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Spectral Analysis and Filtering

4.1 Introduction

The notion that a time series exhibits repetitive or regular behavior over time

is of fundamental importance because it distinguishes time series analysis

from classical statistics, which assumes complete independence over time. We

have seen how dependence over time can be introduced through models that

describe in detail the way certain empirical data behaves, even to the extent

of producing forecasts based on the models. It is natural that models based on

predicting the present as a regression on the past, such as are provided by the

celebrated ARIMA or state-space forms, will be attractive to statisticians, who

are trained to view nature in terms of linear models. In fact, the di↵erence
equations used to represent these kinds of models are simply the discrete

versions of linear di↵erential equations that may, in some instances, provide

the ideal physical model for a certain phenomenon. An alternate version of

the way nature behaves exists, however, and is based on a decomposition of

an empirical series into its regular components.

In this chapter, we argue that the concept of regularity of a series can best

be expressed in terms of periodic variations of the underlying phenomenon

that produced the series, expressed as Fourier frequencies being driven by

sines and cosines. Such a possibility was discussed in Chapters 1 and 2. From

a regression point of view, we may imagine a system responding to various

driving frequencies by producing linear combinations of sine and cosine func-

tions. Expressed in these terms, the time domain approach may be thought

of as regression of the present on the past, whereas the frequency domain

approach may be considered as regression of the present on periodic sines and

cosines.

Frequency domain approaches are the focus of this chapter. To illustrate

the two methods for generating series with a single primary periodic com-

ponent, consider Figure 1.9, which was generated from a simple second-order

autoregressive model, and the middle and bottom panels of Figure 1.11, which

were generated by adding a cosine wave with a period of 50 points to white
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174 4 Spectral Analysis and Filtering

noise. Both series exhibit strong periodic fluctuations, illustrating that both

models can generate time series with regular behavior. As discussed in Exam-

ple 2.8, a fundamental objective of spectral analysis is to identify the dominant

frequencies in a series and to find an explanation of the system from which

the measurements were derived.

Of course, the primary justification for any alternate model must lie in

its potential for explaining the behavior of some empirical phenomenon. In

this sense, an explanation involving only a few kinds of primary oscillations

becomes simpler and more physically meaningful than a collection of param-

eters estimated for some selected di↵erence equation. It is the tendency of

observed data to show periodic kinds of fluctuations that justifies the use of

frequency domain methods. Many of the examples in §1.2 are time series rep-

resenting real phenomena that are driven by periodic components. The speech

recording of the syllable aa...hh in Figure 1.3 contains a complicated mixture

of frequencies related to the opening and closing of the glottis. Figure 1.5

shows the monthly SOI, which we later explain as a combination of two kinds

of periodicities, a seasonal periodic component of 12 months and an El Niño

component of about three to five years. Of fundamental interest is the return

period of the El Niño phenomenon, which can have profound e↵ects on lo-

cal climate. Also of interest is whether the di↵erent periodic components of

the new fish population depend on corresponding seasonal and El Niño-type

oscillations. We introduce the coherence as a tool for relating the common

periodic behavior of two series. Seasonal periodic components are often per-

vasive in economic time series; this phenomenon can be seen in the quarterly

earnings series shown in Figure 1.1. In Figure 1.6, we see the extent to which

various parts of the brain will respond to a periodic stimulus generated by

having the subject do alternate left and right finger tapping. Figure 1.7 shows

series from an earthquake and a nuclear explosion. The relative amounts of

energy at various frequencies for the two phases can produce statistics, useful

for discriminating between earthquakes and explosions.

In this chapter, we summarize an approach to handling correlation gen-

erated in stationary time series that begins by transforming the series to the

frequency domain. This simple linear transformation essentially matches sines

and cosines of various frequencies against the underlying data and serves two

purposes as discussed in Example 2.8 and Example 2.9. The periodogram

that was introduced in Example 2.9 has its population counterpart called the

power spectrum, and its estimation is a main goal of spectral analysis. An-

other purpose of exploring this topic is statistical convenience resulting from

the periodic components being nearly uncorrelated. This property facilitates

writing likelihoods based on classical statistical methods.

An important part of analyzing data in the frequency domain, as well as

the time domain, is the investigation and exploitation of the properties of the

time-invariant linear filter. This special linear transformation is used similarly

to linear regression in conventional statistics, and we use many of the same

terms in the time series context. We have previously mentioned the coherence
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4.2 Cyclical Behavior and Periodicity 175

as a measure of the relation between two series at a given frequency, and

we show later that this coherence also measures the performance of the best

linear filter relating the two series. Linear filtering can also be an important

step in isolating a signal embedded in noise. For example, the lower panels

of Figure 1.11 contain a signal contaminated with an additive noise, whereas

the upper panel contains the pure signal. It might also be appropriate to

ask whether a linear filter transformation exists that could be applied to the

lower panel to produce a series closer to the signal in the upper panel. The

use of filtering for reducing noise will also be a part of the presentation in this

chapter. We emphasize, throughout, the analogy between filtering techniques

and conventional linear regression.

Many frequency scales will often coexist, depending on the nature of the

problem. For example, in the Johnson & Johnson data set in Figure 1.1,

the predominant frequency of oscillation is one cycle per year (4 quarters),

or .25 cycles per observation. The predominant frequency in the SOI and fish

populations series in Figure 1.5 is also one cycle per year, but this corresponds

to 1 cycle every 12 months, or .083 cycles per observation. For simplicity, we

measure frequency, !, at cycles per time point and discuss the implications

of certain frequencies in terms of the problem context. Of descriptive interest

is the period of a time series, defined as the number of points in a cycle, i.e.,

1/!. Hence, the predominant period of the Johnson & Johnson series is 1/.25
or 4 quarters per cycle, whereas the predominant period of the SOI series is

12 months per cycle.

4.2 Cyclical Behavior and Periodicity

As previously mentioned, we have already encountered the notion of period-

icity in numerous examples in Chapters 1, 2 and 3. The general notion of

periodicity can be made more precise by introducing some terminology. In or-

der to define the rate at which a series oscillates, we first define a cycle as one

complete period of a sine or cosine function defined over a unit time interval.

As in (1.5), we consider the periodic process

xt = A cos(2⇡!t+ �) (4.1)

for t = 0,±1,±2, . . ., where ! is a frequency index, defined in cycles per unit

time with A determining the height or amplitude of the function and �, called

the phase, determining the start point of the cosine function. We can introduce

random variation in this time series by allowing the amplitude and phase to

vary randomly.

As discussed in Example 2.8, for purposes of data analysis, it is easier to

use a trigonometric identity

1
and write (4.1) as

1 cos(↵± �) = cos(↵) cos(�)⌥ sin(↵) sin(�).
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176 4 Spectral Analysis and Filtering

xt = U1 cos(2⇡!t) + U2 sin(2⇡!t), (4.2)

where U1 = A cos� and U2 = �A sin� are often taken to be normally dis-

tributed random variables. In this case, the amplitude is A =

p

U2
1 + U2

2

and the phase is � = tan

�1
(�U2/U1). From these facts we can show that if,

and only if, in (4.1), A and � are independent random variables, where A2

is chi-squared with 2 degrees of freedom, and � is uniformly distributed on

(�⇡,⇡), then U1 and U2 are independent, standard normal random variables

(see Problem 4.2).

The above random process is also a function of its frequency, defined by

the parameter !. The frequency is measured in cycles per unit time, or in

cycles per point in the above illustration. For ! = 1, the series makes one

cycle per time unit; for ! = .50, the series makes a cycle every two time units;

for ! = .25, every four units, and so on. In general, for data that occur at

discrete time points will need at least two points to determine a cycle, so the

highest frequency of interest is .5 cycles per point. This frequency is called

the folding frequency and defines the highest frequency that can be seen in

discrete sampling. Higher frequencies sampled this way will appear at lower

frequencies, called aliases; an example is the way a camera samples a rotating

wheel on a moving automobile in a movie, in which the wheel appears to be

rotating at a di↵erent rate. For example, movies are recorded at 24 frames

per second. If the camera is filming a wheel that is rotating at the rate of 24

cycles per second (or 24 Hertz), the wheel will appear to stand still (that’s

about 110 miles per hour in case you were wondering).

