3

ARIMA Models

3.1 Introduction

In Chapters 1 and 2, we introduced autocorrelation and cross-correlation func-
tions (ACFs and CCF's) as tools for clarifying relations that may occur within
and between time series at various lags. In addition, we explained how to
build linear models based on classical regression theory for exploiting the as-
sociations indicated by large values of the ACF or CCF.

nonstationary models to the mix leads to the autoregressive integrated mov-
ing average (ARIMA) model popularized in the landmark work by Box and
Jenkins (1970). The Box—Jenkins method for identifying a plausible ARIMA
model is given in this chapter along with techniques for parameter estimation
and forecasting for these models. A partial theoretical justification of the use
of ARMA models is discussed in Appendix B, §B.4.
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3.2 Autoregressive Moving Average Models

The classical regression model of Chapter 2 was developed for the static case,
namely, we only allow the dependent variable to be influenced by current
values of the independent variables. In the time series case, it is desirable
to allow the dependent variable to be influenced by the past values of the
independent variables and possibly by its own past values. If the present can
be plausibly modeled in terms of only the past values of the independent
inputs, we have the enticing prospect that forecasting will be possible.

INTRODUCTION TO AUTOREGRESSIVE MODELS

Autoregressive models are based on the idea that the current value of the
series, x¢, can be explained as a function of p past values, 1, %¢—2,...,Ti—p,
where p determines the number of steps into the past needed to forecast
the current value. As a typical case, recall Example 1.10 in which data were
generated using the model

Ty = 241 — 90342 + wy,

where w; is white Gaussian noise with o2 = 1. We have now assumed the
current value is a particular linear function of past values. The regularity that
persists in Figure 1.9 gives an indication that forecasting for such a model
might be a distinct possibility, say, through some version such as

n
Tpyy = Tp — 9021,

where the quantity on the left-hand side denotes the forecast at the next
period n + 1 based on the observed data, x1,xo,...,x,. We will make this
notion more precise in our discussion of forecasting (§3.5).

The extent to which it might be possible to forecast a real data series from
its own past values can be assessed by looking at the autocorrelation function
and the lagged scatterplot matrices discussed in Chapter 2. For example, the
lagged scatterplot matrix for the Southern Oscillation Index (SOI), shown
in Figure 2.7, gives a distinct indication that lags 1 and 2, for example, are
linearly associated with the current value. The ACF shown in Figure 1.14
shows relatively large positive values at lags 1, 2, 12, 24, and 36 and large
negative values at 18, 30, and 42. We note also the possible relation between
the SOI and Recruitment series indicated in the scatterplot matrix shown in
Figure 2.8. We will indicate in later sections on transfer function and vector
AR modeling how to handle the dependence on values taken by other series.

The preceding discussion motivates the following definition.
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the mean, W, of Ty 18 not zero, replace Ty

Ty —p=1(ve—1 — p) + P22 —p) + o+ Pp(Tip — 1) +wy,

or write
Ty =+ Pr1x4—1 + Q242 + - + PpTi_p + Wy,

where o = p(l — g1 — -+ — @p).
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The AR(1) process defined by (3.6) is stationary with mean
E(zy) =Y ¢ E(w_;) =0,
j=0

and autocovariance function,

V(h) = cov(Tirn, x¢) = E (Z ¢jwt+h—j> (Z ¢kwt—k>

k=0

= B [(wirn + -+ ¢"wr + " w4 ) (wi + dwpy +---)] BT

< < g2gh
=g gt S gt = T2 hzo
j=0 =0

Recall that «(h) = y(—h), so we will only exhibit the autocovariance function

for h > 0. From (3.7), fheACE GFanARI(I)S

and p(h) satisfies the recursion

p(h)y=¢p(h—1), h=1,2,.... (3.9)
We will discuss the ACF of a general AR(p) model in §3.4.
Example 3.1 The Sample Path of an AR(1) Process

In the first case, p(h) = .9", for
>0, e are positively correlated with
each other. This result means that observations at contiguous time points
will tend to be close in value to each other; this fact shows up in the top
of Figure 3.1 as a very §lloothl sample path for ;. Now, contrast this with
the case in which ¢ = —.9, so that p(h) = (—.9)", for h > 0. This result
means that observations at contiguous time points are negatively correlated
but observations two time points apart are positively correlated. This fact
shows up in the bottom of Figure 3.1, where, for example, if an observation,
x¢, is positive, the next observation, x;1, is typically negative, and the next
observation, 49, is typically positive. Thus, in this case, the sample path
is very CHOPPY.
The following R code can be used to obtain a figure similar to Figure 3.1:
par (mfrow=c(2,1))
plot (GFIMaNSEf (1ist (order=c(1,0,0), ar=.9), n=100), ylab="x",
main=(expression(AR(1) "~ “phi==+.9)))
plot(arima.sim(list(order=c(1,0,0), ar=-.9), n=100), ylab="x",
main=(expression(AR(1)~~“phi==-.9)))
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AR(1) ¢ = +.9
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Fig. 3.1. Simulated AR(1) models: ¢ = .9 (top); ¢ = —.9 (bottom).

Example 3.2 Explosive AR Models and Causality

ve because the values
! Clearly, because |¢}?

increases without bound as j — oo, z;:é & wy—; will not converge (in mean
square) as k — 00, so the intuition used to get (3.6) will not work directly.
We can, however, modify that argument to obtain a stationary model as
follows.
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Ty = — Z ¢_jwt+j. (311)
j=1

Example 3.3 Every Explosion Has a Cause

_ For example, if

xy = ¢ri—1 +wy with || > 1

and w; ~ iid N(0,02), then using (3.11), {x;} is a non-causal stationary
Gaussian process with E(x;) = 0 and

oo o0
Yz(h) = cov(Tein, 2¢) = cov | — Z ¢ Wiphtj, — Z ¢ Fwip
j=1 k=1

=00 2o "/ (1—-¢77).
Thus, using (3.7), the causal process defined by

Y =0 'yi1 + oy

where v; ~ iid N(0,02¢?) is stochastically equal to the z; process (i.e.,
all finite distributions of the processes are the same).

but it is easier to show using Chapter 4 techniques; see Example 4.7.

(3.13)
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ow multiply both sides by
¢~ 1(B) (assuming the inverse operator exists) to get

¢~ H(B)¢(B)z, = ¢~ (B)w,

or

We know already that

_,

These results will be generalized in our discussion of ARMA
models. We will find the polynomials corresponding to the operators useful in
exploring the general properties of ARMA models.
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INTRODUCTION TO MOVING AVERAGE MODELS

As an alternative to the autoregressive representation in which the x; on the
left-hand side of the equation are assumed to be combined linearly, the moving
average model of order ¢, abbreviated as MA(q), assumes the white noise w;
on the right-hand side of the defining equation are combined linearly to form
the observed data.

—

The system is the same as the infinite moving average defined as the linear
process (3.13), where 9y =1, ¢; = 6;, for j = 1,...,¢q, and ¢; = 0 for other

valucs. We may also write the MA(g) process in the equivalent form
2= 0(B)uwy, (3.17)

using the following definition.

details of this result are provided

in §3.4.

Example 3.4 The MA(1) Process
Consider the MA(1) model z; = w; + Bwi_;1. Then, E(z;) =0,

(1+6%02 h=0,
y(h) = < o2 h=1,
0 h>1,

and the ACF is
9

plh) = § (1467
0 h>1.

Y

Note [p(1)] < 1/2 for all values of 6 (Problem 3.1). Also, z; is correlated with
Z¢—1, but not with x4_o, 2;_3,... . Contrast this with the case of the AR(1)

2 Some texts and software packages write the MA model with negative coefficients;
that is, z: = wy — Orwi—1 — Oowi—o — - -+ — Oqwi—gq.
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Fig. 3.2. Simulated MA(1) models: § = .5 (top); 6 = —.5 (bottom).

model in which the correlation between x; and x;_j is never zero. When
0 = .5, for example, x; and x;_; are positively correlated, and p(1) = .4.
When § = —.5, z; and x;_; are negatively correlated, p(1) = —.4. Figure 3.2
shows a time plot of these two processes with o2 = 1. The series in where
6 = .5 is smoother than the series where § = —.5.

A figure similar to Figure 3.2 can be created in R as follows:
par(mfrow = c(2,1))

plot(arima.sim(list (CEAEE=CONONMENME=NS) , n=100), ylab="x",
main=(expression(MA(1) "~ “theta==+.5)))

plot(arima.sim(list (order=c(0,0,1), ma=-.5), n=100), ylab="x",
main=(expression(MA(1)~"~“theta==-.5)))

Example 3.5 Non-uniqueness of M A Models and Invertibility
Using Example 3.4
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v(h) =45

To discover which model is the invertible model, we can reverse the roles
of z; and w; (because we are mimicking the AR case) and write the MA(1)
model as w; = —Ow;_1 + z;. Following the steps that led to (3.6), if |0| < 1,
then w; = Z;’;O(—H)j xy—j;, which is the desired infinite AR representation
of the model. Hence, given a choice, we will choose the model with 02 = 25
and 6 = 1/5 because it is invertible.

As in the AR case, the polynomial, 6(z), corresponding to the moving
average operators, 6(B), will be useful in exploring general properties of MA

AUTOREGRESSIVE MOVING AVERAGE MODELS

We now proceed with the general development of autoregressive, moving aver-
age, and mixed autoregressive moving average (ARMA ), models for stationary
time series.

mean i, we set « = p(l —¢1 — -+ — ¢p) and write the model as

Ty =+ G121+ + pTi—p Wy + w1 + -+ Ogwi—q.  (3.20)
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Although it is not necessary yet

As previously noted, when ¢ = 0, the model is called an autoregressive
model of order p, AR(p), and when p = 0, the model is called a moving average
model of order ¢, MA(q). To aid in the investigation of ARMA models, it will
be useful to write them using the AR operator, (3.5), and the MA operator,

(3.18). In particular, EEERNES A OIS e embEN e
$(B)ee = 0(B)ur. 5.21)

Before we discuss the conditions under which (3.19) is causal and invertible,
we point out a potential problem with the ARMA model.

Tt — -5$t—1 = Wt — .511),5_1,

or
Tt = .53315_1 — .5’U)t_1 + Wt , (322)

The consideration of parameter redun-
dancy will be crucial when we discuss estimation for general ARMA models.
As this example points out, we might fit an ARMA(1,1) model to white
noise data and find that the parameter estimates are significant. If we were
unaware of parameter redundancy, we might claim the data are correlated
when in fact they are not (Problem 3.20).
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Example 3.2, Example 3.5, and Example 3.6 point to a number of problems
with the general definition of ARMA(p,q) models, as given by (3.19), or,

equivalently, by (5.21). [ SAZEEIAeSeeEToowEprObleS:

To address the first problem, we will henceforth refer to an ARMA(p, q)
model to mean that it is in its simplest form. That is, in addition to the
original definition given in equation

To address the problem of future-dependent models, we formally introduce
the concept of causality.

al only when
|¢| < 1. Equivalently, the process is causal only when the root of ¢(z) = 1—¢z
is bigger than one in absolute value. That is, the root, say, zp, of ¢(z) is
zo = 1/¢ (because ¢(z9) = 0) and |z9| > 1 because |¢| < 1. In general, we
have the following property.

Property 3.1 Causality of an ARMA(p,q) Process

The
coe . lving

0(2)
(z

~—~

.zl <1

<

P(z) =) el =
7=0
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Finally, to address the problem of uniqueness discussed
choose the model that allows an infinite autoregressive

representation.

