate of �2
w

is

b�2
w

= n

�1
S(bµ, b�), (3.108)

where bµ and b� are the MLEs of µ and �, respectively. If we replace n in (3.108)
by n� 2, we would obtain the unconditional least squares estimate of �2

w

.
If, in (3.106), we take logs, replace �2

w

by b�2
w

, and ignore constants, bµ and
b� are the values that minimize the criterion function

l(µ,�) = log
⇥

n

�1
S(µ,�)

⇤� n

�1 log(1� �2); (3.109)

that is, l(µ,�) / �2 logL(µ,�, b�2
w

).6 Because (3.107) and (3.109) are com-
plicated functions of the parameters, the minimization of l(µ,�) or S(µ,�) is
accomplished numerically. In the case of AR models, we have the advantage
that, conditional on initial values, they are linear models. That is, we can
drop the term in the likelihood that causes the nonlinearity. Conditioning on
x1, the conditional likelihood becomes

L(µ,�,�2
w

�

�

x1) =
n

Y

t=2

f

w

[(x
t

� µ)� �(x
t�1 � µ)]

= (2⇡�2
w

)�(n�1)/2 exp



�S

c

(µ,�)

2�2
w

�

, (3.110)

where the conditional sum of squares is

S

c

(µ,�) =
n

X

t=2

[(x
t

� µ)� �(x
t�1 � µ)]2 . (3.111)

The conditional MLE of �2
w

is

b�2
w

= S

c

(bµ, b�)/(n� 1), (3.112)

and bµ and b� are the values that minimize the conditional sum of squares,
S

c

(µ,�). Letting ↵ = µ(1� �), the conditional sum of squares can be written
as
6
The criterion function is sometimes called the profile or concentrated likelihood.
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S

c

(µ,�) =
n

X

t=2

[x
t

� (↵+ �x
t�1)]

2
. (3.113)

The problem is now the linear regression problem stated in §2.2. Following
the results from least squares estimation, we have b↵ = x̄(2) � b�x̄(1), where

x̄(1) = (n� 1)�1
P

n�1
t=1 x

t

, and x̄(2) = (n� 1)�1
P

n

t=2 xt

, and the conditional
estimates are then

bµ =
x̄(2) � b�x̄(1)

1� b�
(3.114)

b� =

P

n

t=2(xt

� x̄(2))(xt�1 � x̄(1))
P

n

t=2(xt�1 � x̄(1))2
. (3.115)

From (3.114) and (3.115), we see that bµ ⇡ x̄ and b� ⇡ b⇢(1). That is, the
Yule–Walker estimators and the conditional least squares estimators are ap-
proximately the same. The only di↵erence is the inclusion or exclusion of
terms involving the endpoints, x1 and x

n

. We can also adjust the estimate of
�2
w

in (3.112) to be equivalent to the least squares estimator, that is, divide

S

c

(bµ, b�) by (n� 3) instead of (n� 1) in (3.112).
For general AR(p) models, maximum likelihood estimation, unconditional

least squares, and conditional least squares follow analogously to the AR(1)
example. For general ARMA models, it is di�cult to write the likelihood as an
explicit function of the parameters. Instead, it is advantageous to write the
likelihood in terms of the innovations, or one-step-ahead prediction errors,
x

t

� x

t�1
t

. This will also be useful in Chapter 6 when we study state-space
models.

For a normal ARMA(p, q) model, let ��� = (µ,�1, . . . ,�p, ✓1, . . . , ✓q)0 be the
(p+ q+1)-dimensional vector of the model parameters. The likelihood can be
written as

L(���,�2
w

) =
n

Y

t=1

f(x
t

�

�

x

t�1, . . . , x1).

The conditional distribution of x
t

given x

t�1, . . . , x1 is Gaussian with mean
x

t�1
t

and variance P

t�1
t

. Recall from (3.71) that P t�1
t

= �(0)
Q

t�1
j=1(1� �2

jj

).

For ARMA models, �(0) = �2
w

P1
j=0  

2
j

, in which case we may write

P

t�1
t

= �2
w

8

<

:

2

4

1
X

j=0

 2
j

3

5

2

4

t�1
Y

j=1

(1� �2
jj

)

3

5

9

=

;

def
= �2

w

r

t

,

where r

t

is the term in the braces. Note that the r

t

terms are functions only
of the regression parameters and that they may be computed recursively as
r

t+1 = (1� �2
tt

)r
t

with initial condition r1 =
P1

j=0  
2
j

. The likelihood of the
data can now be written as

L(���,�2
w

) = (2⇡�2
w

)�n/2 [r1(���)r2(���) · · · rn(���)]�1/2 exp



�S(���)

2�2
w

�

, (3.116)
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where

S(���) =
n

X

t=1



(x
t

� x

t�1
t

(���))2

r

t

(���)

�

. (3.117)

Both x

t�1
t

and r

t

are functions of ��� alone, and we make that fact explicit
in (3.116)-(3.117). Given values for ��� and �2

w

, the likelihood may be evalu-
ated using the techniques of §3.5. Maximum likelihood estimation would now
proceed by maximizing (3.116) with respect to ��� and �2

w

. As in the AR(1)
example, we have

b�2
w

= n

�1
S(b���), (3.118)

where b��� is the value of ��� that minimizes the concentrated likelihood

l(���) = log
⇥

n

�1
S(���)

⇤

+ n

�1
n

X

t=1

log r
t

(���). (3.119)

For the AR(1) model (3.105) discussed previously, recall that x0
1 = µ and

x

t�1
t

= µ + �(x
t�1 � µ), for t = 2, . . . , n. Also, using the fact that �11 = �

and �
hh

= 0 for h > 1, we have r1 =
P1

j=0 �
2j = (1 � �2)�1, r2 = (1 �

�2)�1(1��2) = 1, and in general, r
t

= 1 for t = 2, . . . , n. Hence, the likelihood
presented in (3.106) is identical to the innovations form of the likelihood given
by (3.116). Moreover, the generic S(���) in (3.117) is S(µ,�) given in (3.107)
and the generic l(���) in (3.119) is l(µ,�) in (3.109).

Unconditional least squares would be performed by minimizing (3.117)
with respect to ���. Conditional least squares estimation would involve mini-
mizing (3.117) with respect to ��� but where, to ease the computational burden,
the predictions and their errors are obtained by conditioning on initial values
of the data. In general, numerical optimization routines are used to obtain the
actual estimates and their standard errors.

Example 3.29 The Newton–Raphson and Scoring Algorithms

Two common numerical optimization routines for accomplishing maximum
likelihood estimation are Newton–Raphson and scoring. We will give a brief
account of the mathematical ideas here. The actual implementation of these
algorithms is much more complicated than our discussion might imply. For
details, the reader is referred to any of the Numerical Recipes books, for
example, Press et al. (1993).