Consider a generalization of (4.2) that allows mixtures of periodic series

with multiple frequencies and amplitudes,

xt =

q
X

k=1

[Uk1 cos(2⇡!kt) + Uk2 sin(2⇡!kt)] , (4.3)

where Uk1, Uk2, for k = 1, 2, . . . , q, are independent zero-mean random vari-

ables with variances �

2
k, and the !k are distinct frequencies. Notice that (4.3)

exhibits the process as a sum of independent components, with variance �

2
k

for frequency !k. Using the independence of the Us and the trig identity in

footnote 1, it is easy to show

2
(Problem 4.3) that the autocovariance function

of the process is

�(h) =
q
X

k=1

�

2
k cos(2⇡!kh), (4.4)

and we note the autocovariance function is the sum of periodic components

with weights proportional to the variances �

2
k. Hence, xt is a mean-zero sta-

tionary processes with variance

2 For example, for x
t

in (4.2) we have cov(x
t+h

, x

t

) = �

2
{cos(2⇡![t+h]) cos(2⇡!t)+

sin(2⇡![t+ h]) sin(2⇡!t)} = �

2 cos(2⇡!h), noting that cov(U1, U2) = 0.
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Fig. 4.1. Periodic components and their sum as described in Example 4.1.

�(0) = E(x2
t ) =

q
X

k=1

�

2
k, (4.5)

which exhibits the overall variance as a sum of variances of each of the com-

ponent parts.

Example 4.1 A Periodic Series

Figure 4.1 shows an example of the mixture (4.3) with q = 3 constructed in

the following way. First, for t = 1, . . . , 100, we generated three series

xt1 = 2 cos(2⇡t 6/100) + 3 sin(2⇡t 6/100)
xt2 = 4 cos(2⇡t 10/100) + 5 sin(2⇡t 10/100)
xt3 = 6 cos(2⇡t 40/100) + 7 sin(2⇡t 40/100)

These three series are displayed in Figure 4.1 along with the corresponding

frequencies and squared amplitudes. For example, the squared amplitude of

xt1 is A2
= 2

2
+ 3

2
= 13. Hence, the maximum and minimum values that

xt1 will attain are ±p
13 = ±3.61.

Finally, we constructed

xt = xt1 + xt2 + xt3

and this series is also displayed in Figure 4.1. We note that xt appears to

behave as some of the periodic series we saw in Chapters 1 and 2. The
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178 4 Spectral Analysis and Filtering

systematic sorting out of the essential frequency components in a time series,

including their relative contributions, constitutes one of the main objectives

of spectral analysis.

The R code to reproduce Figure 4.1 is

x1 = 2*cos(2*pi*1:100*6/100) + 3*sin(2*pi*1:100*6/100)
x2 = 4*cos(2*pi*1:100*10/100) + 5*sin(2*pi*1:100*10/100)
x3 = 6*cos(2*pi*1:100*40/100) + 7*sin(2*pi*1:100*40/100)
x = x1 + x2 + x3
par(mfrow=c(2,2))
plot.ts(x1, ylim=c(-10,10), main=expression(omega==6/100~~~A^2==13))
plot.ts(x2, ylim=c(-10,10), main=expression(omega==10/100~~~A^2==41))
plot.ts(x3, ylim=c(-10,10), main=expression(omega==40/100~~~A^2==85))
plot.ts(x, ylim=c(-16,16), main="sum")

Example 4.2 The Scaled Periodogram for Example 4.1

In §2.3, Example 2.9, we introduced the periodogram as a way to discover

the periodic components of a time series. Recall that the scaled periodogram

is given by

P (j/n) =

 

2

n

n
X

t=1

xt cos(2⇡tj/n)

!2

+

 

2

n

n
X

t=1

xt sin(2⇡tj/n)

!2

, (4.6)

and it may be regarded as a measure of the squared correlation of the data

with sinusoids oscillating at a frequency of !j = j/n, or j cycles in n time

points. Recall that we are basically computing the regression of the data

on the sinusoids varying at the fundamental frequencies, j/n. As discussed

in Example 2.9, the periodogram may be computed quickly using the fast

Fourier transform (FFT), and there is no need to run repeated regressions.

The scaled periodogram of the data, xt, simulated in Example 4.1 is shown

in Figure 4.2, and it clearly identifies the three components xt1, xt2, and xt3

of xt. Note that

P (j/n) = P (1� j/n), j = 0, 1, . . . , n� 1,

so there is a mirroring e↵ect at the folding frequency of 1/2; consequently, the

periodogram is typically not plotted for frequencies higher than the folding

frequency. In addition, note that the heights of the scaled periodogram shown

in the figure are

P (6/100) = 13, P (10/100) = 41, P (40/100) = 85,

P (j/n) = P (1�j/n) and P (j/n) = 0 otherwise. These are exactly the values

of the squared amplitudes of the components generated in Example 4.1. This

outcome suggests that the periodogram may provide some insight into the

variance components, (4.5), of a real set of data.

Assuming the simulated data, x, were retained from the previous example,

the R code to reproduce Figure 4.2 is
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Fig. 4.2. Periodogram of the data generated in Example 4.1.

P = abs(2*fft(x)/100)^2; Fr = 0:99/100
plot(Fr, P, type="o", xlab="frequency", ylab="periodogram")

If we consider the data xt in Example 4.1 as a color (waveform) made

up of primary colors xt1, xt2, xt3 at various strengths (amplitudes), then we

might consider the periodogram as a prism that decomposes the color xt into

its primary colors (spectrum). Hence the term spectral analysis.
Another fact that may be of use in understanding the periodogram is that

for any time series sample x1, . . . , xn, where n is odd, we may write, exactly

xt = a0 +

(n�1)/2
X

j=1

[aj cos(2⇡t j/n) + bj sin(2⇡t j/n)] , (4.7)

for t = 1, . . . , n and suitably chosen coe�cients. If n is even, the representation

(4.7) can be modified by summing to (n/2 � 1) and adding an additional

component given by an/2 cos(2⇡t 1/2) = an/2(�1)

t
. The crucial point here

is that (4.7) is exact for any sample. Hence (4.3) may be thought of as an

approximation to (4.7), the idea being that many of the coe�cients in (4.7)

may be close to zero. Recall from Example 2.9 that

P (j/n) = a2j + b2j , (4.8)

so the scaled periodogram indicates which components in (4.7) are large in

magnitude and which components are small. We also saw (4.8) in Example 4.2.

The periodogram, which was introduced in Schuster (1898) and used in

Schuster (1906) for studying the periodicities in the sunspot series (shown in
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180 4 Spectral Analysis and Filtering

Figure 4.31 in the Problems section) is a sample based statistic. In Exam-

ple 4.2, we discussed the fact that the periodogram may be giving us an idea

of the variance components associated with each frequency, as presented in

(4.5), of a time series. These variance components, however, are population

parameters. The concepts of population parameters and sample statistics, as

they relate to spectral analysis of time series can be generalized to cover sta-

tionary time series and that is the topic of the next section.

4.3 The Spectral Density

The idea that a time series is composed of periodic components, appearing

in proportion to their underlying variances, is fundamental in the spectral

representation. The result is quite technical because it involves stochastic in-

tegration; that is, integration with respect to a stochastic process. The essence

of the result is that (4.3) is approximately true for any stationary time series.

In other words, we have the following.

Property 4.1 Spectral Representation of a Stationary Process
In nontechnical terms, any stationary time series may be thought of, ap-

proximately, as the random superposition of sines and cosines oscillating at
various frequencies.

Given that (4.3) is approximately true for all stationary time series, the next

question is whether a meaningful representation for its autocovariance func-

tion, like the one displayed in (4.4), also exists. The answer is yes. The fol-

lowing example will help explain the result.