Definition 3.8

(3.26)

Property 3.2 Invertibility of an ARMA (p, q) Process

that is, 8(z) = 0 only
when |z| > 1. The proof of Property 3.1 is given in Appendix B (the proof of
Property 3.2 is similar and, hence, is not provided). The following examples
illustrate these concepts.

Example 3.7 Parameter Redundancy, Causality, Invertibility
Consider the process

xy = 4xp_1 + AD5Ti_o + Wy + we—1 + 25w 2,
or, in operator form,
(1 — 4B — .45B*)z; = (1 + B + .25B%)w;.

At first, x; appears to be an ARMA(2,2) process. But, the associated
polynomials
p(2) =1 — 4z — 452% = (1 + .52)(1 — .92)

0(z) = (14 2z + .252%) = (1 4 .52)?

have a common factor that can be canceled. After cancellation, the poly-
nomials become ¢(z) = (1 —.9z) and 6(z) = (1 + .5z), so the model is an
ARMA(1,1) model, (1 —.9B)z; = (14 .5B)w, or
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Tty = .9.’Et_1 + .5wt_1 + We. (327)

The model is causal because ¢(z) = (1 —.92z) = 0 when z = 10/9, which
is outside the unit circle. The model is also invertible because the root of
0(z) = (14 .5z) is z = —2, which is outside the unit circle.

To write the model as a linear process, we can obtain the 1-weights using
Property 3.1, ¢(2)¥(z) = 6(z), or

(1 —.92) (Yo + 12+ Po2® +---) = (14 .52).
Matching coefficients we get ¢ = 1, 91 = .5+.9 = 1.4, and v; = .99;_ for
j > 1. Thus, v; = 1.4(.9)77! for j > 1 and (3.27) can be written as
Ty = Wy + 142 .9j_1wt_j.
j=1

Similarly, the invertible representation using Property 3.2 is

T = 1.4 Z(—.5)j_1xt_j + wy.
j=1

Example 3.8 Causal Conditions for an AR(2) Process
For an AR(1) model, (1—¢B)z; = w, to be causal, the root of ¢(z) = 1 — ¢z
must lie outside of the unit circle. In this case, the root (or zero) occurs at
z0 = 1/¢ [i.e., ¢(20) = 0], so it is easy to go from the causal requirement on
the root, |1/¢| > 1, to a requirement on the parameter, |¢| < 1. It is not so
easy to establish this relationship for higher order models.

The roots of ¢(z) may and equal, or a complex
conjugate pair. If we denote those roots by 21 and 2o, we can write ¢(z) =
(1—2712)(1 — 25 '2); note that ¢(z1) = ¢(22) = 0. The model can be written
in operator form as (1 —z; ' B)(1 — 25 ' B)x; = w;. From this representation,
it follows that ¢1 = (27" + 25 *) and ¢o = —(2122)~". This relationship and
the fact that |z1| > 1 and |22| > 1 can be used to establish the following
equivalent condition for causality:

$1+¢2 <1, ¢2—¢1 <1, and |¢o] <1 (3.28)

This causality condition specifies a triangular region in the parameter space;
see Figure 3.3 We leave the details of the equivalence to the reader (Prob-
lem 3.5).
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Causal Region of an AR(2)
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Fig. 3.3. Causal region for an AR(2) in terms of the parameters.

3.3 Difference Equations

The study of the behavior of ARMA processes and their ACFs is greatly
enhanced by a basic knowledge of difference equations, simply because they
are difference equations. This topic is also useful in the study of time domain
models and stochastic processes in general. We will give a brief and heuristic
account of the topic along with some examples of the usefulness of the theory.
For details, the reader is referred to Mickens (1990).

Suppose we have a sequence of numbers wug, u1, ug, ... such that

Up —QUp—1 =0, a#0, n=1,2.... (3.29)

For example, recall (3.9) in which we showed that the ACF of an AR(1)
process is a sequence, p(h), satisfying

p(h) —¢p(h—1)=0, h=1,2,....

Equation (3.29) represents a homogeneous difference equation of order 1. To
solve the equation, we write:

UL = g

Uy = U1 = Oé2U()

Up = QUp_1 = Q" UQ.

Given an initial condition uy = ¢, we may solve (3.29), namely, u,, = ac.
In operator notation, (3.29) can be written as (1 — aB)u,, = 0. The poly-
nomial associated with (3.29) is a(z) = 1 — az, and the root, say, 2o, of this
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polynomial is zgp = 1/c; that is a(z9) = 0. We know a solution (in fact, the
solution) to (3.29), with initial condition up = ¢, is

U, = a"c= (zo_l)n c. (3.30)

That is, the solution to the difference equation (3.29) depends only on the
initial condition and the inverse of the root to the associated polynomial a(z).
Now suppose that the sequence satisfies

Up — QQlUp—1 — Qoly_9 =0, ay#0, n=23,... (3.31)

This equation is a homogeneous difference equation of order 2. The corre-
sponding polynomial is

az) =1 — a1z — a2’

which has two roots, say, z; and zo; that is, a(z1) = a(z2) = 0. We will
consider two cases. First suppose 21 # z2. Then the general solution to (3.31)
is

Up = C127 "+ 225 ", (3.32)

where ¢; and ¢y depend on the initial conditions. The claim that is a solution
can be verified by direct substitution of (3.32) into (3.31):
(c1z1™ + 223 ") — o (clzl_(n_l) - czz;(n_l)) — an (clzl_(n_z) - 02,22_(”_2))
=c121" (1 — gz — ang) + 225" (1 —oqze — agzg)
=121 "afz1) + cazy "a(ze) = 0.
Given two initial conditions ug and %1, we may solve for ¢; and cs:

Ug=c1+co and wuy; = clzl_l + 02z2_1,

where z; and zo can be solved for in terms of o and as using the quadratic
formula, for example.
When the roots are equal, z; = 22 (= zp), a general solution to (3.31) is

Up = 2o " (c1 + con). (3.33)
This claim can also be verified by direct substitution of (3.33) into (3.31):
2y "(c1 +can) — g (zo_(n_l)[cl +ca(n—1)]) — oo (zo_(n_2)[cl + c2(n — 2)])

=25 "(c1 + c2n) (1 — a1zo — aazd) + c2zy " (a1 + 20220)
= CQZO_nJ’_l (o1 + 2a220) -
To show that (a3 + 2ag2p) = 0, write 1 — a2z — agz? = (1— 30—12)2, and

take derivatives with respect to z on both sides of the equation to obtain
(1 + 202) = 2251 (1 — 251 2). Thus, (a1 + 2a220) = 225 (1 — 25 '20) = 0,
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as was to be shown. Finally, given two initial conditions, ug and u,, we can
solve for ¢; and ca:

up=c1 and wu; = (c1+ 62),20_1.

It can also be shown that these solutions are unique.
To summarize these results, in the case of distinct roots, the solution to
the homogeneous difference equation of degree two was

un, = 21 " X (a polynomial in n of degree m; — 1) (3.34)
+ 2z, " x (a polynomial in n of degree my — 1), '

where m; is the multiplicity of the root z; and ms is the multiplicity of the root
zo. In this example, of course, m; = mo = 1, and we called the polynomials
of degree zero c; and cs, respectively. In the case of the repeated root, the
solution was

Up = 2z " X (a polynomial in n of degree my — 1), (3.35)

where myg is the multiplicity of the root zy; that is, mg = 2. In this case, we
wrote the polynomial of degree one as ¢; 4+ con. In both cases, we solved for
c1 and ¢y given two initial conditions, ug and wuq.

Example 3.9 The ACF of an AR(2) Process
Suppose z; = ¢1T¢—1 + Paxt—o +wy is a causal AR(2) process. Multiply each
side of the model by x;_j for h > 0, and take expectation:

E(ziwi—n) = 01E(x1-1@e—n) + G2 E(x1-2we—n) + E(wers—p).
The result is
v(h) = d1y(h — 1) + poy(h —2), h=1,2,.... (3.36)
In (3.36), we used the fact that E(x¢) = 0 and for h > 0,

E(wtwt,h) = E(wt ijwt,h,j) = 0.
7=0

Divide (3.36) through by ~(0) to obtain the difference equation for the ACF
of the process:

p(h) — 1p(h —1) — dop(h —2) =0, h=1,2,... . (3.37)

The initial conditions are p(0) = 1 and p(—1) = ¢1/(1 — ¢2), which is
obtained by evaluating (3.37) for h = 1 and noting that p(1) = p(—1).

Using the results for the homogeneous difference equation of order two, let
21 and 2o be the roots of the associated polynomial, ¢(z) =1 — ¢12 — @222,
Because the model is causal, we know the roots are outside the unit circle:
|z1] > 1 and |z3] > 1. Now, consider the solution for three cases:
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(i) When z; and 29 are real and distinct, then

p(h) = crz1" + ey ",
so p(h) — 0 exponentially fast as h — oo.
(ii) When z; = 25 (= 2¢) are real and equal, then

p(h) = z5"(c1 + e2h),

so p(h) — 0 exponentially fast as h — oc.
(iii) When z; = Z» are a complex conjugate pair, then ¢y = ¢; (because p(h)
is real), and
p(h) = crz7 " + ez

Write ¢; and z; in polar coordinates, for example, z; = |zl|ei9, where 6
is the angle whose tangent is the ratio of the imaginary part and the real
part of z; (sometimes called arg(z;); the range of 0 is [—m, 7]). Then,
using the fact that e!® + e~ = 2 cos(a), the solution has the form

p(h) = a|z1| " cos(h8 + b),

where a and b are determined by the initial conditions. Again, p(h) damp-
ens to zero exponentially fast as h — oo, but it does so in a sinusoidal
fashion. The implication of this result is shown in the next example.

Example 3.10 An AR(2) with Complex Roots
Figure 3.4 shows n = 144 observations from the AR(2) model

Tty = 1.51'75_1 - .751'15_2 +U}t,

with 02 = 1, and with complex roots chosen so the process exhibits pseudo-
cyclic behavior at the rate of one cycle every 12 time points. The autore-
gressive polynomial for this model is ¢(z) = 1 — 1.5z + .7522. The roots of
#(2) are 1 +i/+/3, and § = tan~!(1/4/3) = 27/12 radians per unit time. To
convert the angle to cycles per unit time, divide by 27 to get 1/12 cycles per
unit time. The ACF for this model is shown in §3.4, Figure 3.5.

To calculate the roots of the polynomial and solve for arg in R:
z =c(1,-1.5,.75) # coefficients of the polynomial
(a = polyroot(z) [1]) # print one root: 1+0.57735% = 1 + i/sqrt(3)
arg = Arg(a)/(2xpi)  # arg in cycles/pt
1/arg # = 12, the pseudo period
To reproduce Figure 3.4:
set.seed(90210)
ar2 = arima.sim(list(order=c(2,0,0), ar=c(1.5,-.75)), n = 144)
plot(1:144/12, ar2, type="1", xlab="Time (one unit = 12 points)")
abline(v=0:12, lty="dotted", lwd=2)
To calculate and display the ACF for this model:
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ar2

Time (one unit = 12 points)
Fig. 3.4. Simulated AR(2) model, n = 144 with ¢1 = 1.5 and ¢ = —.75.

ACF = ARMAacf (ar=c(1.5,-.75), ma=0, 50)
plot (ACF, type="h", xlab="lag")
abline (h=0)

We now exhibit the solution for the general homogeneous difference equa-
tion of order p:

Up — QU1 — - — QplUp_p =0, a,#0, n=pp+1,.... (3.38)
The associated polynomial is
a(z)=1—ogz— - —ap2’.