Let l(���) be a criterion function of k parameters ��� = (�1, . . . ,�k) that we
wish to minimize with respect to ���. For example, consider the likelihood
function given by (3.109) or by (3.119). Suppose l(b�b�b�) is the extremum that

we are interested in finding, and b�b�b� is found by solving @l(���)/@�
j

= 0, for
j = 1, . . . , k. Let l(1)(���) denote the k ⇥ 1 vector of partials

l

(1)(���) =

✓

@l(���)

@�1
, . . . ,

@l(���)

@�
k

◆0
.
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Note, l(1)(b�b�b�) = 000, the k ⇥ 1 zero vector. Let l(2)(���) denote the k ⇥ k matrix
of second-order partials

l

(2)(���) =

⇢

� @l2(���)

@�
i

@�
j

�

k

i,j=1

,

and assume l(2)(���) is nonsingular. Let ���(0) be an initial estimator of ���. Then,
using a Taylor expansion, we have the following approximation:

000 = l

(1)(b�b�b�) ⇡ l

(1)(���(0))� l

(2)(���(0))
h

b�b�b� � ���(0)

i

.

Setting the right-hand side equal to zero and solving for b�b�b� [call the solution
���(1)], we get

���(1) = ���(0) +
h

l

(2)(���(0))
i�1

l

(1)(���(0)).

The Newton–Raphson algorithm proceeds by iterating this result, replacing
���(0) by ���(1) to get ���(2), and so on, until convergence. Under a set of appro-
priate conditions, the sequence of estimators, ���(1),���(2), . . ., will converge to
b�b�b�, the MLE of ���.
For maximum likelihood estimation, the criterion function used is l(���)

given by (3.119); l(1)(���) is called the score vector, and l

(2)(���) is called the
Hessian. In the method of scoring, we replace l(2)(���) by E[l(2)(���)], the infor-
mation matrix. Under appropriate conditions, the inverse of the information
matrix is the asymptotic variance–covariance matrix of the estimator b�b�b�. This
is sometimes approximated by the inverse of the Hessian at b�b�b�. If the deriva-
tives are di�cult to obtain, it is possible to use quasi-maximum likelihood
estimation where numerical techniques are used to approximate the deriva-
tives.

Example 3.30 MLE for the Recruitment Series

So far, we have fit an AR(2) model to the Recruitment series using ordinary
least squares (Example 3.17) and using Yule–Walker (Example 3.27). The
following is an R session used to fit an AR(2) model via maximum likelihood
estimation to the Recruitment series; these results can be compared to the
results in Example 3.17 and Example 3.27.
rec.mle = ar.mle(rec, order=2)
rec.mle$x.mean # 62.26
rec.mle$ar # 1.35, -.46
sqrt(diag(rec.mle$asy.var.coef)) # .04, .04
rec.mle$var.pred # 89.34

We now discuss least squares for ARMA(p, q) models via Gauss–Newton.
For general and complete details of the Gauss–Newton procedure, the reader
is referred to Fuller (1996). As before, write ��� = (�1, . . . ,�p, ✓1, . . . , ✓q)0, and
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for the ease of discussion, we will put µ = 0. We write the model in terms of
the errors

w

t

(���) = x

t

�
p

X

j=1

�
j

x

t�j

�
q

X

k=1

✓
k

w

t�k

(���), (3.120)

emphasizing the dependence of the errors on the parameters.
For conditional least squares, we approximate the residual sum of squares

by conditioning on x1, . . . , xp

(if p > 0) and w

p

= w

p�1 = w

p�2 = · · · =
w1�q

= 0 (if q > 0), in which case, given ���, we may evaluate (3.120) for
t = p+1, p+2, . . . , n. Using this conditioning argument, the conditional error
sum of squares is

S

c

(���) =
n

X

t=p+1

w

2
t

(���). (3.121)

Minimizing S

c

(���) with respect to ��� yields the conditional least squares esti-
mates. If q = 0, the problem is linear regression and no iterative technique is
needed to minimize S

c

(�1, . . . ,�p). If q > 0, the problem becomes nonlinear
regression and we will have to rely on numerical optimization.

When n is large, conditioning on a few initial values will have little in-
fluence on the final parameter estimates. In the case of small to moderate
sample sizes, one may wish to rely on unconditional least squares. The uncon-
ditional least squares problem is to choose ��� to minimize the unconditional
sum of squares, which we have generically denoted by S(���) in this section.
The unconditional sum of squares can be written in various ways, and one
useful form in the case of ARMA(p, q) models is derived in Box et al. (1994,
Appendix A7.3). They showed (see Problem 3.19) the unconditional sum of
squares can be written as

S(���) =
n

X

t=�1
bw

2
t

(���), (3.122)

where bw

t

(���) = E(w
t

|x1, . . . , xn

). When t  0, the bw

t

(���) are obtained
by backcasting. As a practical matter, we approximate S(���) by starting
the sum at t = �M + 1, where M is chosen large enough to guarantee
P�M

t=�1 bw

2
t

(���) ⇡ 0. In the case of unconditional least squares estimation,
a numerical optimization technique is needed even when q = 0.

To employ Gauss–Newton, let ���(0) = (�(0)1 , . . . ,�(0)
p

, ✓(0)1 , . . . , ✓(0)
q

)0 be an
initial estimate of ���. For example, we could obtain ���(0) by method of moments.
The first-order Taylor expansion of w

t

(���) is

w

t

(���) ⇡ w

t

(���(0))�
⇣

��� � ���(0)

⌘0
zzz

t

(���(0)), (3.123)

where

zzz

t

(���(0)) =

✓

�@wt

(���(0))

@�1
, . . . ,�@wt

(���(0))

@�
p+q

◆0

, t = 1, . . . , n.
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The linear approximation of S
c

(���) is

Q(���) =
n

X

t=p+1



w

t

(���(0))�
⇣

��� � ���(0)

⌘0
zzz

t

(���(0))

�2

(3.124)

and this is the quantity that we will minimize. For approximate unconditional
least squares, we would start the sum in (3.124) at t = �M + 1, for a large
value of M , and work with the backcasted values.

Using the results of ordinary least squares (§2.2), we know

\(��� � ���(0)) =
⇣

n

�1
n

X

t=p+1

zzz

t

(���(0))zzz
0
t

(���(0))
⌘�1⇣

n

�1
n

X

t=p+1

zzz

t

(���(0))wt

(���(0))
⌘

(3.125)
minimizes Q(���). From (3.125), we write the one-step Gauss–Newton estimate
as

���(1) = ���(0) +�(���(0)), (3.126)

where �(���(0)) denotes the right-hand side of (3.125). Gauss–Newton esti-
mation is accomplished by replacing ���(0) by ���(1) in (3.126). This process is
repeated by calculating, at iteration j = 2, 3, . . .,

���(j) = ���(j�1) +�(���(j�1))

until convergence.