Example 4.3 A Periodic Stationary Process

Consider a periodic stationary random process given by (4.2), with a fixed

frequency !0, say,

xt = U1 cos(2⇡!0t) + U2 sin(2⇡!0t),

where U1 and U2 are independent zero-mean random variables with equal

variance �

2
. The number of time periods needed for the above series to

complete one cycle is exactly 1/!0, and the process makes exactly !0 cycles

per point for t = 0,±1,±2, . . .. It is easily shown that

3

�(h) = �

2
cos(2⇡!0h) =

�

2

2

e

�2⇡i!0h
+

�

2

2

e

2⇡i!0h

=

Z 1/2

�1/2
e

2⇡i!hdF (!)

3 Some identities may be helpful here: ei↵ = cos(↵) + i sin(↵) and consequently,
cos(↵) = (ei↵ + e�i↵)/2 and sin(↵) = (ei↵ � e�i↵)/2i.
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4.3 The Spectral Density 181

using a Riemann–Stieltjes integration, where F (!) is the function defined by

F (!) =

8

>

<

>

:

0 ! < �!0,

�

2/2 �!0  ! < !0,

�

2
! � !0.

The function F (!) behaves like a cumulative distribution function for a dis-

crete random variable, except that F (1) = �

2
= var(xt) instead of one.

In fact, F (!) is a cumulative distribution function, not of probabilities, but

rather of variances associated with the frequency !0 in an analysis of vari-

ance, with F (1) being the total variance of the process xt. Hence, we term

F (!) the spectral distribution function.

A representation such as the one given in Example 4.3 always exists for a

stationary process. In particular, if xt is stationary with autocovariance �(h) =
E[(xt+h � µ)(xt � µ)], then there exists a unique monotonically increasing

function F (!), called the spectral distribution function, that is bounded, with

F (�1) = F (�1/2) = 0, and F (1) = F (1/2) = �(0) such that

�(h) =

Z 1/2

�1/2
e

2⇡i!h dF (!). (4.9)

A more important situation we use repeatedly is the case when the au-

tocovariance function is absolutely summable, in which case the spectral dis-

tribution function is absolutely continuous with dF (!) = f(!) d!, and the

representation (4.9) becomes the motivation for the property given below.

Property 4.2 The Spectral Density
If the autocovariance function, �(h), of a stationary process satisfies

1
X

h=�1
|�(h)| < 1, (4.10)

then it has the representation

�(h) =

Z 1/2

�1/2
e

2⇡i!h f(!) d! h = 0,±1,±2, . . . (4.11)

as the inverse transform of the spectral density, which has the representation

f(!) =
1
X

h=�1
�(h)e�2⇡i!h � 1/2  !  1/2. (4.12)

This spectral density is the analogue of the probability density function;

the fact that �(h) is non-negative definite ensures
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f(!) � 0

for all !. It follows immediately from (4.12) that

f(!) = f(�!)
verifying the spectral density is an even function. Because of the evenness, we

will typically only plot f(!) for ! � 0. In addition, putting h = 0 in (4.11)

yields

�(0) = var(xt) =

Z 1/2

�1/2
f(!) d!,

which expresses the total variance as the integrated spectral density over all of

the frequencies. We show later on, that a linear filter can isolate the variance

in certain frequency intervals or bands.

Analogous to probability theory, �(h) in (4.11) is the characteristic func-

tion

4
of the spectral density f(!) in (4.12). These facts should make it clear

that, when the conditions of Property 4.2 are satisfied, the autocovariance
function, �(h), and the spectral density function, f(!), contain the same in-
formation. That information, however, is expressed in di↵erent ways. The

autocovariance function expresses information in terms of lags, whereas the

spectral density expresses the same information in terms of cycles. Some prob-

lems are easier to work with when considering lagged information and we

would tend to handle those problems in the time domain. Nevertheless, other

problems are easier to work with when considering periodic information and

we would tend to handle those problems in the spectral domain.

We note that the autocovariance function, �(h), in (4.11) and the spectral

density, f(!), in (4.12) are Fourier transform pairs. In particular, this means

that if f(!) and g(!) are two spectral densities for which

�f (h) =

Z 1/2

�1/2
f(!)e2⇡i!h d! =

Z 1/2

�1/2
g(!)e2⇡i!h d! = �g(h) (4.13)

for all h = 0,±1,±2, . . . , then

f(!) = g(!). (4.14)

We also mention, at this point, that we have been focusing on the frequency

!, expressed in cycles per point rather than the more common (in statistics)

alternative � = 2⇡! that would give radians per point. Finally, the absolute

summability condition, (4.10), is not satisfied by (4.4), the example that we

have used to introduce the idea of a spectral representation. The condition,

however, is satisfied for ARMA models.

It is illuminating to examine the spectral density for the series that we

have looked at in earlier discussions.

4 If M

X

(�) = E(e�X) for � 2 R is the moment generating function of random
variable X, then '

X

(�) = M

X

(i�) is the characteristic function.
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Example 4.4 White Noise Series

As a simple example, consider the theoretical power spectrum of a sequence

of uncorrelated random variables, wt, with variance �

2
w. A simulated set

of data is displayed in the top of Figure 1.8. Because the autocovariance

function was computed in Example 1.16 as �w(h) = �

2
w for h = 0, and zero,

otherwise, it follows from (4.12), that

fw(!) = �

2
w

for �1/2  !  1/2. Hence the process contains equal power at all fre-

quencies. This property is seen in the realization, which seems to contain all

di↵erent frequencies in a roughly equal mix. In fact, the name white noise

comes from the analogy to white light, which contains all frequencies in the

color spectrum at the same level of intensity. Figure 4.3 shows a plot of the

white noise spectrum for �

2
w = 1.

If xt is ARMA, its spectral density can be obtained explicitly using the

fact that it is a linear process, i.e., xt =
P1

j=0  jwt�j , where
P1

j=0 | j | < 1.

In the following property, we exhibit the form of the spectral density of an

ARMA model. The proof of the property follows directly from the proof of a

more general result, Property 4.7 given on page 221, by using the additional

fact that  (z) = ✓(z)/�(z); recall Property 3.1.

Property 4.3 The Spectral Density of ARMA
If xt is ARMA(p, q), �(B)xt = ✓(B)wt, its spectral density is given by

fx(!) = �

2
w

|✓(e�2⇡i!
)|2

|�(e�2⇡i!
)|2 (4.15)

where �(z) = 1�Pp
k=1 �kz

k and ✓(z) = 1 +

Pq
k=1 ✓kz

k.

Example 4.5 Moving Average

As an example of a series that does not have an equal mix of frequencies,

we consider a moving average model. Specifically, consider the MA(1) model

given by

xt = wt + .5wt�1.

A sample realization is shown in the top of Figure 3.2 and we note that the

series has less of the higher or faster frequencies. The spectral density will

verify this observation.

The autocovariance function is displayed in Example 3.4 on page 90, and

for this particular example, we have

�(0) = (1 + .52)�2
w = 1.25�2

w; �(±1) = .5�2
w; �(±h) = 0 for h > 1.

Substituting this directly into the definition given in (4.12), we have
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Fig. 4.3. Theoretical spectra of white noise (top), a first-order moving average
(middle), and a second-order autoregressive process (bottom).

f(!) =
1
X

h=�1
�(h) e�2⇡i!h

= �

2
w

⇥

1.25 + .5
�

e

�2⇡i!
+ e

2⇡!
�⇤

= �

2
w [1.25 + cos(2⇡!)] .

(4.16)

We can also compute the spectral density using Property 4.3, which states

that for an MA, f(!) = �

2
w|✓(e�2⇡i!

)|2. Because ✓(z) = 1 + .5z, we have

|✓(e�2⇡i!
)|2 = |1 + .5e�2⇡i!|2 = (1 + .5e�2⇡i!

)(1 + .5e2⇡i!)

= 1.25 + .5
�

e

�2⇡i!
+ e

2⇡!
�

which leads to agreement with (4.16).

Plotting the spectrum for �

2
w = 1, as in the middle of Figure 4.3, shows

the lower or slower frequencies have greater power than the higher or faster

frequencies.