Suppose a(z) has r distinct roots, z; with multiplicity mq, zo with multiplicity
ma, ..., and z, with multiplicity m,., such that my + ms + - - +m,. = p. The
general solution to the difference equation (3.38) is

Up =21 "Pi(n) + 25 "Py(n) + - + 2z, "P.(n), (3.39)
where P;(n), for j =1,2,...,r, is a polynomial in n, of degree m; — 1. Given
p initial conditions wo, ..., up—1, we can solve for the P;(n) explicitly.
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where we would take ¢; = 0 for j > p, and 6; = 0 for j > ¢. The -weights
satisfy the homogeneous difference equation given by

p
(R Z G-k =0, j>max(p,q+1), (3.40)
k=1

with initial conditions

J
b= Y Gtk =0;, 0<j<max(p,q+1). (3.41)
k=1

3.4 Autocorrelation and Partial Autocorrelation

We begin by exhibiting the ACF of an MA(q) process, z; = 0(B)w;, where
9(B) =1+6,B+---+0,B%. Because z is a finite linear combination of white
noise terms, the process is stationary with mean
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E(z) =Y 0;E(w_;) =0,

J=0

where we have written 8y = 1, and with autocovariance function

q q
v(h) = cov (T4n, ) = COV( Zejwt—i—h—j; Z 9kwt—k)
j=0 k=0

(3.42)

02 00 0,0i4n, 0<h<gq
0 h>q.

Recall that vy(h) = v(—h), so we will only display the values for h > 0. The
cutting off of y(h) after g lags is the signature of the MA(q) model. Dividing

(3.42) by v(0) yields fheTACE GFamNA(G):

p(h) = (3.43)

For a causal ARMA(p
¢(z) are outside the unit circle, write

)z = O(B)w;, where the zeros of

Ty = Z ¢jwt_j. (344)
j=0

It follows immediately that E(z;) = 0. Also, the autocovariance function of
r; can be written as

oo

v(h) = cov(zipn, ;) = 02, ijijrh, h > 0. (3.45)

Jj=0

We could then use (3.40) and (3.41) to solve for the -weights. In turn, we
could solve for y(h), and the ACF p(h) = v(h)/v(0). As in Example 3.9, it is
also possible to obtain a homogeneous difference equation directly in terms of
~v(h). First, we write

p q
’}/(h) = COV($t+h, .’Et) = COV(Z ¢jxt+h_j + Z ejwt+h_j, ﬂft)
j=1 7=0
q

. (3.46)
=> ¢ivth—5) + 05> O n, h=>0,

j=1 j=h

where we have used the fact that, for h > 0,
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(e @]
COV(wt+h—j7 37t) = COV<wt+h—j, lekwt—k) = T/Jj—hU?,y
k=0

From (3.46), we can write a general homogeneous equation for the ACF of a
causal ARMA process:

y(h) = ¢p1y(h —=1) =+ = ¢py(h —p) =0, h>max(p,q+1), (3.47)

with initial conditions

P q
V() =D 09(h = j) =05, Y 0i;on, 0<h<max(pg+1). (3.48)
j=1 j=h
Dividing (3.47) and (3.48) through by ~(0) will allow us to solve for the ACF,
p(h) = ~(h)/~(0).

Example 3.12 The ACF of an AR(p)
In Example 3.9 we considered the case where p = 2. For the general case, it
follows immediately from (3.47) that

p(h) = d1p(h —1) =+ — ¢pp(h —p) =0, h=>p. (3.49)

Let z1,...,z denote the roots of ¢(z), each with multiplicity myq,...,m,,
respectively, where mq+- - -+m, = p. Then, from (3.39), the general solution

1S
p(h) = 27 "Pu(h) + 25 "Po(h) + -+ + 2, "Po(R), b >p, (3.50)

where P;(h) is a polynomial in h of degree m; — 1.

Example 3.13 The ACF of an ARMA(1,1)
Consider the ARMA(1, 1) process z; = ¢xt—1 + Owi—1 + wy, where || < 1.
Based on (3.47), the autocovariance function satisfies

’Y(h’)_(bf)/(h_l):(h h:2737"-7
and it follows from (3.29)—(3.30) that the general solution is
y(h) =co¢", h=1,2,... . (3.51)

To obtain the initial conditions, we use (3.48):
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7(0) = py(1) + 05 [1 + 66+ 6] and (1) = ¢¥(0) + 0y 0.

Solving for v(0) and 7(1), we obtain:

14200 + 62 1+ 09)(¢p+6
(0) = o3 AT P paierd),

To solve for ¢, note that from (3.51), v(1) = c¢¢ or ¢ = v(1)/¢. Hence, the
specific solution for h > 1 is

@) h 2 (14+00)(0+0)
’Y(h)_7¢h_0_w 1_¢2

Finally, dividing through by ~(0) yields the ACF

(1+600)(@+6) 5
p(h) = 11200 1 62 "7, h>1. (3.52)
Notice that the general pattern of p(h) in (3.52) is not different from that
of an AR(1) given in (3.8). Hence, it is unlikely that we will be able to
tell the difference between an ARMA(1,1) and an AR(1) based solely on an
ACF estimated from a sample. This consideration will lead us to the partial
autocorrelation function.

and (1) =0

¢h—1'

THE PARTIAL AUTOCORRELATION FuNcTION (PACF)
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cov xt PTy—1,Tp—2 — QT4 1 = cov wt,xt 2 — QT4— 1 = 0.

Because of stati e same in (3.53)
and (3.54); we

Definition 3.9

(3.56)

Both (2445 — 415 Tepho1)
The PACF, ¢pp, . t the linear depen-
dence of {x{i1,...,T¢yp—1} on each, removed. If the process z; is Gaussian,
threrr S’l/hh — UJLL(.bt_*_h,.,ut i TiF+1, - -~ ,.l/t_|._h_]_), that iS7 ¢hh is the correlation

coefficient between ;. and x; in the bivariate distribution of (2445, x:) con-
ditional on {z¢y1,...,Trrp—1}.

say Ty = Bxyr1. We choose 8 to minimize

3 The term regression here refers to regression in the population sense. That is,
Zy4n is the linear combination of {x¢4n—1, Tit+h—2,...,Z¢4+1} that minimizes the
h—1 2
mean squared error E(zi4n — D 771 oTey;)”.
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Fig. 3.5. The ACF and PACF of an AR(2) model with ¢1 = 1.5 and ¢2 = —.75.

Example 3.15 The PACF of an AR(p)
The model implies x4y = Zle ®j%itn—j + Witn, where the roots of

We have not proved this obvious result yet, but we will prove it in the next
section. Thus, when h > p,

.}; recall

the ACF and the PACF of the AR(2) model presented in Example 3.10.
To reproduce Figure 3.5 in R, use the following commands:
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Table 3.1. Behavior of the ACF and PACF for ARMA Models

ACF = ARMAacf (ar=c(1.5,-.75), ma=0, 24)[-1]

PACF = ARMAacf(ar=c(1.5,-.75), ma=0, 24, pacf=TRUE)

par (mfrow=c(1,2))

plot (ACF, type="h", xlab="lag", ylim=c(-.8,1)); abline(h=0)
plot (PACF, type="h", xlab="lag", ylim=c(-.8,1)); abline(h=0)

Example 3.16 The PACF of an Invertible MA(q)
For an invertible MA(q), we can write 2, = — > 2| mja;—; + w;. Moreover,
no finite representation exists. From this result, it should be apparent that

the PACF will never cut off, as in the case of an AR(p).
For an MA(1), z; = w; + Owy—q, with |#] < 1, calculations similar to
Example 3.14 will yield ¢oo = —6%/(1 + 62 + 6*). [FoEtHeINIA()Niigeneral
we can show that

In the next section, we will discuss methods of calculating the PACF.

Because
an invertible ARMA model has an infinite AR representation, the PACF will
not cut off. We may summarize these results in Table 3.1.

Example 3.17 Preliminary Analysis of the Recruitment Series
We consider the problem of modeling the Recruitment series shown in Fig-
ure 1.5. There are 453 months of observed recruitment ranging over the
years 1950-1987. The ACF and the PACF given in Figure 3.6 are con-
sistent with the behavior of an AR(2). The ACF has cycles correspond-
ing roughly to a 12-month period, and the PACF has large values for
h = 1,2 and then is essentially zero for higher order lags. Based on Ta-
ble 3.1, these results suggest that a second-order (p = 2) autoregres-
sive model might provide a good fit. Although we will discuss estimation
in detail in §3.6, we ran a regression (see §2.2) using the data triplets
{(z;21,22) : (x3;22,21), (X4;23,22), ..., (Ta53; Tas2, Ts51)} to fit a model of
the form
Ty = Qo + P1T4—1 + P22 + Wy
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Fig. 3.6. ACF and PACF of the Recruitment series. Note that the lag axes are in
terms of season (12 months in this case).

for t = 3,4,...,453. The values of the estimates were ;50 = 6.74(1.11),

1 = 1.35(04), P2 = —.46(.04), and 72 = 89.72, where the estimated standard
errors are in parentheses.

The following R code can be used for this analysis. We use the script acf2
to print and plot the ACF and PACF; see Appendix R for details.

acf2(rec, 48) # will produce values and a graphic
(regr = ar.ols(rec, order=2, demean=FALSE, intercept=TRUE))
regr$asy.se.coef # standard errors of the estimates

3.5 Forecasting

In forecasting, the goal is to predict future values of a time series, Z,,+m, m =
1,2,..., based on the data collected to the present, £ = {z,,zn_1,...,21}.
Throughout this section, we will assume z; is stationary and the model pa-
rameters are known. The problem of forecasting when the model parameters
are unknown will be discussed in the next section; also, see Problem 3.26. The
minimum mean square error predictor of x,,,, is

)y = E(@pim | @) (3.57)
because the conditional expectation minimizes the mean square error

Elzpim — g(:l:)]2 , (3.58)
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where g(z) is a function of the observations x; see Problem 3.14.
First, we will restrict attention to predictors that are linear functions of
the data, that is, predictors of the form

Ty = Qo+ Z kT, (3.59)
k=1
where «ag, a1, ...,q, are real numbers. Linear predictors of the form (3.59)

that minimize the mean square prediction error (3.58) are called best linear
predictors (BLPs). As we shall see, linear prediction depends only on the
second-order moments of the process, which are easy to estimate from the
data. Much of the material in this section is enhanced by the theoretical
material presented in Appendix B. For example, Theorem B.3 states that
if the process is Gaussian, minimum mean square error predictors and best
linear predictors are the same. The following property, which is based on the
Projection Theorem, Theorem B.1 of Appendix B, is a key result.

Property 3.3 Best Linear Prediction for Stationary Processes
Given data x1,. .., Ty, the best linear predictor, x7;, . = cg+ > h_i kT,
of Tptm, form > 1, is found by solving

E[(Znem —2pym)ze]) =0, k=0,1,...,n, (3.60)
where xog = 1, for ag,aq,...an,.

The equations specified in (3.60) are called the prediction equations, and
they are used to solve for the coefficients {ag, a1,...,a,}. If E(xy) = p, the
first equation (k = 0) of (3.60) implies

E(xy 1) = E(@nym) = p.