Example 3.31 Gauss–Newton for an MA(1)
Consider an invertible MA(1) process, x

t

= w

t

+ ✓w
t�1. Write the truncated

errors as
w

t

(✓) = x

t

� ✓w
t�1(✓), t = 1, . . . , n, (3.127)

where we condition on w0(✓) = 0. Taking derivatives,

� @w
t

(✓)

@✓
= w

t�1(✓) + ✓
@w

t�1(✓)

@✓
, t = 1, . . . , n, (3.128)

where @w0(✓)/@✓ = 0. Using the notation of (3.123), we can also write (3.128)
as

z

t

(✓) = w

t�1(✓)� ✓z
t�1(✓), t = 1, . . . , n, (3.129)

where z0(✓) = 0.
Let ✓(0) be an initial estimate of ✓, for example, the estimate given in Ex-

ample 3.28. Then, the Gauss–Newton procedure for conditional least squares
is given by

✓(j+1) = ✓(j) +

P

n

t=1 zt(✓(j))wt

(✓(j))
P

n

t=1 z
2
t

(✓(j))
, j = 0, 1, 2, . . . , (3.130)

where the values in (3.130) are calculated recursively using (3.127) and
(3.129). The calculations are stopped when |✓(j+1) � ✓(j)|, or |Q(✓(j+1)) �
Q(✓(j))|, are smaller than some preset amount.
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Fig. 3.8. ACF and PACF of transformed glacial varves.

Example 3.32 Fitting the Glacial Varve Series

Consider the series of glacial varve thicknesses from Massachusetts for n =
634 years, as analyzed in Example 2.6 and in Problem 2.8, where it was
argued that a first-order moving average model might fit the logarithmically
transformed and di↵erenced varve series, say,

r log(x
t

) = log(x
t

)� log(x
t�1) = log

✓

x

t

x

t�1

◆

,

which can be interpreted as being approximately the percentage change in
the thickness.

The sample ACF and PACF, shown in Figure 3.8, confirm the tendency
of r log(x

t

) to behave as a first-order moving average process as the ACF
has only a significant peak at lag one and the PACF decreases exponentially.
Using Table 3.1, this sample behavior fits that of the MA(1) very well.

The results of eleven iterations of the Gauss–Newton procedure, (3.130),
starting with ✓(0) = �.10 are given in Table 3.2. The final estimate is
b✓ = ✓(11) = �.773; interim values and the corresponding value of the condi-
tional sum of squares, S

c

(✓) given in (3.121), are also displayed in the table.
The final estimate of the error variance is b�2

w

= 148.98/632 = .236 with
632 degrees of freedom (one is lost in di↵erencing). The value of the sum of
the squared derivatives at convergence is

P

n

t=1 z
2
t

(✓(11)) = 369.73, and con-
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Fig. 3.9. Conditional sum of squares versus values of the moving average parameter

for the glacial varve example, Example 3.32. Vertical lines indicate the values of the

parameter obtained via Gauss–Newton; see Table 3.2 for the actual values.

Table 3.2. Gauss–Newton Results for Example 3.32

j ✓(j) S

c

(✓(j))
P

n

t=1 z
2
t

(✓(j))

0 �0.100 195.0010 183.3464

1 �0.250 177.7614 163.3038

2 �0.400 165.0027 161.6279

3 �0.550 155.6723 182.6432

4 �0.684 150.2896 247.4942

5 �0.736 149.2283 304.3125

6 �0.757 149.0272 337.9200

7 �0.766 148.9885 355.0465

8 �0.770 148.9812 363.2813

9 �0.771 148.9804 365.4045

10 �0.772 148.9799 367.5544

11 �0.773 148.9799 369.7314

sequently, the estimated standard error of b✓ is
p

.236/369.73 = .025;7 this
leads to a t-value of �.773/.025 = �30.92 with 632 degrees of freedom.

Figure 3.9 displays the conditional sum of squares, S
c

(✓) as a function
of ✓, as well as indicating the values of each step of the Gauss–Newton
algorithm. Note that the Gauss–Newton procedure takes large steps toward

7
To estimate the standard error, we are using the standard regression results from

(2.9) as an approximation



i
i

“tsa3” — 2015/8/18 — 22:47 — page 134 — #144 i
i

i
i

i
i

134 3 ARIMA Models

the minimum initially, and then takes very small steps as it gets close to
the minimizing value. When there is only one parameter, as in this case, it
would be easy to evaluate S

c

(✓) on a grid of points, and then choose the
appropriate value of ✓ from the grid search. It would be di�cult, however,
to perform grid searches when there are many parameters.

In the general case of causal and invertible ARMA(p, q) models, maxi-
mum likelihood estimation and conditional and unconditional least squares
estimation (and Yule–Walker estimation in the case of AR models) all lead to
optimal estimators. The proof of this general result can be found in a num-
ber of texts on theoretical time series analysis (for example, Brockwell and
Davis, 1991, or Hannan, 1970, to mention a few). We will denote the ARMA
coe�cient parameters by ��� = (�1, . . . ,�p, ✓1, . . . , ✓q)0.

Property 3.10 Large Sample Distribution of the Estimators
Under appropriate conditions, for causal and invertible ARMA processes,

the maximum likelihood, the unconditional least squares, and the conditional
least squares estimators, each initialized by the method of moments estimator,
all provide optimal estimators of �2

w

and ���, in the sense that b�2
w

is consistent,

and the asymptotic distribution of b�b�b� is the best asymptotic normal distribution.
In particular, as n ! 1,

p
n

⇣

b�b�b� � ���
⌘

d! N
�

000,�2
w

����1
p,q

�

. (3.131)

The asymptotic variance–covariance matrix of the estimator b�b�b� is the inverse
of the information matrix. In particular, the (p+ q)⇥ (p+ q) matrix �

p,q

, has
the form

�
p,q

=

✓

��� ��✓

�✓� �✓✓

◆

. (3.132)

The p⇥p matrix ��� is given by (3.100), that is, the ij-th element of ���, for
i, j = 1, . . . , p, is �

x

(i�j) from an AR(p) process, �(B)x
t

= w

t

. Similarly, �✓✓

is a q ⇥ q matrix with the ij-th element, for i, j = 1, . . . , q, equal to �
y

(i� j)
from an AR(q) process, ✓(B)y

t

= w

t

. The p ⇥ q matrix ��✓ = {�
xy

(i � j)},
for i = 1, . . . , p; j = 1, . . . , q; that is, the ij-th element is the cross-covariance
between the two AR processes given by �(B)x

t

= w

t

and ✓(B)y
t

= w

t

. Finally,
�✓� = � 0

�✓ is q ⇥ p.

Further discussion of Property 3.10, including a proof for the case of least
squares estimators for AR(p) processes, can be found in Appendix B, §B.3.
Example 3.33 Some Specific Asymptotic Distributions

The following are some specific cases of Property 3.10.
AR(1): �

x

(0) = �2
w

/(1� �2), so �2
w

��1
1,0 = (1� �2). Thus,

b� ⇠ AN
⇥

�, n�1(1� �2)
⇤

. (3.133)
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AR(2): The reader can verify that

�
x

(0) =

✓

1� �2
1 + �2

◆

�2
w

(1� �2)2 � �21

and �
x

(1) = �1�x(0) + �2�x(1). From these facts, we can compute ��1
2,0 . In

particular, we have

 

b�1
b�2

!