Example 4.6 A Second-Order Autoregressive Series

We now consider the spectrum of an AR(2) series of the form

xt � �1xt�1 � �2xt�2 = wt,
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for the special case �1 = 1 and �2 = �.9. Figure 1.9 on page 14 shows a

sample realization of such a process for �w = 1. We note the data exhibit a

strong periodic component that makes a cycle about every six points.

To use Property 4.3, note that ✓(z) = 1, �(z) = 1� z + .9z2 and

|�(e�2⇡i!
)|2 = (1� e

�2⇡i!
+ .9e�4⇡i!

)(1� e

2⇡i!
+ .9e4⇡i!)

= 2.81� 1.9(e2⇡i! + e

�2⇡i!
) + .9(e4⇡i! + e

�4⇡i!
)

= 2.81� 3.8 cos(2⇡!) + 1.8 cos(4⇡!).

Using this result in (4.15), we have that the spectral density of xt is

fx(!) =
�

2
w

2.81� 3.8 cos(2⇡!) + 1.8 cos(4⇡!)
.

Setting �w = 1, the bottom of Figure 4.3 displays fx(!) and shows a strong

power component at about ! = .16 cycles per point or a period between

six and seven cycles per point and very little power at other frequencies. In

this case, modifying the white noise series by applying the second-order AR

operator has concentrated the power or variance of the resulting series in a

very narrow frequency band.

The spectral density can also be obtained from first principles, without

having to use Property 4.3. Because wt = xt�xt�1+ .9xt�2 in this example,

we have

�w(h) = cov(wt+h, wt)

= cov(xt+h � xt+h�1 + .9xt+h�2, xt � xt�1 + .9xt�2)

= 2.81�x(h)� 1.9[�x(h+ 1) + �x(h� 1)] + .9[�x(h+ 2) + �x(h� 2)]

Now, substituting the spectral representation (4.11) for �x(h) in the above

equation yields

�w(h)=

Z 1/2

�1/2

⇥

2.81� 1.9(e2⇡i!+ e

�2⇡i!
) + .9(e4⇡i!+ e

�4⇡i!
)

⇤

e

2⇡i!hfx(!)d!

=

Z 1/2

�1/2

⇥

2.81� 3.8 cos(2⇡!) + 1.8 cos(4⇡!)
⇤

e

2⇡i!hfx(!)d!.

If the spectrum of the white noise process, wt, is gw(!), the uniqueness of

the Fourier transform allows us to identify

gw(!) = [2.81� 3.8 cos(2⇡!) + 1.8 cos(4⇡!)] fx(!).

But, as we have already seen, gw(!) = �

2
w, from which we deduce that

fx(!) =
�

2
w

2.81� 3.8 cos(2⇡!) + 1.8 cos(4⇡!)

is the spectrum of the autoregressive series.

To reproduce Figure 4.3, use the spec.arma script (see §R.1):
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par(mfrow=c(3,1))
spec.arma(log="no", main="White Noise")
spec.arma(ma=.5, log="no", main="Moving Average")
spec.arma(ar=c(1,-.9), log="no", main="Autoregression")

The above examples motivate the use of the power spectrum for describing

the theoretical variance fluctuations of a stationary time series. Indeed, the

interpretation of the spectral density function as the variance of the time series

over a given frequency band gives us the intuitive explanation for its physical

meaning. The plot of the function f(!) over the frequency argument ! can

even be thought of as an analysis of variance, in which the columns or block

e↵ects are the frequencies, indexed by !.

Example 4.7 Every Explosion has a Cause (cont)
In Example 3.3, we discussed the fact that explosive models have causal

counterparts. In that example, we also indicated that it was easier to show

this result in general in the spectral domain. In this example, we give the

details for an AR(1) model, but the techniques used here will indicate how

to generalize the result.

As in Example 3.3, we suppose that xt = 2xt�1 + wt, where wt ⇠ iid

N(0,�2
w). Then, the spectral density of xt is

fx(!) = �

2
w |1� 2e�2⇡i!|�2. (4.17)

But,

|1� 2e�2⇡i!| = |1� 2e2⇡i!| = |(2e2⇡i!) ( 12e�2⇡i! � 1)| = 2 |1� 1
2e

�2⇡i!|.
Thus, (4.17) can be written as

fx(!) =
1
4�

2
w |1� 1

2e
�2⇡i!|�2,

which implies that xt =
1
2xt�1 + vt, with vt ⇠ iid N(0, 1

4�
2
w) is an equivalent

form of the model.

4.4 Periodogram and Discrete Fourier Transform

We are now ready to tie together the periodogram, which is the sample-based

concept presented in §4.2, with the spectral density, which is the population-

based concept of §4.3.
Definition 4.1 Given data x1, . . . , xn, we define the discrete Fourier trans-
form (DFT) to be

d(!j) = n�1/2
n
X

t=1

xte
�2⇡i!

j

t
(4.18)

for j = 0, 1, . . . , n� 1, where the frequencies !j = j/n are called the Fourier
or fundamental frequencies.





i
i

“tsa3” — 2015/8/18 — 22:47 — page 187 — #197 i
i

i
i

i
i

4.4 Periodogram and Discrete Fourier Transform 187

If n is a highly composite integer (i.e., it has many factors), the DFT

can be computed by the fast Fourier transform (FFT) introduced in Cooley

and Tukey (1965). Also, di↵erent packages scale the FFT di↵erently, so it is

a good idea to consult the documentation. R computes the DFT defined in

(4.18) without the factor n�1/2
, but with an additional factor of e2⇡i!j

that

can be ignored because we will be interested in the squared modulus of the

DFT. Sometimes it is helpful to exploit the inversion result for DFTs which

shows the linear transformation is one-to-one. For the inverse DFT we have,

xt = n�1/2
n�1
X

j=0

d(!j)e
2⇡i!

j

t
(4.19)

for t = 1, . . . , n. The following example shows how to calculate the DFT and

its inverse in R for the data set {1, 2, 3, 4}; note that R writes a complex

number z = a+ ib as a+bi.

(dft = fft(1:4)/sqrt(4))

[1] 5+0i -1+1i -1+0i -1-1i

(idft = fft(dft, inverse=TRUE)/sqrt(4))

[1] 1+0i 2+0i 3+0i 4+0i

(Re(idft)) # keep it real

[1] 1 2 3 4

We now define the periodogram as the squared modulus

5
of the DFT.

Definition 4.2 Given data x1, . . . , xn, we define the periodogram to be

I(!j) = |d(!j)|2 (4.20)

for j = 0, 1, 2, . . . , n� 1.

Note that I(0) = nx̄2
, where x̄ is the sample mean. In addition, because

Pn
t=1 exp(�2⇡it jn ) = 0 for j 6= 0,

6
we can write the DFT as

d(!j) = n�1/2
n
X

t=1

(xt � x̄)e�2⇡i!
j

t
(4.21)

for j 6= 0. Thus, for j 6= 0,

I(!j) = |d(!j)|2 = n�1
n
X

t=1

n
X

s=1

(xt � x̄)(xs � x̄)e�2⇡i!
j

(t�s)

= n�1
n�1
X

h=�(n�1)

n�|h|
X

t=1

(xt+|h| � x̄)(xt � x̄)e�2⇡i!
j

h

=

n�1
X

h=�(n�1)

b�(h)e�2⇡i!
j

h
(4.22)

5 Recall that if z = a+ ib, then z̄ = a� ib, and |z|

2 = zz̄ = a

2 + b

2.
6 P

n

t=1 z
t = z

1�z

n

1�z

for z 6= 1.
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where we have put h = t� s, with b�(h) as given in (1.34).

7

Recall, P (!j) = (4/n)I(!j) where P (!j) is the scaled periodogram defined

in (4.6). Henceforth we will work with I(!j) instead of P (!j). In view of (4.22),

the periodogram, I(!j), is the sample version of f(!j) given in (4.12). That

is, we may think of the periodogram as the “sample spectral density” of xt.

It is sometimes useful to work with the real and imaginary parts of the

DFT individually. To this end, we define the following transforms.