Thus, taking expectation in (3.59), we have

3

u:ao—{—Zaku or aozu(l— ozk>.
k=1
Hence, the form of the BLP is
T =+ Y ok — ).
k=1

Thus, until we discuss estimation, there is no loss of generality in considering
the case that p = 0, in which case, ag = 0.

First, consider one-step-ahead prediction. That is, given {x1,...,z,}, we
wish to forecast the value of the time series at the next time point, z,,+1. The
BLP of x,,41 is of the form
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x?ﬁ—l = ¢nlxn + ¢n2$n—1 + -+ ¢nnxla (361)

where, for purposes that will become clear shortly, we have written aj in
(3.59), as ¢n nt1—k in (3.61), for k =1,...,n. Using Property 3.3, the coeffi-
cients {dn1, Pn2, - - -, Pnn t satisty

E[<fﬂn+1 - Z(bnjxn-i-l—j)xn-i-l—k} =0, k=1,...,n,

j=1
or

Z%ﬂ(k — ) =~k), k=1,...,n. (3.62)

The prediction equations (3.62) can be written in matrix notation as

L', =, (3.63)
where I}, = {y(k — j)}7 4=, Is an n X n matrix, ¢, = (Pn1,...,Pnn) is an
n x 1 vector, and 7,, = (y(1),...,7(n))" is an n x 1 vector.

The matrix I, is nonnegative definite. If I',, is singular, there are many
solutions to (3.63), but, by the Projection Theorem (Theorem B.1), x) ; is
unique. If I, is nonsingular, the elements of ¢,, are unique, and are given by

b =T Y- (3.64)

For ARMA models, the fact that o2 > 0 and y(h) — 0 as h — oo is enough to
ensure that I, is positive definite (Problem 3.12). It is sometimes convenient
to write the one-step-ahead forecast in vector notation

Tpi1 = P, (3.65)

where € = (z,,, xp—1,...,21)".
The mean square one-step-ahead prediction error is

w1 = E(wn g —an,q)? =5(0) — 7,0, .. (3.66)
To verify (3.66) using (3.64) and (3.65),
E(xpq1 — x2+1)2 = E(zp41 — ¢In$>2 = E(2pq1 — '7lnpn_1x)2
= E(a5,y — 29,0, 'gxnga + 4,1, 'z’ Ty,
=5(0) = 29, 1, My, + 40 L T My,
=5(0) = vl 'y
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Example 3.18 Prediction for an AR(2)

Suppose we have a causal AR(2) process x; = ¢1x4_1 + paxi—2 +w;, and one
observation x;. Then, using equation (3.64), the one-step-ahead prediction
of x5 based on z; is

1
I% = (;5111‘1 = Lxl = p(l)xl

7(0)

Now, suppose we want the one-step-ahead prediction of x3 based on two
observations x; and xzo; i.e., :L’g = ¢21T2 + Poax1. We could use (3.62)

$217(0) + d227v(1) (1)
$217(1) + ¢227(0) (2)

to solve for ¢o1 and ¢o2, or use the matrix form in (3.64) and solve

-1
<¢>21) _ (v(O) 7(1)) (7(1)>
ba2 (1) 7(0) 7(2))°
but, it should be apparent from the model that :L‘% = ¢122 + ¢ox1. Because
P12 + Poxq satisfies the prediction equations (3.60),

E{lr3 — (¢122 + ¢221)]71} = E(wswy) = 0,

E{[r3 — (¢1272 + ¢271)]22} = E(w3ws) = 0,

it follows that, indeed, 23 = ¢122 + ¢271, and by the uniqueness of the
coefficients in this case, that ¢21 = ¢ and ¢ = ¢o. Continuing in this way,
it is easy to verify that, for n > 2,

=7
=7

$2+1 = ¢1xn + ¢2$n—1-
That is, ¢n1 = @1, Pn2 = @2, and ¢,; =0, for j = 3,4,...,n.

From Example 3.18, it should be clear (Problem 3.40) that, if the time
series is a causal AR(p) process, then, for n > p,

Ty = Q1T + GoTn_1 + -+ GpTn_pi. (3.67)

For ARMA models in general, the prediction equations will not be as simple
as the pure AR case. In addition, for n large, the use of (3.64) is prohibitive
because it requires the inversion of a large matrix. There are, however, iterative
solutions that do not require any matrix inversion. In particular, we mention
the recursive solution due to Levinson (1947) and Durbin (1960).

Property 3.4 The Durbin—Levinson Algorithm
Equations (3.64) and (3.66) can be solved iteratively as follows:

¢oo =0, P =~(0). (3.68)
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Forn >1,

p(n) = 35z Gn-1k p(n — k)
L= 32021 da-v p(k)
where, for n > 2,
¢nk: - ¢n—1,k _¢nn¢n—1,n—k7 k= 1527“-7”_ 1. (370)
The proof of Property 3.4 is left as an exercise; see Problem 3.13.

Brn = , Plo=Pr i (1-¢2,), (3.69)

Example 3.19 Using the Durbin—Levinson Algorithm
To use the algorithm, start with ¢oo = 0, PY = v(0). Then, for n =1,

é11 = p(1), Pz1 =y(0)[1 - Qb%l]'

For n = 2,
brz = L fl‘qﬁ”p(’f)l), ba1 = b1 — daadus,
P§ = Py[1 = ¢55] = v(0)[1 = ¢1,][1 — ¢3].
For n = 3,

_ P(3) — @21 p(2) — P22 p(1)
¢33 - )
1 — 21 p(1) — ¢22 p(2)
P32 = P22 — P33P21, P31 = P21 — 33922,
P} = P}l — ¢35] = 7(0)[1 — ¢1,][1 — ¢3:][1 — 3],
and so on. Note that, in general, the standard error of the one-step-ahead
forecast is the square root of

Pl = (0 Hu - (3.71)

An important consequence of the Durbin—Levinson algorithm is (see Prob-
lem 3.13) as follows.

Property 3.5 Iterative Solution for the PACF
The PACF of a stationary process x, can be obtained iteratively via (3.69)
as Gpn, form=1,2,... .

Using Property 3.5 and putting n = p in (3.61) and (3.67), it follows that

for an AR(p) model,
x§+1 = Op1 Tp + Pp2 Tp—1 + -+ + Ppp 11 (3.72)
=¢1xp + P2 Tp_1+ -+ Pp 1.

Result (3.72) shows that for an AR(p) model, the partial autocorrelation coef-
ficient at lag p, ¢pp, is also the last coefficient in the model, ¢,, as was claimed
in Example 3.15.
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Example 3.20 The PACF of an AR(2)
We will use the results of Example 3.19 and Property 3.5 to calculate the
first three values, ¢11, @22, ¢33, of the PACF. Recall from Example 3.9 that
p(h) — ¢1p(h — 1) — ¢ap(h —2) = 0 for h > 1. When h = 1,2,3, we have
p(1) = ¢1/(1 = ¢2), p(2) = d1p(1) + ¢2, p(3) — $1p(2) — ¢2p(1) = 0. Thus,

éu=p(l) = 1 jﬁ14252
oo r@ o (o) v - ()

P21 = P(l)[l - ¢2] =

by = PB) = 010(2) — dop(1) _
1= ¢1p(1) = ¢2p(2)
Notice that, as shown in (3.72), ¢22 = ¢o for an AR(2) model.

So far, we have concentrated on one-step-ahead prediction, but Prop-
erty 3.3 allows us to calculate the BLP of x,,, for any m > 1. Given data,

{z1,...,z,}, the m-step-ahead predictor is
n-l—m = ¢nl Tp + ¢£L7721)xn—1 et d)?(lrz)xl? (373>
where {gb( 1 ,gbnz yeees qbnzf } satisfy the prediction equations,

Z ¢£L?)E(xn+1—jxn+1—k) = E(xn+m$n+1—k)7 k=1,...,n,

j=1
or .
STol k- ) =q(m+k-1), k=1,...,n. (3.74)
=1
The prediction equations can again be written in matrix notation as
[plm™ = 4m), (3.75)
where 4™ = (v(m),...,y(m+n—1)), and ¢{™ = (gbnl ey 7(172))’ are

n X 1 vectors.
The mean square m-step-ahead prediction error is

n n 2 m) p—1_(m
Pn—l—m =F (xn—l-m - xn—i—m) = 7(0) - 71(1 ) Fn 1’7% ) (376)

Another useful algorithm for calculating forecasts was given by Brockwell
and Davis (1991, Chapter 5). This algorithm follows directly from applying
the projection theorem (Theorem B.1) to the innovations, z; — 2!~ !, for t =
1,...,n, using the fact that the innovations x; — xi Uand z, — :cs L are
uncorrelated for s # t (see Problem 3.41). We present the case in which z; is

a mean-zero stationary time series.
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Property 3.6 The Innovations Algorithm
The one-step-ahead predictors, xi_H, and their mean-squared errors, Ptt_H,
can be calculated iteratively as

t
oy =Y 0w — ] ,), t=1,2,... (3.77)
t—1
Py =~0)=Y 67, P, t=12.., (3.78)
7=0

where, for 7 =0,1,...,t—1,

et,t*j = <7(t - Z 0] Jj— ket t— kP]H_l) / G+1° (379)
k=0
Given data x1,...,x,, the innovations algorithm can be calculated suc-

cessively for ¢ = 1, then ¢t = 2 and so on, in which case the calculation of 7, |
and P, is made at the final step t = n. The m-step-ahead predictor and
its mean-square error based on the innovations algorithm (Problem 3.41) are
given by

n+m—1
Tm = > Ontme1(Tnsm—j — Tpim I, (3.80)
j=m
n+m—1
Py = Z 02y PRI (3.81)

where the 6,,,,_1,; are obtained by continued iteration of (3.79).

Example 3.21 Prediction for an MA(1)

The innovations algorithm lends itself well to prediction for moving average
processes. Consider an MA(1) model, z; = w; + Ow;—1. Recall that v(0) =
(1+62%)02, v(1) = 052, and v(h) = 0 for h > 1. Then, using Property 3.6,
we have

01 = 002 /P71
0, =0, j=2,...,n
P) = (1+6*)02
Pr = (1+60%—00,1)02
Finally, from (3.77), the one-step-ahead predictor is

an =0 (z, —zl ) on/Pr L
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ForeEcASTING ARMA PROCESSES

The general prediction equations (3.60) provide little insight into forecasting
for ARMA models in general. There are a number of different ways to express
these forecasts, and each aids in understanding the special structure of ARMA
prediction. Throughout, we assume z; is a causal and invertible ARMA(p, q)
process, ¢(B)z; = 0(B)w;, where w; ~ iid N(0,02). In the non-zero mean
case, E(xy) = g, simply replace z; with x; — p, in the model. First, we
consider two types of forecasts. We write =" to mean the minimum mean

n+m
square error predictor of x,,, based on the data {z,,...,z1}, that is,
Ty im = E(Tnym ‘ Ty evey T1)e

For ARMA models, it is easier to calculate the predictor of x,1,,, assuming
we have the complete history of the process {z,,zp—1,...,21,2Z0,Z-1,...}.
We will denote the predictor of x,, ., based on the infinite past as

in—l—m = E(mn+m ‘ Tny,Tn—1y--+, L1, L0, L—1,- - )

In general, z}:, . and Z,,,, are not the same, but the idea here is that, for
large samples, T4, will provide a good approximation to z7,, ..