⇠ AN

✓

�1
�2

◆

, n

�1

✓

1� �22 ��1(1 + �2)
sym 1� �22

◆�

. (3.134)

MA(1): In this case, write ✓(B)y
t

= w

t

, or y
t

+✓y
t�1 = w

t

. Then, analogous
to the AR(1) case, �

y

(0) = �2
w

/(1� ✓2), so �2
w

��1
0,1 = (1� ✓2). Thus,

b✓ ⇠ AN
⇥

✓, n�1(1� ✓2)
⇤

. (3.135)

MA(2): Write y
t

+ ✓1yt�1 + ✓2yt�2 = w

t

, so , analogous to the AR(2) case,
we have

 

b✓1
b✓2

!

⇠ AN

✓

✓1
✓2

◆

, n

�1

✓

1� ✓22 ✓1(1 + ✓2)
sym 1� ✓22

◆�

. (3.136)

ARMA(1,1): To calculate ��✓, we must find �
xy

(0), where x
t

��x
t�1 = w

t

and y

t

+ ✓y
t�1 = w

t

. We have

�
xy

(0) = cov(x
t

, y

t

) = cov(�x
t�1 + w

t

,�✓y
t�1 + w

t

)

= ��✓�
xy

(0) + �2
w

.

Solving, we find, �
xy

(0) = �2
w

/(1 + �✓). Thus,

 

b�
b✓

!

⇠ AN

"

✓

�
✓

◆

, n

�1



(1� �2)�1 (1 + �✓)�1

sym (1� ✓2)�1

��1
#

. (3.137)

Example 3.34 Overfitting Caveat

The asymptotic behavior of the parameter estimators gives us an additional
insight into the problem of fitting ARMA models to data. For example, sup-
pose a time series follows an AR(1) process and we decide to fit an AR(2) to
the data. Do any problems occur in doing this? More generally, why not sim-
ply fit large-order AR models to make sure that we capture the dynamics of
the process? After all, if the process is truly an AR(1), the other autoregres-
sive parameters will not be significant. The answer is that if we overfit, we
obtain less e�cient, or less precise parameter estimates. For example, if we fit
an AR(1) to an AR(1) process, for large n, var(b�1) ⇡ n

�1(1��21). But, if we
fit an AR(2) to the AR(1) process, for large n, var(b�1) ⇡ n

�1(1��22) = n

�1
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because �2 = 0. Thus, the variance of �1 has been inflated, making the
estimator less precise.

We do want to mention, however, that overfitting can be used as a di-
agnostic tool. For example, if we fit an AR(2) model to the data and are
satisfied with that model, then adding one more parameter and fitting an
AR(3) should lead to approximately the same model as in the AR(2) fit. We
will discuss model diagnostics in more detail in §3.8.

The reader might wonder, for example, why the asymptotic distributions
of b� from an AR(1) and b✓ from an MA(1) are of the same form; compare
(3.133) to (3.135). It is possible to explain this unexpected result heuristically
using the intuition of linear regression. That is, for the normal regression
model presented in §2.2 with no intercept term, x

t

= �z
t

+ w

t

, we know b� is
normally distributed with mean �, and from (2.9),

var
np

n

⇣

b� � �
⌘o

= n�2
w

 

n

X

t=1

z

2
t

!�1

= �2
w

 

n

�1
n

X

t=1

z

2
t

!�1

.

For the causal AR(1) model given by x

t

= �x
t�1 + w

t

, the intuition of
regression tells us to expect that, for n large,

p
n

⇣

b�� �
⌘

is approximately normal with mean zero and with variance given by

�2
w

 

n

�1
n

X

t=2

x

2
t�1

!�1

.

Now, n�1
P

n

t=2 x
2
t�1 is the sample variance (recall that the mean of x

t

is zero)
of the x

t

, so as n becomes large we would expect it to approach var(x
t

) =

�(0) = �2
w

/(1� �2). Thus, the large sample variance of
p
n

⇣

b�� �
⌘

is

�2
w

�
x

(0)�1 = �2
w

✓

�2
w

1� �2

◆�1

= (1� �2);

that is, (3.133) holds.
In the case of an MA(1), we may use the discussion of Example 3.31 to

write an approximate regression model for the MA(1). That is, consider the
approximation (3.129) as the regression model

z

t

(b✓) = �✓z
t�1(b✓) + w

t�1,

where now, z
t�1(b✓) as defined in Example 3.31, plays the role of the regressor.

Continuing with the analogy, we would expect the asymptotic distribution ofp
n

⇣

b✓ � ✓
⌘

to be normal, with mean zero, and approximate variance
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�2
w

 

n

�1
n

X

t=2

z

2
t�1(b✓)

!�1

.

As in the AR(1) case, n�1
P

n

t=2 z
2
t�1(b✓) is the sample variance of the z

t

(b✓)
so, for large n, this should be var{z

t

(✓)} = �
z

(0), say. But note, as seen from
(3.129), z

t

(✓) is approximately an AR(1) process with parameter �✓. Thus,

�2
w

�
z

(0)�1 = �2
w

✓

�2
w

1� (�✓)2
◆�1

= (1� ✓2),

which agrees with (3.135). Finally, the asymptotic distributions of the AR
parameter estimates and the MA parameter estimates are of the same form
because in the MA case, the “regressors” are the di↵erential processes z

t

(✓)
that have AR structure, and it is this structure that determines the asymptotic
variance of the estimators. For a rigorous account of this approach for the
general case, see Fuller (1996, Theorem 5.5.4).

In Example 3.32, the estimated standard error of b✓ was .025. In that ex-
ample, we used regression results to estimate the standard error as the square
root of

n

�1
b�2
w

 

n

�1
n

X

t=1

z

2
t

(b✓)

!�1

=
b�2
w

P

n

t=1 z
2
t

(b✓)
,

where n = 632, b�2
w

= .236,
P

n

t=1 z
2
t

(b✓) = 369.73 and b✓ = �.773. Using (3.135),
we could have also calculated this value using the asymptotic approximation,
the square root of (1� (�.773)2)/632, which is also .025.

If n is small, or if the parameters are close to the boundaries, the asymp-
totic approximations can be quite poor. The bootstrap can be helpful in this
case; for a broad treatment of the bootstrap, see Efron and Tibshirani (1994).
We discuss the case of an AR(1) here and leave the general discussion for
Chapter 6. For now, we give a simple example of the bootstrap for an AR(1)
process.

Example 3.35 Bootstrapping an AR(1)

We consider an AR(1) model with a regression coe�cient near the boundary
of causality and an error process that is symmetric but not normal. Specifi-
cally, consider the causal model

x

t

= µ+ �(x
t�1 � µ) + w

t

, (3.138)

where µ = 50, � = .95, and w

t

are iid double exponential with location zero,
and scale parameter � = 2. The density of w

t

is given by

f(w) =
1

2�
exp {�|w|/�} �1 < w < 1.

In this example, E(w
t

) = 0 and var(w
t

) = 2�2 = 8. Figure 3.10 shows
n = 100 simulated observations from this process. This particular realization
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Fig. 3.10. One hundred observations generated from the model in Example 3.35.

is interesting; the data look like they were generated from a nonstationary
process with three di↵erent mean levels. In fact, the data were generated
from a well-behaved, albeit non-normal, stationary and causal model. To
show the advantages of the bootstrap, we will act as if we do not know the
actual error distribution and we will proceed as if it were normal; of course,
this means, for example, that the normal based MLE of � will not be the
actual MLE because the data are not normal.