Definition 4.3 Given data x1, . . . , xn, we define the cosine transform

dc(!j) = n�1/2
n
X

t=1

xt cos(2⇡!jt) (4.23)

and the sine transform

ds(!j) = n�1/2
n
X

t=1

xt sin(2⇡!jt) (4.24)

where !j = j/n for j = 0, 1, . . . , n� 1.

We note that d(!j) = dc(!j)� i ds(!j) and hence

I(!j) = d2c(!j) + d2s(!j). (4.25)

We have also discussed the fact that spectral analysis can be thought of

as an analysis of variance. The next example examines this notion.

Example 4.8 Spectral ANOVA
Let x1, . . . , xn be a sample of size n, where for ease, n is odd. Then, recalling

Example 2.9 on page 67 and the discussion around (4.7) and (4.8),

xt = a0 +
m
X

j=1

[aj cos(2⇡!jt) + bj sin(2⇡!jt)] , (4.26)

where m = (n� 1)/2, is exact for t = 1, . . . , n. In particular, using multiple

regression formulas, we have a0 = x̄,

aj =
2

n

n
X

t=1

xt cos(2⇡!jt) =
2p
n
dc(!j)

bj =
2

n

n
X

t=1

xt sin(2⇡!jt) =
2p
n
ds(!j).

Hence, we may write

7 Note that (4.22) can be used to obtain b�(h) by taking the inverse DFT of I(!
j

).
This approach was used in Example 1.27 to obtain a two-dimensional ACF.
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(xt � x̄) =
2p
n

m
X

j=1

[dc(!j) cos(2⇡!jt) + ds(!j) sin(2⇡!jt)]

for t = 1, . . . , n. Squaring both sides and summing we obtain

n
X

t=1

(xt � x̄)2 = 2

m
X

j=1

⇥

d2c(!j) + d2s(!j)
⇤

= 2

m
X

j=1

I(!j)

using the results of Problem 2.10(d) on page 81. Thus, we have partitioned

the sum of squares into harmonic components represented by frequency !j

with the periodogram, I(!j), being the mean square regression. This leads

to the ANOVA table for n odd:

Source df SS MS

!1 2 2I(!1) I(!1)

!2 2 2I(!2) I(!2)

.

.

.

.

.

.

.

.

.

.

.

.

!m 2 2I(!m) I(!m)

Total n� 1

Pn
t=1(xt � x̄)2

This decomposition means that if the data contain some strong periodic

components, the periodogram values corresponding to those frequencies (or

near those frequencies) will be large. On the other hand, the corresponding

values of the periodogram will be small for periodic components not present

in the data.

The following is an R example to help explain this concept. We consider

n = 5 observations given by x1 = 1, x2 = 2, x3 = 3, x4 = 2, x5 = 1. Note that

the data complete one cycle, but not in a sinusoidal way. Thus, we should

expect the !1 = 1/5 component to be relatively large but not exhaustive,

and the !2 = 2/5 component to be small.

x = c(1, 2, 3, 2, 1)
c1 = cos(2*pi*1:5*1/5); s1 = sin(2*pi*1:5*1/5)
c2 = cos(2*pi*1:5*2/5); s2 = sin(2*pi*1:5*2/5)
omega1 = cbind(c1, s1); omega2 = cbind(c2, s2)
anova(lm(x~omega1+omega2)) # ANOVA Table

Df Sum Sq Mean Sq
omega1 2 2.74164 1.37082
omega2 2 .05836 .02918
Residuals 0 .00000

abs(fft(x))^2/5 # the periodogram (as a check)

[1] 16.2 1.37082 .029179 .029179 1.37082
# I(0) I(1/5) I(2/5) I(3/5) I(4/5)

Note that x̄ = 1.8, and I(0) = 16.2 = 5⇥ 1.82(= nx̄2
). Also, note that

I(1/5) = 1.37082 = Mean Sq(!1) and I(2/5) = .02918 = Mean Sq(!2)
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and I(j/5) = I(1�j/5), for j = 3, 4. Finally, we note that the sum of squares

associated with the residuals (SSE) is zero, indicating an exact fit.

We are now ready to present some large sample properties of the peri-

odogram. First, let µ be the mean of a stationary process xt with absolutely

summable autocovariance function �(h) and spectral density f(!). We can

use the same argument as in (4.22), replacing x̄ by µ in (4.21), to write

I(!j) = n�1
n�1
X

h=�(n�1)

n�|h|
X

t=1

(xt+|h| � µ)(xt � µ)e�2⇡i!
j

h
(4.27)

where !j is a non-zero fundamental frequency. Taking expectation in (4.27)

we obtain

E [I(!j)] =

n�1
X

h=�(n�1)

✓

n� |h|
n

◆

�(h)e�2⇡i!
j

h. (4.28)

For any given ! 6= 0, choose a sequence of fundamental frequencies !j:n ! !

8

from which it follows by (4.28) that, as n ! 19

E [I(!j:n)] ! f(!) =
1
X

h=�1
�(h)e�2⇡ih!. (4.29)

In other words, under absolute summability of �(h), the spectral density is

the long-term average of the periodogram.

To examine the asymptotic distribution of the periodogram, we note that

if xt is a normal time series, the sine and cosine transforms will also be jointly

normal, because they are linear combinations of the jointly normal random

variables x1, x2, . . . , xn. In that case, the assumption that the covariance func-

tion satisfies the condition

✓ =

1
X

h=�1
|h||�(h)| < 1 (4.30)

is enough to obtain simple large sample approximations for the variances and

covariances. Using the same argument used to develop (4.28) we have

cov[dc(!j), dc(!k)] = n�1
n
X

s=1

n
X

t=1

�(s� t) cos(2⇡!js) cos(2⇡!kt), (4.31)

cov[dc(!j), ds(!k)] = n�1
n
X

s=1

n
X

t=1

�(s� t) cos(2⇡!js) sin(2⇡!kt), (4.32)

8 By this we mean !
j:n = j

n

/n, where {j

n

} is a sequence of integers chosen so that
j

n

/n is the closest Fourier frequency to !; consequently, |j
n

/n� !| 

1
2n .

9 From Definition 4.2 we have I(0) = nx̄

2, so the analogous result of (4.29) for the
case ! = 0 is E[I(0)]� nµ

2 = n var(x̄) ! f(0) as n ! 1.
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and

cov[ds(!j), ds(!k)] = n�1
n
X

s=1

n
X

t=1

�(s� t) sin(2⇡!js) sin(2⇡!kt), (4.33)

where the variance terms are obtained by setting !j = !k in (4.31) and (4.33).

In Appendix C, §C.2, we show the terms in (4.31)-(4.33) have interesting

properties under assumption (4.30), namely, for !j ,!k 6= 0 or 1/2,

cov[dc(!j), dc(!k)] =

(

f(!j)/2 + "n !j = !k,

"n !j 6= !k,
(4.34)

cov[ds(!j), ds(!k)] =

(

f(!j)/2 + "n !j = !k,

"n !j 6= !k,
(4.35)

and

cov[dc(!j), ds(!k)] = "n, (4.36)

where the error term "n in the approximations can be bounded,

|"n|  ✓/n, (4.37)

and ✓ is given by (4.30). If !j = !k = 0 or 1/2 in (4.34), the multiplier 1/2
disappears; note that ds(0) = ds(1/2) = 0, so (4.35) does not apply.

Example 4.9 Covariance of Sine and Cosine Transforms

For the three-point moving average series of Example 1.9 and n = 256 obser-

vations, the theoretical covariance matrix of the vector ddd = (dc(!26), ds(!26),
dc(!27), ds(!27))

0
is

cov(ddd) =

0

B

B

@

.3752 � .0009 � .0022 � .0010
�.0009 .3777 �.0009 .0003
�.0022 �.0009 .3667 �.0010
�.0010 .0003 �.0010 .3692

1

C

C

A

.

The diagonal elements can be compared with half the theoretical spectral

values of

1
2f(!26) = .3774 for the spectrum at frequency !26 = 26/256, and

of

1
2f(!27) = .3689 for the spectrum at !27 = 27/256. Hence, the cosine and

sine transforms produce nearly uncorrelated variables with variances approx-

imately equal to one half of the theoretical spectrum. For this particular case,

the uniform bound is determined from ✓ = 8/9, yielding |"256|  .0035 for

the bound on the approximation error.