Now, write 4, in its causal and invertible forms:

Tn4m = ijwn—l—m—j? Q/)O =1 (382)
j=0
o

Wyptm = Z?Tj$n+m_j, mo = 1. (3.83)
§=0

Then, taking conditional expectations in (3.82), we have

o0 (@)
En—‘—m = ijwn+m—j = Z 7wbjwn—i-m—j» (384>
=0 j=m
because, by causality and invertibility,
~ 0 t>n
wy = E(wy | Ty Ty v e oy Oy Telyenn) =
wy t<n.

Similarly, taking conditional expectations in (3.83), we have

00
0= Tn+m + E TjTn+m—j,
Jj=1

or
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m—1 )
Tngm =— Y Tidngm—j — > TiTnim—js (3.85)
j=1 j=m

using the fact E(z; ‘ Ty Tyy—1y -+« -y Ly T1,...) = Ty, for t < n. Prediction is
accomplished recursively using (3.85), starting with the one-step-ahead pre-
dictor, m = 1, and then continuing for m = 2,3,.... Using (3.84), we can
write

m—1
Tn+m — Tnt+m = E ijn—i-m—ja
Jj=0

so the mean-square prediction error can be written as

3

-1
Po?qu = E(xn+m - 5n+m)2 = 0'5, 77[;]2 (3.86)

J

Il
=)

Also, we note, for a fixed sample size, n, the prediction errors are correlated.
That is, for £ > 1,

[y

m—

E{(Zntm — Trtm) (Tntm+k — Tntmik)} = Oop Z Vit (3.87)

1=

Example 3.22 Long-Range Forecasts
Consider forecasting an ARMA process with mean p,. Replacing x,,,, with
Tptm — Mg 10 (3.82), and taking conditional expectation as is in (3.84), we
deduce that the m-step-ahead forecast can be written as

(ee)
Tptm = Mg + Z YjWntm—j- (3.88)
j=m
Noting that the 1-weights dampen to zero exponentially fast, it is clear that
Tntm — Ma (3.89)

exponentially fast (in the mean square sense) as m — oo. Moreover, by
(3.86), the mean square prediction error

Py, = o0y 7 =7.(0) =02, (3.90)
=0

exponentially fast as m — oo; recall (3.45).

It should be clear from (3.89) and (3.90) that ARMA forecasts quickly
settle to the mean with a constant prediction error as the forecast horizon,
m, grows. This effect can be seen in Figure 3.7 on page 119 where the Re-
cruitment series is forecast for 24 months; see Example 3.24.
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When n is small, the general prediction equations (3.60) can be used easily.
When n is large, we would use (3.85) by truncating, because we do not observe
x9,T_1,T_29,..., and only the data z1,x9,...,x, are available. In this case,
we can truncate (3.85) by setting >°7° . miZnym—j = 0. The truncated
predictor is then written as

n+m—1

= Zﬂ-] 7L+m—j_ Z TiTn+m—j, (391)
j=m

which is also calculated recursively, m = 1,2, .... The mean square prediction
error, in this case, is approximated using (3.86).

For AR(p) models, and when n > p, equation (3.67) yields the exact
predictor, o ms of Tt and there is no need for approximations. That is,
forn > p, = n+m = Tngm = Tppm- Also in this case, the one-step-ahead
prediction error is E(z,41 — 2t ,)? = o2. For pure MA( ) or ARMA(p, q)
models, truncated prediction has a fairly nice form.

n—i—m

Property 3.7 Truncated Prediction for ARMA
For ARMA (p, q) models, the truncated predictors form =1,2,..., are

EZ«I»m = ¢1§Z+mfl +oo Tt ¢p§2+mfp + 61,&;2+m71 +e Oqﬁjzjtquv (392>

where £ =z for 1 <t < n and x} =0 for t < 0. The truncated prediction
errors are given by: wy =0 fort <0 ort>n, and

wi' = ¢(B)TY — hwiy — - — bgwy,

for1 <t<n.

Example 3.23 Forecasting an ARMA(1,1) Series
Given data x1,...,x,, for forecasting purposes, write the model as

Tn+1 = ben + Wnt1 + Ow,.
Then, based on (3.92), the one-step-ahead truncated forecast is
Ty = 0T, + 0+ 0w,.

For m > 2, we have
%Z—l—m = ¢5Z+m—1a
which can be calculated recursively, m = 2,3,... .

To calculate w;, which is needed to initialize the successive forecasts, the
model can be written as wy = xy — ¢xy_1 — Owy_q for t = 1,...,n. For
truncated forecasting using (3.92), put wj = 0, ¢ = 0, and then iterate the
errors forward in time
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wy =x — Qe — 0wy, t=1,...,n.

The approximate forecast variance is computed from (3.86) using the -
weights determined as in Example 3.11. In particular, the ¥-weights satisfy
;= (¢p+6)¢? 1, for j > 1. This result gives

m—1 2 2(m—1)
no_ 2 2 2j—1)| _ 2 (p+0)*(1—¢ )
Pn+m_aw|:1+(¢+9) ;d) :|_O-w|:1+ (1_¢2) .

To assess the precision of the forecasts, prediction intervals are typically
calculated along with the forecasts. In general, (1 —«) prediction intervals are

of the form
Tpim T Can/ Pl (3.93)

where ¢,/ is chosen to get the desired degree of confidence. For example,
if the process is Gaussian, then choosing c,/, = 2 will yield an approxi-
mate 95% prediction interval for x,,,. If we are interested in establishing
prediction intervals over more than one time period, then ¢,/ should be ad-
justed appropriately, for example, by using Bonferroni’s inequality [see (4.55)
in Chapter 4 or Johnson and Wichern, 1992, Chapter 5].

Example 3.24 Forecasting the Recruitment Series

Using the parameter estimates as the actual parameter values, Figure 3.7
shows the result of forecasting the Recruitment series given in Example 3.17
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over a 24-month horizon, m = 1,2, ..., 24. The actual forecasts are calculated
as
Ty = 6.74 41352y, | — 462, . 5

for n = 453 and m = 1,2,...,12. Recall that z; = z; when ¢t < s. The
forecasts errors P, are calculated using (3.86). Recall that 52, = 89.72,

and using (3.40) from Example 3.11, we have ¢; = 1.35¢;_1 — .461);_o for
J > 2, where ¢y = 1 and ¥ = 1.35. Thus, for n = 453,

n = 89.72,
P, =89.72(1 +1.35%),
n o = 89.72(1 + 1.35% + [1.35% — .46]?),

and so on.

Note how the forecast levels off quickly and the prediction intervals are
wide, even though in this case the forecast limits are only based on one
standard error; that is, «7v. £ /P, .

= reprottCe t e Ty SIS rrnre 3. 7, use the following commands:

We complete this section with a brief discussion of backcasting. In back-
casting, we want to predict xy_,,, for m = 1,2,..., based on the data
{z1,...,z,}. Write the backcast as

xr_,, = Zajwj. (3.94)
7j=1

Analogous to (3.74), the prediction equations (assuming yu, = 0) are

ZajE(:vjxk) =FE(ri_mzxg), k=1,...,n, (3.95)
j=1

or n
ajyk—j)=ym+k-1), k=1,...,n (3.96)
j=1

These equations are precisely the prediction equations for forward prediction.
That is, a; = ¢>$7), for j = 1,...,n, where the qbg?) are given by (3.75).

Finally, the backcasts are given by

2t = ™, m=1,2,.... (3.97)
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Example 3.25 Backcasting an ARMA(1,1)

Consider an ARMA(1, 1) process, x; = ¢xr—1 + Qw1 + wy; we will call this
the forward model. We have just seen that best linear prediction backward
in time is the same as best linear prediction forward in time for stationary
models. Because we are assuming ARMA models are Gaussian, we also have
that minimum mean square error prediction backward in time is the same
as forward in time for ARMA models.* Thus, the process can equivalently
be generated by the backward model,

Ty = @xp41 + v + vy,

where {v;} is a Gaussian white noise process with variance o2 . We may write
Ty = Z;io Y jve45, where 1Py = 1; this means that x; is uncorrelated with
{vt—1,v¢—2,...}, in analogy to the forward model.

Given data {zi,....,2z,}, truncate v]' = E(v, |x1,....,2,) to zero and
then iterate backward. That is, put v;' = 0, as an initial approximation, and
then generate the errors backward

’17?:;(;75—@527,54_1—0:17?_’_1, t:(n_].),(n_2),...)1.

Then,
Ty = ¢x1 + 0v] + vy = ¢y + Ov7,

because vy’ = 0 for ¢t < 0. Continuing, the general truncated backcasts are
given by
Ty, =¢Ty_,,, m=2,3,....

3.6 Estimation

e immediately
see that, if E(x;) = p, then the method of moments estimator of p is the
sample average, . Thus, while discussing method of moments, we will as-
sume g = 0. Although the method of moments can produce good estimators,
they can sometimes lead to suboptimal estimators. We first consider the case

* In the stationary Gaussian case, (a) the distribution of {2,+1,2n,..., 21} is the
same as (b) the distribution of {xo,x1...,2n}. In forecasting we use (a) to ob-
tain E(Zn+1|Zn,...,21); in backcasting we use (b) to obtain E(xo |x1,...,Zn).
Because (a) and (b) are the same, the two problems are equivalent.
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in which the method leads to optimal (efficient) estimators, that is, AR(p)
models.

In matrix notation, the Yule-Walker equations are

L=, 00 ="0)—¢7, (3.100)

where I, = {y(k—j)}ikzl is a p x p matrix, ¢ = (¢1,...,¢,) is a px 1 vector,
and 7, = (v(1),... ,v(p))" is a p x 1 vector. Using the method of moments,
we replace y(h) in (3.100) by 4(h) [see equation (1.34)] and solve

=17, o5=70) 7,1, 7, (3.101)

These estimators are typically called the Yule-Walker estimators. For calcula-
tion purposes, it is sometimes more convenient to work with the sample ACF.
By factoring 7(0) in (3.101), we can write the Yule-Walker estimates as

~ ~—1

—~ AN ~ A_ll\
6=R, 5, 72=50)1-5R, 5, (3.102)

where R, = {p(k — j)}%,_, is a p x p matrix and g, = (5(1),...,5(p))’ is a
p X 1 vector.

For AR(p) models, if the sample size is large, the Yule-Walker estimators
are approximately normally distributed, and 72 is close to the true value of
o2 . We state these results in Property 3.8; for details, see Appendix B, §B.3.

Property 3.8 Large Sample Results for Yule-Walker Estimators

without inverting r p OF ﬁp, by replacing y(h) by 7(h) in the algorithm. In

running the algorithm, we will iteratively calculate the h X 1 vector, ¢, =
(ahl, .. .,Eghh)’, for h = 1,2,.... Thus, in addition to obtaining the desired
forecasts, the Durbin—Levinson algorithm yields qAﬁhh, the sample PACF. Using
(3.103), we can show the following property.