Using the data shown in Figure 3.10, we obtained the Yule–Walker es-
timates bµ = 40.05, b� = .96, and s

2
w

= 15.30, where s

2
w

is the estimate of

var(w
t

). Based on Property 3.10, we would say that b� is approximately
normal with mean � (which we supposedly do not know) and variance
(1� �2)/100, which we would approximate by (1� .962)/100 = .032.

To assess the finite sample distribution of b� when n = 100, we simulated
1000 realizations of this AR(1) process and estimated the parameters via
Yule–Walker. The finite sampling density of the Yule–Walker estimate of �,
based on the 1000 repeated simulations, is shown in Figure 3.11. Clearly the
sampling distribution is not close to normality for this sample size. The mean
of the distribution shown in Figure 3.11 is .89, and the variance of the dis-
tribution is .052; these values are considerably di↵erent than the asymptotic
values. Some of the quantiles of the finite sample distribution are .79 (5%),
.86 (25%), .90 (50%), .93 (75%), and .95 (95%). The R code to perform the
simulation and plot the histogram is as follows:
set.seed(111)
phi.yw = rep(NA, 1000)
for (i in 1:1000){
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Fig. 3.11. Finite sample density of the Yule–Walker estimate of � in Example 3.35.

e = rexp(150, rate=.5); u = runif(150,-1,1); de = e*sign(u)
x = 50 + arima.sim(n=100,list(ar=.95), innov=de, n.start=50)
phi.yw[i] = ar.yw(x, order=1)$ar }

hist(phi.yw, prob=TRUE, main="")
lines(density(phi.yw, bw=.015))

Before discussing the bootstrap, we first investigate the sample innovation
process, x

t

�x

t�1
t

, with corresponding variances P t�1
t

. For the AR(1) model
in this example,

x

t�1
t

= µ+ �(x
t�1 � µ), t = 2, . . . , 100.

From this, it follows that

P

t�1
t

= E(x
t

� x

t�1
t

)2 = �2
w

, t = 2, . . . , 100.

When t = 1, we have

x

0
1 = µ and P

0
1 = �2

w

/(1� �2).

Thus, the innovations have zero mean but di↵erent variances; in order that
all of the innovations have the same variance, �2

w

, we will write them as

✏1 = (x1 � µ)
p

(1� �2)

✏
t

= (x
t

� µ)� �(x
t�1 � µ), for t = 2, . . . , 100. (3.139)

From these equations, we can write the model in terms of the ✏
t

as
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x1 = µ+ ✏1/
p

(1� �2)

x

t

= µ+ �(x
t�1 � µ) + ✏

t

for t = 2, . . . , 100. (3.140)

Next, replace the parameters with their estimates in (3.139), that is,

bµ = 40.048 and b� = .957, and denote the resulting sample innovations
as {b✏1, . . . ,b✏100}. To obtain one bootstrap sample, first randomly sample,
with replacement, n = 100 values from the set of sample innovations; call
the sampled values {✏⇤1, . . . , ✏⇤100}. Now, generate a bootstrapped data set
sequentially by setting

x

⇤
1 = 40.048 + ✏⇤1/

p

(1� .9572)

x

⇤
t

= 40.048 + .957(x⇤
t�1 � 40.048) + ✏⇤

t

, t = 2, . . . , n. (3.141)

Next, estimate the parameters as if the data were x

⇤
t

. Call these estimates

bµ(1), b�(1), and s

2
w

(1). Repeat this process a large number, B, of times, gener-

ating a collection of bootstrapped parameter estimates, {bµ(b), b�(b), s2
w

(b), b =
1, . . . , B}. We can then approximate the finite sample distribution of an es-
timator from the bootstrapped parameter values. For example, we can ap-
proximate the distribution of b��� by the empirical distribution of b�(b)� b�,
for b = 1, . . . , B.

Figure 3.12 shows the bootstrap histogram of 200 bootstrapped estimates
of � using the data shown in Figure 3.10. In addition, Figure 3.12 shows a
density estimate based on the bootstrap histogram, as well as the asymptotic
normal density that would have been used based on Property 3.10. Clearly,
the bootstrap distribution of b� is closer to the distribution of b� shown in
Figure 3.11 than to the asymptotic normal approximation. In particular, the
mean of the distribution of b�(b) is .92 with a variance of .052. Some quantiles
of this distribution are .83 (5%), .90 (25%), .93 (50%), .95 (75%), and .98
(95%).

To perform a similar bootstrap exercise in R, use the following commands.
We note that the R estimation procedure is conditional on the first obser-
vation, so the first residual is not returned. To get around this problem, we
simply fix the first observation and bootstrap the remaining data. The sim-
ulated data are available in the file ar1boot, but you can simulate your own
data as was done in the code that produced Figure 3.11.
x = ar1boot
m = mean(x) # estimate of mu
fit = ar.yw(x, order=1)
phi = fit$ar # estimate of phi
nboot = 200 # number of bootstrap replicates
resids = fit$resid[-1] # the first resid is NA
x.star = x # initialize x*
phi.star.yw = rep(NA, nboot)
for (i in 1:nboot) {
resid.star = sample(resids, replace=TRUE)
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Fig. 3.12. Bootstrap histogram of

b

� based on 200 bootstraps; a density estimate

based on the histogram (solid line) and the corresponding asymptotic normal density

(dashed line).

for (t in 1:99){ x.star[t+1] = m + phi*(x.star[t]-m) +
resid.star[t] }

phi.star.yw[i] = ar.yw(x.star, order=1)$ar }
hist(phi.star.yw, 10, main="", prob=TRUE, ylim=c(0,14),

xlim=c(.75,1.05))
lines(density(phi.star.yw, bw=.02))
u = seq(.75, 1.05, by=.001)
lines(u, dnorm(u, mean=.96, sd=.03), lty="dashed", lwd=2)

3.7 Integrated Models for Nonstationary Data

In Chapters 1 and 2, we saw that if x
t

is a random walk, x
t

= x

t�1 + w

t

,
then by di↵erencing x

t

, we find that rx

t

= w

t

is stationary. In many situa-
tions, time series can be thought of as being composed of two components, a
nonstationary trend component and a zero-mean stationary component. For
example, in §2.2 we considered the model

x

t

= µ

t

+ y

t

, (3.142)

where µ

t

= �0 +�1t and y

t

is stationary. Di↵erencing such a process will lead
to a stationary process:

rx

t

= x

t

� x

t�1 = �1 + y

t

� y

t�1 = �1 +ry

t

.
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Another model that leads to first di↵erencing is the case in which µ

t

in (3.142)
is stochastic and slowly varying according to a random walk. That is,

µ

t

= µ

t�1 + v

t

where v

t

is stationary. In this case,

rx

t

= v

t

+ry

t

,

is stationary. If µ

t

in (3.142) is a k-th order polynomial, µ
t

=
P

k

j=0 �jt
j ,

then (Problem 3.27) the di↵erenced series rk

y

t

is stationary. Stochastic trend
models can also lead to higher order di↵erencing. For example, suppose

µ

t

= µ

t�1 + v

t

and v

t

= v

t�1 + e

t

,

where e

t

is stationary. Then, rx

t

= v

t

+ry

t

is not stationary, but

r2
x

t

= e

t

+r2
y

t

is stationary.
The integrated ARMA, or ARIMA, model is a broadening of the class of

ARMA models to include di↵erencing.