If xt ⇠ iid(0,�2
), then it follows from (4.30)-(4.36), Problem 2.10(d), and

a central limit theorem

10
that

10 If Y
j

⇠ iid(0,�2) and {a

j

} are constants for which
P

n

j=1 a
2
j

/max1jn

a

2
j

! 1

as n ! 1, then
P

n

j=1 aj

Y

j

⇠ AN
⇣

0,�2 Pn

j=1 a
2
j

⌘

. AN is read asymptotically

normal.
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dc(!j:n) ⇠ AN(0,�2/2) and ds(!j:n) ⇠ AN(0,�2/2) (4.38)

jointly and independently, and independent of dc(!k:n) and ds(!k:n) provided

!j:n ! !1 and !k:n ! !2 where 0 < !1 6= !2 < 1/2. We note that in this

case, fx(!) = �

2
. In view of (4.38), it follows immediately that as n ! 1,

2I(!j:n)

�

2

d! �

2
2 and

2I(!k:n)

�

2

d! �

2
2 (4.39)

with I(!j:n) and I(!k:n) being asymptotically independent, where �

2
⌫ denotes

a chi-squared random variable with ⌫ degrees of freedom.

Using the central limit theory of §C.2, it is fairly easy to extend the results

of the iid case to the case of a linear process.

Property 4.4 Distribution of the Periodogram Ordinates
If

xt =

1
X

j=�1
 jwt�j ,

1
X

j=�1
| j | < 1 (4.40)

where wt ⇠ iid(0,�2
w), and (4.30) holds, then for any collection of m distinct

frequencies !j 2 (0, 1/2) with !j:n ! !j

2I(!j:n)

f(!j)

d! iid �

2
2 (4.41)

provided f(!j) > 0, for j = 1, . . . ,m.

This result is stated more precisely in Theorem C.7 of §C.3. Other ap-

proaches to large sample normality of the periodogram ordinates are in terms

of cumulants, as in Brillinger (1981), or in terms of mixing conditions, such as

in Rosenblatt (1956a). Here, we adopt the approach used by Hannan (1970),

Fuller (1996), and Brockwell and Davis (1991).

The distributional result (4.41) can be used to derive an approximate

confidence interval for the spectrum in the usual way. Let �

2
⌫(↵) denote the

lower ↵ probability tail for the chi-squared distribution with ⌫ degrees of

freedom; that is,

Pr{�2
⌫  �

2
⌫(↵)} = ↵. (4.42)

Then, an approximate 100(1�↵)% confidence interval for the spectral density

function would be of the form

2 I(!j:n)

�

2
2(1� ↵/2)

 f(!)  2 I(!j:n)

�

2
2(↵/2)

. (4.43)

Often, nonstationary trends are present that should be eliminated before

computing the periodogram. Trends introduce extremely low frequency com-

ponents in the periodogram that tend to obscure the appearance at higher

frequencies. For this reason, it is usually conventional to center the data prior
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to a spectral analysis using either mean-adjusted data of the form xt � x̄ to

eliminate the zero or d-c component or to use detrended data of the form

xt � b

�1 � b

�2t to eliminate the term that will be considered a half cycle by

the spectral analysis. Note that higher order polynomial regressions in t or

nonparametric smoothing (linear filtering) could be used in cases where the

trend is nonlinear.

As previously indicated, it is often convenient to calculate the DFTs, and

hence the periodogram, using the fast Fourier transform algorithm. The FFT

utilizes a number of redundancies in the calculation of the DFT when n is

highly composite; that is, an integer with many factors of 2, 3, or 5, the best

case being when n = 2

p
is a factor of 2. Details may be found in Cooley and

Tukey (1965). To accommodate this property, we can pad the centered (or

detrended) data of length n to the next highly composite integer n0
by adding

zeros, i.e., setting xc
n+1 = xc

n+2 = · · · = xc
n0 = 0, where xc

t denotes the centered

data. This means that the fundamental frequency ordinates will be !j = j/n0

instead of j/n. We illustrate by considering the periodogram of the SOI and

Recruitment series, as has been given in Figure 1.5 of Chapter 1. Recall that

they are monthly series and n = 453 months. To find n0
in R, use the command

nextn(453) to see that n0
= 480 will be used in the spectral analyses by

default [use help(spec.pgram) to see how to override this default].

Example 4.10 Periodogram of SOI and Recruitment Series

Figure 4.4 shows the periodograms of each series, where the frequency axis

is labeled in multiples of � = 1/12. As previously indicated, the centered

data have been padded to a series of length 480. We notice a narrow-band

peak at the obvious yearly (12 month) cycle, ! = 1� = 1/12. In addition,

there is considerable power in a wide band at the lower frequencies that is

centered around the four-year (48 month) cycle ! =

1
4� = 1/48 representing

a possible El Niño e↵ect. This wide band activity suggests that the possible

El Niño cycle is irregular, but tends to be around four years on average.

We will continue to address this problem as we move to more sophisticated

analyses.

Noting �

2
2(.025) = .05 and �

2
2(.975) = 7.38, we can obtain approximate

95% confidence intervals for the frequencies of interest. For example, the

periodogram of the SOI series is IS(1/12) = .97 at the yearly cycle. An

approximate 95% confidence interval for the spectrum fS(1/12) is then

[2(.97)/7.38, 2(.97)/.05] = [.26, 38.4],

which is too wide to be of much use. We do notice, however, that the lower

value of .26 is higher than any other periodogram ordinate, so it is safe to

say that this value is significant. On the other hand, an approximate 95%

confidence interval for the spectrum at the four-year cycle, fS(1/48), is

[2(.05)/7.38, 2(.05)/.05] = [.01, 2.12],
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Fig. 4.4. Periodogram of SOI and Recruitment, n = 453 (n0 = 480), where the
frequency axis is labeled in multiples of � = 1/12. Note the common peaks at
! = 1� = 1/12, or one cycle per year (12 months), and ! = 1

4� = 1/48, or one
cycle every four years (48 months).

which again is extremely wide, and with which we are unable to establish

significance of the peak.

We now give the R commands that can be used to reproduce Figure 4.4.

To calculate and graph the periodogram, we used the spec.pgram command

in R. We note that the value of � is the reciprocal of the value of frequency
used in ts() when making the data a time series object. If the data are not

time series objects, frequency is set to 1. Also, we set log="no" because R

will plot the periodogram on a log10 scale by default. Figure 4.4 displays a

bandwidth. We will discuss bandwidth and tapering in the next section, so

ignore these concepts for the time being.

require(astsa) # needed for mvspec() - otherwise use spec.pgram()
par(mfrow=c(2,1))
soi.per = mvspec(soi, log="no")
abline(v=1/4, lty="dotted")
rec.per = mvspec(rec, log="no")
abline(v=1/4, lty="dotted")
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The confidence intervals for the SOI series at the yearly cycle, ! = 1/12 =

40/480, and the possible El Niño cycle of four years ! = 1/48 = 10/480 can

be computed in R as follows:

soi.per$spec[40] # 0.97223; soi pgram at freq 1/12 = 40/480
soi.per$spec[10] # 0.05372; soi pgram at freq 1/48 = 10/480
# conf intervals - returned value:
U = qchisq(.025,2) # 0.05063
L = qchisq(.975,2) # 7.37775
2*soi.per$spec[10]/L # 0.01456
2*soi.per$spec[10]/U # 2.12220
2*soi.per$spec[40]/L # 0.26355
2*soi.per$spec[40]/U # 38.40108

The example above makes it clear that the periodogram as an estimator

is susceptible to large uncertainties, and we need to find a way to reduce

the variance. Not surprisingly, this result follows if we think about the peri-

odogram, I(!j) as an estimator of the spectral density f(!) and realize that

it is the sum of squares of only two random variables for any sample size. The

solution to this dilemma is suggested by the analogy with classical statistics

where we look for independent random variables with the same variance and

average the squares of these common variance observations. Independence and

equality of variance do not hold in the time series case, but the covariance

structure of the two adjacent estimators given in Example 4.9 suggests that

for neighboring frequencies, these assumptions are approximately true.