Property 3.9 Large Sample Distribution of the PACF

(3.104)

Example 3.26 Yule=

08), which contains the true v

(2) Process

~

Example 3.27 Yule—Walker Estimation of the Recruitment Series
In Example 3.17 we fit an AR(2) model to the recruitment series using re-
gression. Below are the results of fitting the same model using Yule-Walker
estimation in R, which are nearly identical to the values in Example 3.17.
rec.yw = ar.yw(rec, order=2)
rec.yw$x.mean # = 62.26 (mean estimate)
rec.yw$ar # = 1.33, -.44 (parameter estimates)
sqrt(diag(rec.yw$asy.var.coef)) # = .04, .04 (standard errors)
rec.yw$var.pred # = 94.80 (error wvariance estimate)

To obtain the 24 month ahead predictions and their standard errors, and
then plot the results as in Example 3.24, use the R commands:
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rec.pr = predict(rec.yw, n.ahead=24)

rec.pr$pred + rec.pr$se

L = rec.pr$pred - rec.pr$se

minx = min(rec,L); maxx = max(rec,U)

ts.plot(rec, rec.pr$pred, xlim=c(1980,1990), ylim=c(minx,maxx))
lines(rec.pr$pred, col="red", type="o")

lines(U, col="blue", lty="dashed")

lines(L, col="blue", lty="dashed")

a
]

Example 3.28 Method of Moments Estimation for an MA (1)

set.seed(2)
mal = arima.sim(list(order = c(0,0,1), ma = 0.9), n = 50)
acf(mal, plot=F)[1] # = .507 (lag 1 sample ACF)

When |p(1)| < 1, the invertible estimate is

G 1= TG0
2p(1) '
It can be shown that®

5 The result follows from Theorem A.7 given in Appendix A and the delta method.
See the proof of Theorem A.7 for details on the delta method.
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MAXIMUM LIKELIHOOD AND LEAST SQUARES ESTIMATION

To fix ideas, we first focus on the causal AR(1) case. Let

Ty = p+ P(wi—1 — p) + wy (3.105)

where |¢| < 1 and _Given data z1,xo,...,x,, we seek the
likelihood

L(:“/a¢70-121)) = f(ml,x%"'axn | M7¢,0-12u) .

where we have 1), to ease the
notation. Because z; | x4—1 ~ w4+ o(xe—1 — 1), 0y ), we have

Floe | 2i1) = ful(ze = p) = dlae-1 — p),

where f,,(+) is the density of w;, that is, the normal density with mean zero
and variance o2

i We may then write the likelihood as
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where
n

S(py¢) = (1= ¢*) (w1 = p)* + Y (e = p) = $lae—a —p)]*. (3.107)

t=2

Typically, S(u, ¢) is called the unconditional sum of squares. We could have
also considered the estimation of p and ¢ using unconditional least squares,
that is, estimation by minimizing S(u, ¢).

Taking the partial derivative of the log of (3.106) with respect to o2 and
setting the result equal to zero, we see that for any given values of u and ¢
in the parameter space, 02, = n~1S(u, ¢) maximizes the likelihood. Thus, the
maximum likelihood estimate of o2 is

5% = n"'S(@.9), (3.108)

where i and $ are the MLEs of 1 and ¢, respectively. If we replace n in (3.108)
by n — 2, we would obtain the unconditional least squares estimate of 2.

If, in (3.106), we take logs, replace 02, by 72, and ignore constants, i and
qAﬁ are the values that minimize the criterion function

p, ¢) =log [n~'S(u, ¢)] — n~"log(1 — ¢*); (3.109)

that is, I(u, ¢) x —2log L(p, $,52).° Because (3.107) and (3 109 are com—
plicated functlons of the parameters, the minimization of I(ju, ¢) or S(u

B e s
e
st s

The conditional MLE of o2 is

52 = Se(fi, $)/(n — 1), (3.112)

and & and (5 are the values that minimize the conditional sum of squares,
Se(, @). Letting o = (1 — ¢), the conditional sum of squares can be written
as

(3.111)

5 The criterion function is sometimes called the profile or concentrated likelihood.
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n

Se(: @) =D [we — (o + pmy—1))?. (3.113)

t=2
The problem is now the linear regression problem stated in §2.2. Following
the results from least squares estimation, we have @ = Z(p) — ¢Z(1), where

Ty =(n—1)" Lyt and T(o) = (n—1)"1 3}, 2, and the conditional
estimates are then

ii @3 é;“) (3.114)
gg: Etzz(l't - 37(2))(3773—1 - x(l))‘ (3.115)

Do (T — T(1))?

2

os in (3.112) to be equivalent to the least squares estimator, that is, divide
Se(fi, ) by (n — 3) instead of (n — 1) in (3.112).

For general AR(p) models, maximum likelihood estimation, unconditional
least squares, and conditional least squares follow analogously to the AR(1)

example.
Instead, it is advantageous to write the

likelihood in terms of the innovations, or one-step-ahead prediction errors,
zy — i1, This will also be useful in Chapter 6 when we study state-space
models.

For a normal ARMA(p, ¢) model, let 8 = (i, ¢1,...,¢p, b1,...,6,) be the
(p+ g+ 1)-dimensional vector of the model parameters. The likelihood can be
written as

ﬁv 'w Hf(xt’wt 1.+,

The conditional distribution of x; given z;_1,...,z1 is Gaussian with mean
2!~1 and variance P;~'. Recall from (3.71) that Pt L= (0 Ht 1(1 — 63

For ARMA models, y(0) = 02 >"°° =0 %, in which case we may write

o) t—1
t—1 2 2 2 def 9
P =0y, Z%‘ H(1—¢jj) = Oy Tty
5=0 j=1

where r; is the term in the braces. Note that the r; terms are functions only
of the regression parameters and that they may be computed recursively as
rer1 = (1 — ¢%)ry with initial condition 7 = >0 3. The likelihood of the
data can now be written as

S(8)
2

2
w

L(B,02) = (2702) /2 [ry(B)r2(B) - - 7a(B)] /% exp [— ] ,  (3.116)
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where

Both xi_l and r; are functions of B8 alone, and we make that fact explicit
in (3.116)-(3.117). Given values for B and o2, the likelihood may be evalu-
ated using the techniques of §3.5. Maximum likelihood estimation would now
proceed by maximizing (3.116) with respect to B and o2. As in the AR(1)
example, we have

52 =n"'S(B), (3.118)

w =

where E is the value of B that minimizes the concentrated likelihood

1(B) =1log [n'S(B)] +n~ "> logri(B). (3.119)

For the AR(1) model (3.105) discussed previously, recall that 2§ = p and
etV = 4 p(ze_y — p), for t = 2,...,n. Also, using the fact that ¢1; = ¢
and ¢, = 0 for h > 1, we have r; = Z;io Y = 1—-¢>)" e =(1-
»*) 1 (1—¢?) = 1, and in general, 7, = 1 for t = 2,...,n. Hence, the likelihood
presented in (3.106) is identical to the innovations form of the likelihood given
by (3.116). Moreover, the generic S(B8) in (3.117) is S(p, ¢) given in (3.107)
and the generic {(8) in (3.119) is I(u, ¢) in (3.109).

Unconditional least squares would be performed by minimizing (3.117)
with respect to 8. Conditional least squares estimation would involve mini-
mizing (3.117) with respect to 8 but where, to ease the computational burden,
the predictions and their errors are obtained by conditioning on initial values
of the data. In general, numerical optimization routines are used to obtain the
actual estimates and their standard errors.

Example 3.29 The Newton—Raphson and Scoring Algorithms
Two common numerical optimization routines for accomplishing maximum
likelihood estimation are Newton—Raphson and scoring. We will give a brief
account of the mathematical ideas here. The actual implementation of these
algorithms is much more complicated than our discussion might imply. For
details, the reader is referred to any of the Numerical Recipes books, for
example, Press et al. (1993).

Let I(B) be a criterion function of k parameters g = (f1,..., Br) that we
wish to minimize with respect to 8. For example, consider the likelihood
function given by (3.109) or by (3.119). Suppose () is the extremum that
we are interested in finding, and 3 is found by solving 0l(B)/03; = 0, for
j=1,...,k Let I)(B) denote the k x 1 vector of partials
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Note, l(l)(ﬁ) =0, the k x 1 zero vector. Let [(?)(8) denote the k x k matrix
of second-order partials

a2(B) "
@0 ={~555. .,
1905 ) i j=1

and assume [(?)(8) is nonsingular. Let B (o) be an initial estimator of 8. Then,
using a Taylor expansion, we have the following approximation:

Setting the right-hand side equal to zero and solving for ,/B\ [call the solution
B, we get

1
Bay =By + [1(2)(,3(0))} 1D (Boy)-

The Newton—Raphson algorithm proceeds by iterating this result, replacing
,3(0) by ,3(1) to get ,3(2), and so on, until convergence. Under a set of appro-
priate conditions, the sequence of estimators, ,3(1)7 ,3(2), ..., will converge to

B, the MLE of 8.

For maximum likelihood estimation, the criterion function used is I(f)
given by (3.119); {(B) is called the score vector, and 1(2)(B) is called the
Hessian. In the method of scoring, we replace 12 (8) by E[I®)(B)], the infor-
mation matrix. Under appropriate conditions, the inverse of the information
matrix is the asymptotic variance-covariance matrix of the estimator 8. This
is sometimes approximated by the inverse of the Hessian at 8. If the deriva-
tives are difficult to obtain, it is possible to use quasi-maximum likelihood
estimation where numerical techniques are used to approximate the deriva-
tives.

Example 3.30 MLE for the Recruitment Series

So far, we have fit an AR(2) model to the Recruitment series using ordinary
least squares (Example 3.17) and using Yule-Walker (Example 3.27). The
following is an R session used to fit an AR(2) model via maximum likelihood
estimation to the Recruitment series; these results can be compared to the
results in Example 3.17 and Example 3.27.

rec.mle = ar.mle(rec, order=2)

rec.mle$x.mean # 62.26

rec.mle$ar # 1.35, -.46

sqrt(diag(rec.mle$asy.var.coef)) # .04, .04

rec.mle$var.pred # 89.34

We now discuss least squares for ARMA (p, ¢) models via Gauss—Newton.
For general and complete details of the Gauss—Newton procedure, the reader
is referred to Fuller (1996). As before, write 8 = (¢1, ..., ¢p,61,...,0,), and
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for the ease of discussion, we will put © = 0. We write the model in terms of
the errors

p q
wi(B) =i =Y by — Y Okwr (), (3.120)
=1 k=1

emphasizing the dependence of the errors on the parameters.

sum of squares is
n

Se(B) = > wi(B). (3.121)

t=p+1

Minimizing S.(8) with respect to B yields the conditional least squares esti-
mates. If ¢ = 0, the problem is linear regression and no iterative technique is
needed to minimize S.(¢1,...,¢p). If ¢ > 0, the problem becomes nonlinear
regression and we will have to rely on numerical optimization.

The unconditional sum of squares can be written in various ways, and one
useful form in the case of ARMA(p, ¢) models is derived in Box et al. (1994,
Appendix A7.3). They showed (see Problem 3.19) the unconditional sum of
squares can be written as

n

SB) =Y w;(B), (3.122)

t=—o00

where w;(8) = E(wi|z1,...,z,). When t < 0, the w,(8) are obtained
by backcasting. As a practical matter, we approximate S(B) by starting
the sum at ¢ = —M + 1, where M is chosen large enough to guarantee
Zt_:]\foo W2(B) ~ 0. In the case of unconditional least squares estimation,
a numerical optimization technique is needed even when ¢ = 0.

To employ Gauss-Newton, let By = ( §°), cee ¢§,0), 9%0), . ,9((10))’ be an
initial estimate of B. For example, we could obtain 8, by method of moments.
The first-order Taylor expansion of w;(8) is

wi(B) = wi(Boy) — (,3 - ﬁ(o))l zt(B0)): (3.123)
where

dwe(B o)) _awt(ﬂ@)))’ el

zt(ﬂ(O)): (_ 8/81 R aﬂp+q
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The linear approximation of S.(f8) is

0= > ) (8-60) 6] G120

t=p+1

and this is the quantity that we will minimize. For approximate unconditional
least squares, we would start the sum in (3.124) at t = —M + 1, for a large
value of M, and work with the backcasted values.