Definition 3.11 A process x

t

is said to be ARIMA(p, d, q) if

rd

x

t

= (1�B)dx
t

is ARMA(p, q). In general, we will write the model as

�(B)(1�B)dx
t

= ✓(B)w
t

. (3.143)

If E(rd

x

t

) = µ, we write the model as

�(B)(1�B)dx
t

= � + ✓(B)w
t

,

where � = µ(1� �1 � · · ·� �
p

).

Because of the nonstationarity, care must be taken when deriving forecasts.
For the sake of completeness, we discuss this issue briefly here, but we stress
the fact that both the theoretical and computational aspects of the problem
are best handled via state-space models. We discuss the theoretical details in
Chapter 6. For information on the state-space based computational aspects
in R, see the ARIMA help files (?arima and ?predict.Arima); our scripts
sarima and sarima.for are basically front ends for these R scripts.

It should be clear that, since y
t

= rd

x

t

is ARMA, we can use §3.5 methods
to obtain forecasts of y

t

, which in turn lead to forecasts for x
t

. For example, if
d = 1, given forecasts yn

n+m

form = 1, 2, . . ., we have yn
n+m

= x

n

n+m

�x

n

n+m�1,
so that
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x

n

n+m

= y

n

n+m

+ x

n

n+m�1

with initial condition x

n

n+1 = y

n

n+1 + x

n

(noting x

n

n

= x

n

).
It is a little more di�cult to obtain the prediction errors P

n

n+m

, but for
large n, the approximation used in §3.5, equation (3.86), works well. That is,
the mean-squared prediction error can be approximated by

P

n

n+m

= �2
w

m�1
X

j=0

 ⇤2
j

, (3.144)

where  ⇤
j

is the coe�cient of zj in  ⇤(z) = ✓(z)/�(z)(1� z)d.
To better understand integrated models, we examine the properties of

some simple cases; Problem 3.29 covers the ARIMA(1, 1, 0) case.

Example 3.36 Random Walk with Drift

To fix ideas, we begin by considering the random walk with drift model first
presented in Example 1.11, that is,

x

t

= � + x

t�1 + w

t

,

for t = 1, 2, . . ., and x0 = 0. Technically, the model is not ARIMA, but we
could include it trivially as an ARIMA(0, 1, 0) model. Given data x1, . . . , xn

,
the one-step-ahead forecast is given by

x

n

n+1 = E(x
n+1

�

�

x

n

, . . . , x1) = E(� + x

n

+ w

n+1

�

�

x

n

, . . . , x1) = � + x

n

.

The two-step-ahead forecast is given by x

n

n+2 = � + x

n

n+1 = 2� + x

n

, and
consequently, the m-step-ahead forecast, for m = 1, 2, . . ., is

x

n

n+m

= m � + x

n

, (3.145)

To obtain the forecast errors, it is convenient to recall equation (1.4), i.e.,
x

n

= n � +
P

n

j=1 wj

, in which case we may write

x

n+m

= (n+m) � +
n+m

X

j=1

w

j

= m � + x

n

+
n+m

X

j=n+1

w

j

.

From this it follows that the m-step-ahead prediction error is given by

P

n

n+m

= E(x
n+m

� x

n

n+m

)2 = E

⇣

n+m

X

j=n+1

w

j

⌘2
= m�2

w

. (3.146)

Hence, unlike the stationary case (see Example 3.22), as the forecast horizon
grows, the prediction errors, (3.146), increase without bound and the fore-
casts follow a straight line with slope � emanating from x

n

. We note that
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(3.144) is exact in this case because  ⇤(z) = 1/(1�z) =
P1

j=0 z
j for |z| < 1,

so that  ⇤
j

= 1 for all j.
The w

t

are Gaussian, so estimation is straightforward because the di↵er-
enced data, say y

t

= rx

t

, are independent and identically distributed normal
variates with mean � and variance �2

w

. Consequently, optimal estimates of �
and �2

w

are the sample mean and variance of the y

t

, respectively.

Example 3.37 IMA(1, 1) and EWMA

The ARIMA(0,1,1), or IMA(1,1) model is of interest because many economic
time series can be successfully modeled this way. In addition, the model leads
to a frequently used, and abused, forecasting method called exponentially
weighted moving averages (EWMA). We will write the model as

x

t

= x

t�1 + w

t

� �w
t�1, (3.147)

with |�| < 1, for t = 1, 2, . . . , and x0 = 0, because this model formulation
is easier to work with here, and it leads to the standard representation for
EWMA. We could have included a drift term in (3.147), as was done in
the previous example, but for the sake of simplicity, we leave it out of the
discussion. If we write

y

t

= w

t

� �w
t�1,

we may write (3.147) as x
t

= x

t�1 + y

t

. Because |�| < 1, y
t

has an invertible
representation, y

t

+
P1

j=1 �
j

y

t�j

= w

t

, and substituting y

t

= x

t

� x

t�1, we
may write

x

t

=
1
X

j=1

(1� �)�j�1
x

t�j

+ w

t

. (3.148)

as an approximation for large t (put x
t

= 0 for t  0). Verification of (3.148)
is left to the reader (Problem 3.28). Using the approximation (3.148), we
have that the approximate one-step-ahead predictor, using the notation of
§3.5, is

x̃

n+1 =
1
X

j=1

(1� �)�j�1
x

n+1�j

= (1� �)x
n

+ �
1
X

j=1

(1� �)�j�1
x

n�j

= (1� �)x
n

+ �x̃
n

. (3.149)

From (3.149), we see that the new forecast is a linear combination of the
old forecast and the new observation. Based on (3.149) and the fact that we
only observe x1, . . . , xn

, and consequently y1, . . . , yn (because y
t

= x

t

�x

t�1;
x0 = 0), the truncated forecasts are

x̃

n

n+1 = (1� �)x
n

+ �x̃n�1
n

, n � 1, (3.150)
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with x̃

0
1 = x1 as an initial value. The mean-square prediction error can be

approximated using (3.144) by noting that  ⇤(z) = (1 � �z)/(1 � z) =
1 + (1� �)

P1
j=1 z

j for |z| < 1; consequently, for large n, (3.144) leads to

P

n

n+m

⇡ �2
w

[1 + (m� 1)(1� �)2].