4.5 Nonparametric Spectral Estimation

To continue the discussion that ended the previous section, we introduce a

frequency band, B, of L << n contiguous fundamental frequencies, centered

around frequency !j = j/n, which is chosen close to a frequency of interest,

!. For frequencies of the form !

⇤
= !j + k/n, let

B =

⇢

!

⇤
: !j � m

n
 !

⇤  !j +
m

n

�

, (4.44)

where

L = 2m+ 1 (4.45)

is an odd number, chosen such that the spectral values in the interval B,

f(!j + k/n), k = �m, . . . , 0, . . . ,m

are approximately equal to f(!).
We now define an averaged (or smoothed) periodogram as the average of

the periodogram values, say,
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¯f(!) =
1

L

m
X

k=�m

I(!j + k/n), (4.46)

over the band B. Under the assumption that the spectral density is fairly

constant in the band B, and in view of (4.41) we can show that under appro-

priate conditions,

11
for large n, the periodograms in (4.46) are approximately

distributed as independent f(!)�2
2/2 random variables, for 0 < ! < 1/2, as

long as we keep L fairly small relative to n. This result is discussed formally

in §C.2. Thus, under these conditions, L ¯f(!) is the sum of L approximately

independent f(!)�2
2/2 random variables. It follows that, for large n,

2L ¯f(!)

f(!)
·⇠ �

2
2L (4.47)

where

·⇠ means is approximately distributed as.
In this scenario, where we smooth the periodogram by simple averaging, it

seems reasonable to call the width of the frequency interval defined by (4.44),

Bw =

L

n
, (4.48)

the bandwidth.

12
The concept of the bandwidth, however, becomes more com-

plicated with the introduction of spectral estimators that smooth with unequal

weights. Note (4.48) implies the degrees of freedom can be expressed as

2L = 2Bwn, (4.49)

or twice the time-bandwidth product. The result (4.47) can be rearranged to

obtain an approximate 100(1� ↵)% confidence interval of the form

2L ¯f(!)

�

2
2L(1� ↵/2)

 f(!)  2L ¯f(!)

�

2
2L(↵/2)

(4.50)

for the true spectrum, f(!).
Many times, the visual impact of a spectral density plot will be improved

by plotting the logarithm of the spectrum instead of the spectrum (the log

11 The conditions, which are su�cient, are that x

t

is a linear process, as described
in Property 4.4, with

P

j

p

|j| | 

j

| < 1, and w

t

has a finite fourth moment.
12 The bandwidth value used in R is based on Grenander (1951). The basic idea

is that bandwidth can be related to the standard deviation of the weighting
distribution. For the uniform distribution on the frequency range �m/n to m/n,
the standard deviation is L/n

p

12 (using a continuity correction). Consequently,
in the case of (4.46), R will report a bandwidth of L/n

p

12, which amounts to
dividing our definition by

p

12. Note that in the extreme case L = n, we would
have B

w

= 1 indicating that everything was used in the estimation; in this case,
R would report a bandwidth of 1/

p

12. There are many definitions of bandwidth
and an excellent discussion may be found in Percival and Walden (1993, §6.7).
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transformation is the variance stabilizing transformation in this situation).

This phenomenon can occur when regions of the spectrum exist with peaks of

interest much smaller than some of the main power components. For the log

spectrum, we obtain an interval of the form

⇥

log

¯f(!) + log 2L� log�

2
2L(1� ↵/2),

log

¯f(!) + log 2L� log�

2
2L(↵/2)

⇤

. (4.51)

We can also test hypotheses relating to the equality of spectra using the

fact that the distributional result (4.47) implies that the ratio of spectra based

on roughly independent samples will have an approximate F2L,2L distribution.

The independent estimators can either be from di↵erent frequency bands or

from di↵erent series.
If zeros are appended before computing the spectral estimators, we need

to adjust the degrees of freedom and an approximation is to replace 2L by

2Ln/n0
. Hence, we define the adjusted degrees of freedom as

df =

2Ln

n0 (4.52)

and use it instead of 2L in the confidence intervals (4.50) and (4.51). For

example, (4.50) becomes

df ¯f(!)

�

2
df (1� ↵/2)

 f(!)  df ¯f(!)

�

2
df (↵/2)

. (4.53)

A number of assumptions are made in computing the approximate confi-

dence intervals given above, which may not hold in practice. In such cases, it

may be reasonable to employ resampling techniques such as one of the para-

metric bootstraps proposed by Hurvich and Zeger (1987) or a nonparametric

local bootstrap proposed by Paparoditis and Politis (1999). To develop the

bootstrap distributions, we assume that the contiguous DFTs in a frequency

band of the form (4.44) all came from a time series with identical spectrum

f(!). This, in fact, is exactly the same assumption made in deriving the large-

sample theory. We may then simply resample the L DFTs in the band, with

replacement, calculating a spectral estimate from each bootstrap sample. The

sampling distribution of the bootstrap estimators approximates the distribu-

tion of the nonparametric spectral estimator. For further details, including the

theoretical properties of such estimators, see Paparoditis and Politis (1999).

Before proceeding further, we pause to consider computing the average

periodograms for the SOI and Recruitment series, as shown in Figure 4.5.

Example 4.11 Averaged Periodogram for SOI and Recruitment

Generally, it is a good idea to try several bandwidths that seem to be compat-

ible with the general overall shape of the spectrum, as suggested by the pe-

riodogram. The SOI and Recruitment series periodograms, previously com-

puted in Figure 4.4, suggest the power in the lower El Niño frequency needs
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Fig. 4.5. The averaged periodogram of the SOI and Recruitment series n =
453, n

0 = 480, L = 9, df = 17, showing common peaks at the four year period,
! = 1

4� = 1/48 cycles/month, the yearly period, ! = 1� = 1/12 cycles/month and
some of its harmonics ! = k� for k = 2, 3.

smoothing to identify the predominant overall period. Trying values of L
leads to the choice L = 9 as a reasonable value, and the result is displayed

in Figure 4.5.

The smoothed spectra shown in Figure 4.5 provide a sensible compromise

between the noisy version, shown in Figure 4.4, and a more heavily smoothed

spectrum, which might lose some of the peaks. An undesirable e↵ect of av-
eraging can be noticed at the yearly cycle, ! = 1�, where the narrow band

peaks that appeared in the periodograms in Figure 4.4 have been flattened

and spread out to nearby frequencies. We also notice, and have marked,

the appearance of harmonics of the yearly cycle, that is, frequencies of the

form ! = k� for k = 1, 2, . . . . Harmonics typically occur when a periodic

component is present, but not in a sinusoidal fashion; see Example 4.12.

Figure 4.5 can be reproduced in R using the following commands. The

basic call is to the function mvspec, which is available in astsa; alternately,
use R’s spec.pgram. To compute averaged periodograms, use the Daniell
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Fig. 4.6. Figure 4.5 with the average periodogram ordinates plotted on a log10
scale. The display in the upper right-hand corner represents a generic 95% confidence
interval.

kernel, and specify m, where L = 2m+1 (L = 9 and m = 4 in this example).

We will explain the kernel concept later in this section, specifically just prior

to Example 4.13.

par(mfrow=c(2,1))
k = kernel("daniell", 4)
soi.ave = mvspec(soi, k, log="no")
abline(v=c(.25,1,2,3), lty=2)
# Repeat above lines using rec in place of soi on line 3
soi.ave$bandwidth # = 0.225

The displayed bandwidth (.225) is adjusted for the fact that the frequency

scale of the plot is in terms of cycles per year instead of cycles per month

(the original unit of the data). Using (4.48), the bandwidth in terms of

months is 9/480 = .01875; the displayed value is simply converted to years,

.01875⇥ 12 = .225.
The adjusted degrees of freedom are df = 2(9)(453)/480 ⇡ 17. We can

use this value for the 95% confidence intervals, with �

2
df (.025) = 7.56 and

�

2
df (.975) = 30.17. Substituting into (4.53) gives the intervals in Table 4.1
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Table 4.1. Confidence Intervals for the Spectra of the SOI and Recruitment Series

Series ! Period Power Lower Upper

SOI 1/48 4 years .05 .03 .11
1/12 1 year .12 .07 .27

Recruits 1/48 4 years 6.59 3.71 14.82
⇥102 1/12 1 year 2.19 1.24 4.93

for the two frequency bands identified as having the maximum power. To

examine the two peak power possibilities, we may look at the 95% confi-

dence intervals and see whether the lower limits are substantially larger than

adjacent baseline spectral levels. For example, the El Niño frequency of 48

months has lower limits that exceed the values the spectrum would have if

there were simply a smooth underlying spectral function without the peaks.