Using the results of ordinary least squares (§2.2), we know

L —

n 1 n
(B— By = (”_1 Z zt(ﬂ(o))z:e(ﬂ(o))> (n_l Z Zt(ﬁ(o))wt(ﬂ(o)))
t=p+1 t=p+1
(3.125)
minimizes Q(B). From (3.125), we write the one-step Gauss—Newton estimate
as

Ba) =By +ABw); (3.126)
where A(B()) denotes the right-hand side of (3.125). Gauss-Newton esti-
mation is accomplished by replacing Bo) by B(1y in (3.126). This process is
repeated by calculating, at iteration j =2,3,...,

By = Bj-1) + AB-1)

until convergence.

Example 3.31 Gauss—Newton for an MA(1)

Consider an invertible MA(1) process, ; = wy + Ow;_1. Write the truncated
errors as

we(0) =z — Owi—1(0), t=1,...,n, (3.127)
where we condition on wg(#) = 0. Taking derivatives,
8'11},5(0) . 8'11},5_1(0) .
~ 0 =wi—1(0) + 6 50 t=1,...,n, (3.128)

where Ow(6)/06 = 0. Using the notation of (3.123), we can also write (3.128)
as
21(0) =wi—1(0) — 0z1(0), t=1,...,n, (3.129)
where z¢(0) = 0.
Let 6py be an initial estimate of 6, for example, the estimate given in Ex-
ample 3.28. Then, the Gauss—Newton procedure for conditional least squares
is given by

2o 2005w (05))
Y2 0G)
where the values in (3.130) are calculated recursively using (3.127) and

(3.129). The calculations are stopped when [0(;11) — ()|, or [Q(0(j1+1)) —
Q(0¢;)|, are smaller than some preset amount.
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Fig. 3.8. ACF and PACF of transformed glacial varves.

Example 3.32 Fitting the Glacial Varve Series
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Fig. 3.9. Conditional sum of squares versus values of the moving average parameter
for the glacial varve example, Example 3.32. Vertical lines indicate the values of the
parameter obtained via Gauss—Newton; see Table 3.2 for the actual values.

Table 3.2. Gauss—Newton Results for Example 3.32

J 00 Se(0)) S,z (0))
0 —0.100 195.0010 183.3464
1 —0.250 177.7614 163.3038
2 —0.400 165.0027 161.6279
3 —0.550 155.6723 182.6432
4 —0.684 150.2896 247.4942
5 —0.736 149.2283 304.3125
6 —0.757 149.0272 337.9200
7 —0.766 148.9885 355.0465
8 —-0.770 148.9812 363.2813
9 —0.771 148.9804 365.4045
10 —0.772 148.9799 367.5544
11 —0.773 148.9799 369.7314

sequently, the estimated standard error of g is V/-236/369.73 = .025;" this

leads to a t-value of —.773/.025 = —30.92 with 632 degrees of freedom.

Figure 3.9 displays the conditional sum of squares, S.(f) as a function
of 6, as well as indicating the values of each step of the Gauss—Newton
algorithm. Note that the Gauss—Newton procedure takes large steps toward

" To estimate the standard error, we are using the standard regression results from

(2.9) as an approximation



134 3 ARIMA Models

the minimum initially, and then takes very small steps as it gets close to
the minimizing value. When there is only one parameter, as in this case, it
would be easy to evaluate S.(f) on a grid of points, and then choose the
appropriate value of 6 from the grid search. It would be difficult, however,
to perform grid searches when there are many parameters.

he proof of this general result can be found in a num-
ber of texts on theoretical time series analysis (for example, Brockwell and
Davis, 1991, or Hannan, 1970, to mention a few). We will denote the ARMA
coefficient parameters by 8 = (¢1,...,¢p,01,...,60,)".

(3.131)

The asymptotic varia mator B\ 18 the inverse
of the information matriz. In particular, the (p+q) X (p+ q) matriz I, 4, has

the form
Ipq = (F% F%) : (3.132)

The p x p matriz Iye is given by (3.100), that is, the ij-th element of I'ye, for
i,j=1,...,p, isv:(i—7) from an AR (p) process, p(B)x; = wy. Similarly, Ipe
is a q¢ X q¢ matriz with the ij-th element, fori,j =1,...,q, equal to ~v,(i — j)
from an AR(q) process, 0(B)y; = wy. The p x ¢ matriz Iyg = {Vzy(i — 7)},
fori=1,...,p; j=1,...,q; that is, the ij-th element is the cross-covariance
between the two AR processes given by ¢(B)xy = wy and 0(B)y; = wy. Finally,
Iyy =T}y is g X p.

Further discussion of Property 3.10, including a proof for the case of least
squares estimators for AR(p) processes, can be found in Appendix B, §B.3.

Example 3.33 Some Specific Asymptotic Distributions

The following are some specific cases of Property 3.10.
AR(1): 7,(0) = o, /(1 = ¢%), s0 03, T 5 = (1 = ¢%). Thus,

¢~ AN [p,n (1 - ¢%)] . (3.133)
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AR(2): The reader can verify that

(1= on
7:(0) = (1+¢2> (1—¢2)% — o1

and v, (1) = ¢172(0) + ¢27.(1). From these facts, we can compute F2_701. In
particular, we have

o1 N P1 11— ¢3 —¢1(1+¢2))}
<$2> AN [(¢2>’ " ( Sym2 1 — ¢3 : (3.134)

MA(1): In this case, write 8(B)y; = wy, or ys+6y;—1 = wy. Then, analogous
to the AR(1) case, v,(0) = 02 /(1 — 6?%), so 012,]1“0_’11 = (1 — 6?). Thus,

6~ AN [6,n71(1 - 6?)]. (3.135)

MA(2): Write y¢ + 01yt—1 + 02y:—2 = wy, so , analogous to the AR(2) case,

we have
51 91 1 1-— 9% 91(1 + 92)
(§2> AN [(92> . n ( wm 102 )| (3.136)

ARMA(1,1): To calculate I'39, we must find v, (0), where z; — ¢z = wy
and y; + 0y,_1 = wy. We have

Vay(0) = cov(my, yr) = cov(pri_1 + wy, —Oy,—1 + wy)
= — 074 (0) + 0121,.

Solving, we find, 7., (0) = o2 /(1 + ¢f). Thus,

@ AN <¢> - {(1—&)* (1+¢9>—1]‘1], (3.137)

0 sym (1-0?)~1
Example 3.34 Overfitting Caveat
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The reader might wonder, for example, why the asymptotic distributions
of ¢ from an AR(1) and € from an MA(1) are of the same form; compare
(3.133) to (3.135). It is possible to explain this unexpected result heuristically
using the intuition of linear regression. That is, for the normal regression
model presented in §2.2 with no intercept term, x; = Bz; + w;, we know (3 is
normally distributed with mean (3, and from (2.9),

VELf{ﬁ(B—B)} =no’ (tz:;zf) =02 (n_lgzt2> .

For the causal AR(1) model given by x; = ¢x;—1 + w;, the intuition of
regression tells us to expect that, for n large,

Vi (6-9)

is approximately normal with mean zero and with variance given by

Now, n~1 Y"1 , x7 ; is the sample variance (recall that the mean of x; is zero)
of the x4, so as n becomes large we would expect it to approach var(z;) =

v(0) = 02 /(1 — ¢?). Thus, the large sample variance of /n (q/g— qb) is

o2 !
U S !
that is, (3.133) holds.
In the case of an MA(1), we may use the discussion of Example 3.31 to
write an approximate regression model for the MA(1). That is, consider the
approximation (3.129) as the regression model

2(0) = —0z_1(0) + wy_1,

-~

where now, z;_1(6) as defined in Example 3.31, plays the role of the regressor.
Continuing with the analogy, we would expect the asymptotic distribution of

vn (é\ — 9) to be normal, with mean zero, and approximate variance
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n -1
o2 (n_l Z zf_l(§)> :
t=2

As in the AR(1) case, n=t Y 1", zf_l(a) is the sample variance of the zt(é\)
so, for large n, this should be var{z;(0)} = ~,(0), say. But note, as seen from
(3.129), z:(0) is approximately an AR(1) process with parameter —6. Thus,

9 —1
PO =k (=T ) =)

which agrees with (3.135). Finally, the asymptotic distributions of the AR
parameter estimates and the MA parameter estimates are of the same form
because in the MA case, the “regressors” are the differential processes z:(6)
that have AR structure, and it is this structure that determines the asymptotic
variance of the estimators. For a rigorous account of this approach for the
general case, see Fuller (1996, Theorem 5.5.4).

In Example 3.32, the estimated standard error of 0 was .025. In that ex-
ample, we used regression results to estimate the standard error as the square
root of

o~

= o o2
—1~2 -1 2/ w
n_ o, | n E z; (0) =T
t=1

=1 21 (0)

where n = 632,52 = .236, Y1, 22(f) = 369.73 and § = —.773. Using (3.135),
we could have also calculated this value using the asymptotic approximation,
the square root of (1 — (—.773)?)/632, which is also .025.

Example 3.35 Bootstrapping an AR(1)
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60

Time

Fig. 3.10. One hundred observations generated from the model in Example 3.35.

he mean

of the distribution shown in Figure 3.11 is .89, and the variance of the dis-
tribution is .05%; these values are considerably different than the asymptotic
values. Some of the quantiles of the finite sample distribution are .79 (5%),
.86 (25%), .90 (50%), .93 (75%), and .95 (95%). The R code to perform the
simulation and plot the histogram is as follows:

set.seed(111)

phi.yw = rep(NA, 1000)

for (i in 1:1000){
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w —
2
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C
[
o < -
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,_47—“(7""4‘74 \
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phi.yw

Fig. 3.11. Finite sample density of the Yule-~Walker estimate of ¢ in Example 3.35.

e = rexp(150, rate=.5); u = runif(150,-1,1); de = e*sign(u)
x = 50 + arima.sim(n=100,list(ar=.95), innov=de, n.start=50)
phi.yw[i] = ar.yw(x, order=1)$ar }

hist(phi.yw, prob=TRUE, main="")

lines(density(phi.yw, bw=.015))

(3.139)

From these equations, we can write the model in terms of the ¢; as
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e for t=2,...,100. (3.140)

)l

d estimates
of ¢ using the data shown in Figure 3.10. In addition, Figure 3.12 shows a
density estimate based on the bootstrap histogram, as well as the asymptotic
normal density that would have been used based on Property 3.10. Clearl

of this distribution are .83 (5%), .90 (25%), .93 (50%), .95 (75%), and .98
(95%).