In EWMA, the parameter 1�� is often called the smoothing parameter and
is restricted to be between zero and one. Larger values of � lead to smoother
forecasts. This method of forecasting is popular because it is easy to use;
we need only retain the previous forecast value and the current observation
to forecast the next time period. Unfortunately, as previously suggested,
the method is often abused because some forecasters do not verify that the
observations follow an IMA(1, 1) process, and often arbitrarily pick values
of �. In the following, we show how to generate 100 observations from an
IMA(1,1) model with � = �✓ = .8 and then calculate and display the fitted
EWMA superimposed on the data. This is accomplished using the Holt-
Winters command in R (see the help file ?HoltWinters for details; no output
is shown):
set.seed(666)
x = arima.sim(list(order = c(0,1,1), ma = -0.8), n = 100)
(x.ima = HoltWinters(x, beta=FALSE, gamma=FALSE)) # ↵ below is 1� �

Smoothing parameter: alpha: 0.1663072
plot(x.ima)

3.8 Building ARIMA Models

There are a few basic steps to fitting ARIMA models to time series data.
These steps involve plotting the data, possibly transforming the data, identi-
fying the dependence orders of the model, parameter estimation, diagnostics,
and model choice. First, as with any data analysis, we should construct a
time plot of the data, and inspect the graph for any anomalies. If, for ex-
ample, the variability in the data grows with time, it will be necessary to
transform the data to stabilize the variance. In such cases, the Box–Cox class
of power transformations, equation (2.37), could be employed. Also, the par-
ticular application might suggest an appropriate transformation. For example,
suppose a process evolves as a fairly small and stable percent-change, such as
an investment. For example, we might have

x

t

= (1 + p

t

)x
t�1,

where x

t

is the value of the investment at time t and p

t

is the percentage-
change from period t� 1 to t, which may be negative. Taking logs we have

log(x
t

) = log(1 + p

t

) + log(x
t�1),

or
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r log(x
t

) = log(1 + p

t

).

If the percent change p
t

stays relatively small in magnitude, then log(1+p

t

) ⇡
p

t

8 and, thus,
r log(x

t

) ⇡ p

t

,

will be a relatively stable process. Frequently, r log(x
t

) is called the return
or growth rate. This general idea was used in Example 3.32, and we will use
it again in Example 3.38.

After suitably transforming the data, the next step is to identify prelim-
inary values of the autoregressive order, p, the order of di↵erencing, d, and
the moving average order, q. We have already addressed, in part, the problem
of selecting d. A time plot of the data will typically suggest whether any dif-
ferencing is needed. If di↵erencing is called for, then di↵erence the data once,
d = 1, and inspect the time plot of rx

t

. If additional di↵erencing is necessary,
then try di↵erencing again and inspect a time plot of r2

x

t

. Be careful not
to overdi↵erence because this may introduce dependence where none exists.
For example, x

t

= w

t

is serially uncorrelated, but rx

t

= w

t

�w

t�1 is MA(1).
In addition to time plots, the sample ACF can help in indicating whether
di↵erencing is needed. Because the polynomial �(z)(1 � z)d has a unit root,
the sample ACF, b⇢(h), will not decay to zero fast as h increases. Thus, a slow
decay in b⇢(h) is an indication that di↵erencing may be needed.

When preliminary values of d have been settled, the next step is to look at
the sample ACF and PACF of rd

x

t

for whatever values of d have been chosen.
Using Table 3.1 as a guide, preliminary values of p and q are chosen. Recall
that, if p = 0 and q > 0, the ACF cuts o↵ after lag q, and the PACF tails o↵.
If q = 0 and p > 0, the PACF cuts o↵ after lag p, and the ACF tails o↵. If
p > 0 and q > 0, both the ACF and PACF will tail o↵. Because we are dealing
with estimates, it will not always be clear whether the sample ACF or PACF
is tailing o↵ or cutting o↵. Also, two models that are seemingly di↵erent can
actually be very similar. With this in mind, we should not worry about being
so precise at this stage of the model fitting. At this stage, a few preliminary
values of p, d, and q should be at hand, and we can start estimating the
parameters.

Example 3.38 Analysis of GNP Data

In this example, we consider the analysis of quarterly U.S. GNP from 1947(1)
to 2002(3), n = 223 observations. The data are real U.S. gross national
product in billions of chained 1996 dollars and have been seasonally ad-
justed. The data were obtained from the Federal Reserve Bank of St. Louis
(http://research.stlouisfed.org/). Figure 3.13 shows a plot of the data,
say, y

t

. Because strong trend hides any other e↵ect, it is not clear from Fig-
ure 3.13 that the variance is increasing with time. For the purpose of demon-
stration, the sample ACF of the data is displayed in Figure 3.14. Figure 3.15

8
log(1+p) = p�

p

2

2 +

p

3

3 � · · · for �1 < p  1. If p is a small percent-change, then

the higher-order terms in the expansion are negligible.
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Fig. 3.13. Quarterly U.S. GNP from 1947(1) to 2002(3).
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Fig. 3.14. Sample ACF of the GNP data. Lag is in terms of years.

shows the first di↵erence of the data, ry

t

, and now that the trend has been
removed we are able to notice that the variability in the second half of the
data is larger than in the first half of the data. Also, it appears as though a
trend is still present after di↵erencing. The growth rate, say, x

t

= r log(y
t

),
is plotted in Figure 3.16, and, appears to be a stable process. Moreover,
we may interpret the values of x

t

as the percentage quarterly growth of
U.S. GNP.

The sample ACF and PACF of the quarterly growth rate are plotted in
Figure 3.17. Inspecting the sample ACF and PACF, we might feel that the
ACF is cutting o↵ at lag 2 and the PACF is tailing o↵. This would suggest
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Fig. 3.15. First di↵erence of the U.S. GNP data.
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Fig. 3.16. U.S. GNP quarterly growth rate.

the GNP growth rate follows an MA(2) process, or log GNP follows an
ARIMA(0, 1, 2) model. Rather than focus on one model, we will also suggest
that it appears that the ACF is tailing o↵ and the PACF is cutting o↵ at
lag 1. This suggests an AR(1) model for the growth rate, or ARIMA(1, 1, 0)
for log GNP. As a preliminary analysis, we will fit both models.

Using MLE to fit the MA(2) model for the growth rate, x
t

, the estimated
model is

x

t

= .008(.001) + .303(.065) bwt�1 + .204(.064) bwt�2 + bw

t

, (3.151)
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Fig. 3.17. Sample ACF and PACF of the GNP quarterly growth rate. Lag is in

terms of years.

where b�
w

= .0094 is based on 219 degrees of freedom. The values in paren-
theses are the corresponding estimated standard errors. All of the regression
coe�cients are significant, including the constant. We make a special note of

this because, as a default, some computer packages do not fit a constant in

a di↵erenced model. That is, these packages assume, by default, that there
is no drift. In this example, not including a constant leads to the wrong
conclusions about the nature of the U.S. economy. Not including a constant
assumes the average quarterly growth rate is zero, whereas the U.S. GNP
average quarterly growth rate is about 1% (which can be seen easily in Fig-
ure 3.16). We leave it to the reader to investigate what happens when the
constant is not included.

The estimated AR(1) model is

x

t

= .008(.001) (1� .347) + .347(.063)xt�1 + bw

t

, (3.152)

where b�
w

= .0095 on 220 degrees of freedom; note that the constant in
(3.152) is .008 (1� .347) = .005.