To perform a similar bootstrap exercise in R, use the following commands.
We note that the R estimation procedure is conditional on the first obser-
vation, so the first residual is not returned. To get around this problem, we
simply fix the first observation and bootstrap the remaining data. The sim-
ulated data are available in the file ariboot, but you can simulate your own
data as was done in the code that produced Figure 3.11.

x = arlboot
m = mean(x) # estimate of mu
fit = ar.yw(x, order=1)
phi = fit$ar # estimate of pht
nboot = 200  # number of bootstrap replicates
resids = fit$resid[-1] # the first resid is NA
x.star = x # initialize o*
phi.star.yw = rep(NA, nboot)
for (i in 1:nboot) {
resid.star = sample(resids, replace=TRUE)
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phi.star.yw

Fig. 3.12. Bootstrap histogram of $ based on 200 bootstraps; a density estimate
based on the histogram (solid line) and the corresponding asymptotic normal density
(dashed line).

for (t in 1:99){ x.star[t+1] = m + phix(x.star[t]-m) +
resid.star[t] }
phi.star.yw[i] = ar.yw(x.star, order=1)$ar }
hist(phi.star.yw, 10, main="", prob=TRUE, ylim=c(0,14),
xlim=c(.75,1.05))
lines(density(phi.star.yw, bw=.02))
u = seq(.75, 1.05, by=.001)
lines(u, dnorm(u, mean=.96, sd=.03), lty="dashed", lwd=2)

3.7 Integrated Models for Nonstationary Data
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VJJt = Ut + Vyt,

ISEARIONARY! 1f /1c in (3.142) is a

Stochastic trend
le, suppose

pe = pe—1+ve and vy =g + ey,

where e; is stationary. Then, Va; = vy + Vi, is not stationary, but
VZJIt = e + VQyt

is stationary.
The integrated ARMA, or ARIMA, model is a broadening of the class of

ARMA models to includedifferencing:

(3.143)

If E(Vix) = u, we write the model as

#(B)(1 — B)%z; = 6 + 0(B)wy,

where 6 = (1 — 1 — - — ¢p).

Because of the nonstationarity, care must be taken when deriving forecasts.
For the sake of completeness, we discuss this issue briefly here, but we stress
the fact that both the theoretical and computational aspects of the problem
are best handled via state-space models. We discuss the theoretical details in
Chapter 6. For information on the state-space based computational aspects
in R, see the ARIMA help files (?arima and ?predict.Arima); our scripts
sarima and sarima.for are basically front ends for these R scripts.

It should be clear that, since y; = V%, is ARMA, we can use §3.5 methods
to obtain forecasts of y;, which in turn lead to forecasts for z;. For example, if
d = 1, given forecasts y;, ,,, form =1,2,..., we have yy, ., = 3, . —T5 .1,
so that
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n . .mn n
xn—l—m - yn—l—m + xn—l—m—l

with initial condition z7},, =y, | + z, (noting z}} = x,,).
It is a little more difficult to obtain the prediction errors P!, , but for
large n, the approximation used in §3.5, equation (3.86), works well. That is,

the mean-squared prediction error can be approximated by

—1

DI (3.144)

3

Pn

n+m

I
o

J
where ¥ is the coefficient of 27 in 1*(z) = 6(2)/p(2)(1 — 2)4.
To better understand integrated models, we examine the properties of
some simple cases; Problem 3.29 covers the ARIMA(1,1,0) case.
Example 3.36 Random Walk with Drift

To fix ideas, we begin by considering the Fandom WalkWith'driff model first

presented in Example 1.11, that is,

for t = 1,2,..., and xg = 0. Technically, the model is not ARIMA, but we
could include it trivially as an ARIMA(0, 1,0) model. Given data x1, ..., x,,
the one-step-ahead forecast is given by

Ty :E(xn+1|xn,...,x1):E(5—|—xn+wn+1 ‘ Tpyevoy 1) =0+ Ty

The two-step-ahead forecast is given by 27,5 = 0 + a7, +1 = = 20 + z,, and

consequently, the m-step-ahead forecast, for m =1,2,..., is
Ty = MO+ Ty, (3.145)

To obtain the forecast errors, it is convenient to recall equation (1.4), i.e.,
, in which case we may write

From this it follows that fhem=step-ahead prediction erroris given by

(3.146)

We note that
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(3.144) is exact in this case because ¥*(z) = 1/(1—z) = Z;io 27 for |z| < 1,
so that ¢7 =1 for all j.

The w; are Gaussian, so estimation is straightforward because the differ-
enced data, say y; = Vz;, are independent and identically distributed normal
variates with mean § and variance o2. Consequently, optimal estimates of §
and o2 are the sample mean and variance of the y;, respectively.

Example 3.37 IMA(1,1) and EWMA

= i

with |A| < 1, for t = 1,2,..., and 2y = 0, because this model formulation
is easier to work with here, and it leads to the standard representation for
EWMA. We could have included a drift term in (3.147), as was done in
the previous example, but for the sake of simplicity, we leave it out of the
discussion. If we write

Yi = W — AMwi_1,

we may write (3.147) as x; = x;_1 + y+. Because |\| < 1, y; has an invertible
representation, y; + Z;‘;l Myi—;j = wy, and substituting y; = z; — 241, we

may write
o0

ze=Y (L= ANz +wy. (3.148)
j=1
as an approximation for large ¢ (put x; = 0 for ¢t < 0). Verification of (3.148)
is left to the reader (Problem 3.28). Using the approximation (3.148), we
have that the approximate one-step-ahead predictor, using the notation of
§3.5, is

=1 =Nz, +AY (1= ANz,

Jj=1

== 420 10
_ Based on (3.149) and the fact that we

only observe x1, ..., Z,, and consequently y1,...,y, (because y; = xy —xs_1;
xo = 0), the truncated forecasts are

i =(1— Nz, + A5, n>1, (3.150)
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with Z{ = 1 as an initial value. The mean-square prediction error can be
approximated using (3.144) by noting that ¥*(z) = (1 — A2)/(1 — 2) =
1+ (1—=X) Z;’il 2J for |z| < 1; consequently, for large n, (3.144) leads to

In the following, we show how to generate 100 observations from an

IMA(1,1) model with A = —f = .8 and then calculate and display the fitted

EWMA superimposed on the data. This is accomplished using the Holt-

Winters command in R (see the help file PHoltWinters for details; no output

is shown):

set.seed (666)

x = arima.sim(list(order = c(0,1,1), ma = -0.8), n = 100)

(x.ima = HoltWinters(x, beta=FALSE, gamma=FALSE)) # « below is 1 — A
Smoothing parameter: alpha: 0.1663072

plot(x.ima)

3.8 Building ARIMA Models

In such cases, the Box—Cox class
of power transformations, equation (2.37), could be employed. Also, the par-
ticular application might suggest an appropriate transformation. For example,
suppose a process evolves as a fairly small and stable percent-change, such as

an investment. FOHERAPISTWO THIEHEIAN

or
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Jwequeny, Vlog(z;) is called the return

or growth rate. This general idea was used in Example 3.32, and we will use
it again in Example 3.38.

Example 3.38 Analysis of GNP Data

In this example, we consider the analysis of quarterly U.S. GNP from 1947(1)
to 2002(3), n = 223 observations. The data are real U.S. gross national
product in billions of chained 1996 dollars and have been seasonally ad-
justed. The data were obtained from the Federal Reserve Bank of St. Louis
(http://research.stlouisfed.org/). Figure 3.13 shows a plot of the data,
say, Yt-

For the purpose of demon-
stration, the sample ACF of the data is displayed in Figure 3.14. Figure 3.15

8 log(1+p) =p— é + % — -+« for —1 < p < 1. If p is a small percent-change, then
the higher-order terms in the expansion are negligible.
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Fig. 3.13. Quarterly U.S. GNP from 1947(1) to 2002(3).

1.0

0.8

ACF
0.4

0.2
|

0.0

Lag
Fig. 3.14. Sample ACF of the GNP data. Lag is in terms of years.

shows the first difference of the data, Vi, and

The sample ACF and PACF of the quarterly growth rate are plotted in

Figure 3.17.
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Fig. 3.15. First difference of the U.S. GNP data.
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Fig. 3.16. U.S. GNP quarterly growth rate.

the GNP growth rate follows an MA(2) process, or

ARIMA(0,1;2) model. Rather than focus on one model, we will also suggest

that it appears that the ACF is tailing off and the PACF is cutting off at
lag 1. This suggests an AR(1) model for the growth rate, or ARINMA(I;1,0)

As a preliminary analysis, WelwillHifIboEhTHOAEIS!
Using MLE to fit the MA(2) model for the growth rate, x;, the estimated
model is

Ty = .008(.001) + -303(.065)@15—1 + -204(.064)&)\t—2 + Wy, (3.151)
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Fig. 3.17. Sample ACF and PACF of the GNP quarterly growth rate. Lag is in
terms of years.

where 7, = .0094 is based on 219 degrees of freedom.

We leave it to the reader to investigate what happens when the
constant is not included.
The estimated AR(1) model is

Tt = .008(.001) (]. — 347) + '347(.063):171‘/—1 + ’l/,l}t, (3152)

where o, = .0095 on 220 degrees of freedom; note that the constant in
(3.152) is .008 (1 — .347) = .005.
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which is similar to the fitted MA(2) model in (3.152).
The analysis can be performed in R as follows.

plot(gnp)

acf2(gnp, 50)

gnpgr = diff(log(gnp)) # growth rate

plot(gnpgr)
acf2(gnpgr, 24)

Saxdma (gnpgr, 1, 0, 0) # AR(1)
sarima(gnpgr, 0, 0, 2) # MA(2)

the residuals are uncorrelated. For example, it is poss1b1e in the non-Gaussian
case to have an uncorrelated process for which values contiguous in time are
highly dependent. As an example, we mention the family of GARCH models

that are discussed in Chapter 5.

Investigation of marginal normality can be accomplished visually by look-
ing at a histogram of the residuals. In addition to this, a normal probability
plot or a Q-Q plot can help in identifying departures from normality. See
Johnson and Wichern (1992, Chapter 4) for details of this test as well as

additional tests for multivariate normality.
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as a visual inspection of p.(h) with the main concern being the detection of

ob

pe(h)
—h

H
Q=n(n+2)> — (3.154)
h=1

(1978), and Davies et al. (1977). The basic idea is that if w; is white noise,
then by Property 1.1, np2(h), for h = 1,..., H, are asymptotically indepen-
dent x? random variables. This means that nz,ljzl p2,(h) is approximately a
X% random variable. Because the test involves the ACF of residuals from a
model fit, there is a loss of p+ ¢ degrees of freedom; the other values in (3.154)
are used to adjust the statistic to better match the asymptotic chi-squared
distribution.

Example 3.39 Diagnostics for GNP Growth Rate Example

We will focus on the MA(2) fit from Example 3.38; the analysis of the AR(1)
residuals is similar.

We discuss

some possibilities in Chapters 5 and 6. The diagnostics shown in Figure 3.18
are a by-product of the sarima command from the previous example.’

9 The script tsdiag is available in R to run diagnostics for an ARIMA object,
however, the script has errors and we do not recommend using it.
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Standardized Residuals
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Fig. 3.18. Diagnostics of the residuals from MA(2) fit on GNP growth rate.

Example 3.40 Diagnostics for the Glacial Varve Series

In Example 3.32, we fit an ARIMA(0,1,1) model to the logarithms of the
glacial varve data and there appears to be a small amount of autocorrelation
left in the residuals and the Q-tests are all significant; see Figure 3.19.

To adjust for this problem, we fit an ARIMA(1,1,1) to the logged varve
data and obtained the estimates

w

¢ = .23(.05), 0 = —.89(03), 52 = .23.

Hence the AR term is significant. The Q-statistic p-values for this model are
also displayed in Figure 3.19, and it appears this model fits the data well.
As previously stated, the diagnostics are byproducts of the individual
sarima runs. We note that we did not fit a constant in either model because
there is no apparent drift in the differenced, logged varve series. This fact
can be verified by noting the constant is not significant when the command
no.constant=TRUE is removed in the code:
sarima(log(varve), 0, 1, 1, no.constant=TRUE) # ARIMA(0,1,1)
sarima(log(varve), 1, 1, 1, no.constant=TRUE) # ARIMA(1,1,1)