We will discuss diagnostics next, but assuming both of these models fit
well, how are we to reconcile the apparent di↵erences of the estimated models
(3.151) and (3.152)? In fact, the fitted models are nearly the same. To show
this, consider an AR(1) model of the form in (3.152) without a constant
term; that is,

x

t

= .35x
t�1 + w

t

,

and write it in its causal form, x
t

=
P1

j=0  j

w

t�j

, where we recall  
j

= .35j .
Thus,  0 = 1, 1 = .350, 2 = .123, 3 = .043, 4 = .015, 5 = .005, 6 =
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.002, 7 = .001, 8 = 0, 9 = 0, 10 = 0, and so forth. Thus,

x

t

⇡ .35w
t�1 + .12w

t�2 + w

t

,

which is similar to the fitted MA(2) model in (3.152).
The analysis can be performed in R as follows.

plot(gnp)
acf2(gnp, 50)
gnpgr = diff(log(gnp)) # growth rate
plot(gnpgr)
acf2(gnpgr, 24)
sarima(gnpgr, 1, 0, 0) # AR(1)
sarima(gnpgr, 0, 0, 2) # MA(2)
ARMAtoMA(ar=.35, ma=0, 10) # prints psi-weights

The next step in model fitting is diagnostics. This investigation includes
the analysis of the residuals as well as model comparisons. Again, the first
step involves a time plot of the innovations (or residuals), x

t

� bxt�1
t

, or of the
standardized innovations

e

t

=
�

x

t

� bxt�1
t

� � p
b

P

t�1
t

, (3.153)

where bxt�1
t

is the one-step-ahead prediction of x
t

based on the fitted model and
b

P

t�1
t

is the estimated one-step-ahead error variance. If the model fits well, the
standardized residuals should behave as an iid sequence with mean zero and
variance one. The time plot should be inspected for any obvious departures
from this assumption. Unless the time series is Gaussian, it is not enough that
the residuals are uncorrelated. For example, it is possible in the non-Gaussian
case to have an uncorrelated process for which values contiguous in time are
highly dependent. As an example, we mention the family of GARCH models
that are discussed in Chapter 5.

Investigation of marginal normality can be accomplished visually by look-
ing at a histogram of the residuals. In addition to this, a normal probability
plot or a Q-Q plot can help in identifying departures from normality. See
Johnson and Wichern (1992, Chapter 4) for details of this test as well as
additional tests for multivariate normality.

There are several tests of randomness, for example the runs test, that could
be applied to the residuals. We could also inspect the sample autocorrelations
of the residuals, say, b⇢

e

(h), for any patterns or large values. Recall that, for a
white noise sequence, the sample autocorrelations are approximately indepen-
dently and normally distributed with zero means and variances 1/n. Hence, a
good check on the correlation structure of the residuals is to plot b⇢

e

(h) versus
h along with the error bounds of ±2/

p
n. The residuals from a model fit,

however, will not quite have the properties of a white noise sequence and the
variance of b⇢

e

(h) can be much less than 1/n. Details can be found in Box and
Pierce (1970) and McLeod (1978). This part of the diagnostics can be viewed















i
i

“tsa3” — 2015/8/18 — 22:47 — page 151 — #161 i
i

i
i

i
i

3.8 Building ARIMA Models 151

as a visual inspection of b⇢
e

(h) with the main concern being the detection of
obvious departures from the independence assumption.

In addition to plotting b⇢
e

(h), we can perform a general test that takes into
consideration the magnitudes of b⇢

e

(h) as a group. For example, it may be the
case that, individually, each b⇢

e

(h) is small in magnitude, say, each one is just
slightly less that 2/

p
n in magnitude, but, collectively, the values are large.

The Ljung–Box–Pierce Q-statistic given by

Q = n(n+ 2)
H

X

h=1

b⇢2
e

(h)

n� h

(3.154)

can be used to perform such a test. The value H in (3.154) is chosen somewhat
arbitrarily, typically, H = 20. Under the null hypothesis of model adequacy,
asymptotically (n ! 1), Q ⇠ �2

H�p�q

. Thus, we would reject the null hy-
pothesis at level ↵ if the value of Q exceeds the (1�↵)-quantile of the �2

H�p�q

distribution. Details can be found in Box and Pierce (1970), Ljung and Box
(1978), and Davies et al. (1977). The basic idea is that if w

t

is white noise,
then by Property 1.1, nb⇢2

w

(h), for h = 1, . . . , H, are asymptotically indepen-

dent �2
1 random variables. This means that n

P

H

h=1 b⇢
2
w

(h) is approximately a
�2
H

random variable. Because the test involves the ACF of residuals from a
model fit, there is a loss of p+q degrees of freedom; the other values in (3.154)
are used to adjust the statistic to better match the asymptotic chi-squared
distribution.

Example 3.39 Diagnostics for GNP Growth Rate Example

We will focus on the MA(2) fit from Example 3.38; the analysis of the AR(1)
residuals is similar. Figure 3.18 displays a plot of the standardized residuals,
the ACF of the residuals, a boxplot of the standardized residuals, and the p-
values associated with the Q-statistic, (3.154), at lags H = 3 through H = 20
(with corresponding degrees of freedom H � 2).

Inspection of the time plot of the standardized residuals in Figure 3.18
shows no obvious patterns. Notice that there are outliers, however, with a
few values exceeding 3 standard deviations in magnitude. The ACF of the
standardized residuals shows no apparent departure from the model assump-
tions, and the Q-statistic is never significant at the lags shown. The normal
Q-Q plot of the residuals shows departure from normality at the tails due to
the outliers that occurred primarily in the 1950s and the early 1980s.

The model appears to fit well except for the fact that a distribution with
heavier tails than the normal distribution should be employed. We discuss
some possibilities in Chapters 5 and 6. The diagnostics shown in Figure 3.18
are a by-product of the sarima command from the previous example.9

9
The script tsdiag is available in R to run diagnostics for an ARIMA object,

however, the script has errors and we do not recommend using it.
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Fig. 3.18. Diagnostics of the residuals from MA(2) fit on GNP growth rate.

Example 3.40 Diagnostics for the Glacial Varve Series

In Example 3.32, we fit an ARIMA(0, 1, 1) model to the logarithms of the
glacial varve data and there appears to be a small amount of autocorrelation
left in the residuals and the Q-tests are all significant; see Figure 3.19.

To adjust for this problem, we fit an ARIMA(1, 1, 1) to the logged varve
data and obtained the estimates

b� = .23(.05), b✓ = �.89(.03), b�
2
w

= .23.

Hence the AR term is significant. The Q-statistic p-values for this model are
also displayed in Figure 3.19, and it appears this model fits the data well.

As previously stated, the diagnostics are byproducts of the individual
sarima runs. We note that we did not fit a constant in either model because
there is no apparent drift in the di↵erenced, logged varve series. This fact
can be verified by noting the constant is not significant when the command
no.constant=TRUE is removed in the code:
sarima(log(varve), 0, 1, 1, no.constant=TRUE) # ARIMA(0,1,1)
sarima(log(varve), 1, 1, 1, no.constant=TRUE) # ARIMA(1,1,1)