The relative distribution of power over frequencies is di↵erent, with the SOI

having less power at the lower frequency, relative to the seasonal periods,

and the recruit series having relatively more power at the lower or El Niño

frequency.

The entries in Table 4.1 for SOI can be obtained in R as follows:

df = soi.ave$df # df = 16.9875 (returned values)
U = qchisq(.025, df) # U = 7.555916
L = qchisq(.975, df) # L = 30.17425
soi.ave$spec[10] # 0.0495202
soi.ave$spec[40] # 0.1190800
# intervals
df*soi.ave$spec[10]/L # 0.0278789
df*soi.ave$spec[10]/U # 0.1113333
df*soi.ave$spec[40]/L # 0.0670396
df*soi.ave$spec[40]/U # 0.2677201
# repeat above commands with soi replaced by rec

Finally, Figure 4.6 shows the averaged periodograms in Figure 4.5 plotted

on a log10 scale. This is the default plot in R, and these graphs can be

obtained by removing the statement log="no". Notice that the default plot

also shows a generic confidence interval of the form (4.51) (with log replaced

by log10) in the upper right-hand corner. To use it, imagine placing the tick

mark on the averaged periodogram ordinate of interest; the resulting bar

then constitutes an approximate 95% confidence interval for the spectrum

at that frequency. We note that displaying the estimates on a log scale tends

to emphasize the harmonic components.

Example 4.12 Harmonics
In the previous example, we saw that the spectra of the annual signals dis-

played minor peaks at the harmonics; that is, the signal spectra had a large

peak at ! = 1� = 1/12 cycles/month (the one-year cycle) and minor peaks
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Fig. 4.7. A signal (thick solid line) formed by a fundamental sinusoid (thin solid
line) oscillating at two cycles per unit time and its harmonics as specified in (4.54).

at its harmonics ! = k� for k = 2, 3, . . . (two-, three-, and so on, cycles per

year). This will often be the case because most signals are not perfect sinu-

soids (or perfectly cyclic). In this case, the harmonics are needed to capture

the non-sinusoidal behavior of the signal. As an example, consider the signal

formed in Figure 4.7 from a (fundamental) sinusoid oscillating at two cycles

per unit time along with the second through sixth harmonics at decreasing

amplitudes. In particular, the signal was formed as

xt = sin(2⇡2t) + .5 sin(2⇡4t) + .4 sin(2⇡6t)

+ .3 sin(2⇡8t) + .2 sin(2⇡10t) + .1 sin(2⇡12t) (4.54)

for 0  t  1. Notice that the signal is non-sinusoidal in appearance and

rises quickly then falls slowly.

A figure similar to Figure 4.7 can be generated in R as follows.

t = seq(0, 1, by=1/200)
amps = c(1, .5, .4, .3, .2, .1)
x = matrix(0, 201, 6)
for (j in 1:6) x[,j] = amps[j]*sin(2*pi*t*2*j)
x = ts(cbind(x, rowSums(x)), start=0, deltat=1/200)
ts.plot(x, lty=c(1:6, 1), lwd=c(rep(1,6), 2), ylab="Sinusoids")
names = c("Fundamental","2nd Harmonic","3rd Harmonic","4th Harmonic",

"5th Harmonic", "6th Harmonic", "Formed Signal")
legend("topright", names, lty=c(1:6, 1), lwd=c(rep(1,6), 2))

Example 4.11 points out the necessity for having some relatively systematic

procedure for deciding whether peaks are significant. The question of deciding
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whether a single peak is significant usually rests on establishing what we might

think of as a baseline level for the spectrum, defined rather loosely as the shape

that one would expect to see if no spectral peaks were present. This profile

can usually be guessed by looking at the overall shape of the spectrum that

includes the peaks; usually, a kind of baseline level will be apparent, with

the peaks seeming to emerge from this baseline level. If the lower confidence

limit for the spectral value is still greater than the baseline level at some

predetermined level of significance, we may claim that frequency value as a

statistically significant peak. To be consistent with our stated indi↵erence to

the upper limits, we might use a one-sided confidence interval.

An important aspect of interpreting the significance of confidence inter-

vals and tests involving spectra is that typically, more than one frequency

will be of interest, so that we will potentially be interested in simultaneous

statements about a whole collection of frequencies. For example, it would be

unfair to claim in Table 4.1 the two frequencies of interest as being statistically

significant and all other potential candidates as nonsignificant at the overall

level of ↵ = .05. In this case, we follow the usual statistical approach, not-

ing that if K statements S1, S2, . . . , Sk are made at significance level ↵, i.e.,

P{Sk} = 1 � ↵, then the overall probability all statements are true satisfies

the Bonferroni inequality

P{all Sk true} � 1�K↵. (4.55)

For this reason, it is desirable to set the significance level for testing each

frequency at ↵/K if there are K potential frequencies of interest. If, a priori,

potentially K = 10 frequencies are of interest, setting ↵ = .01 would give an

overall significance level of bound of .10.

The use of the confidence intervals and the necessity for smoothing requires

that we make a decision about the bandwidth Bw over which the spectrum

will be essentially constant. Taking too broad a band will tend to smooth out

valid peaks in the data when the constant variance assumption is not met over

the band. Taking too narrow a band will lead to confidence intervals so wide

that peaks are no longer statistically significant. Thus, we note that there

is a conflict here between variance properties or bandwidth stability, which

can be improved by increasing Bw and resolution, which can be improved by

decreasing Bw. A common approach is to try a number of di↵erent bandwidths
and to look qualitatively at the spectral estimators for each case.

To address the problem of resolution, it should be evident that the flatten-

ing of the peaks in Figure 4.5 and Figure 4.6 was due to the fact that simple

averaging was used in computing

¯f(!) defined in (4.46). There is no partic-

ular reason to use simple averaging, and we might improve the estimator by

employing a weighted average, say

bf(!) =
m
X

k=�m

hk I(!j + k/n), (4.56)
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using the same definitions as in (4.46) but where the weights hk > 0 satisfy

m
X

k=�m

hk = 1.

In particular, it seems reasonable that the resolution of the estimator will

improve if we use weights that decrease as distance from the center weight

h0 increases; we will return to this idea shortly. To obtain the averaged pe-

riodogram,

¯f(!), in (4.56), set hk = L�1
, for all k, where L = 2m + 1.

The asymptotic theory established for

¯f(!) still holds for bf(!) provided that

the weights satisfy the additional condition that if m ! 1 as n ! 1 but

m/n ! 0, then

m
X

k=�m

h2
k ! 0.

Under these conditions, as n ! 1,

(i) E
⇣

bf(!)
⌘

! f(!)

(ii)

⇣

Pm
k=�m h2

k

⌘�1
cov

⇣

bf(!), bf(�)
⌘

! f2
(!) for ! = � 6= 0, 1/2.

In (ii), replace f2
(!) by 0 if ! 6= � and by 2f2

(!) if ! = � = 0 or 1/2.
We have already seen these results in the case of

¯f(!), where the weights

are constant, hk = L�1
, in which case

Pm
k=�m h2

k = L�1
. The distributional

properties of (4.56) are more di�cult now because

bf(!) is a weighted linear

combination of asymptotically independent �

2
random variables. An approx-

imation that seems to work well is to replace L by

�

Pm
k=�m h2

k

��1
. That is,

define

Lh =

 

m
X

k=�m

h2
k

!�1

(4.57)

and use the approximation

13

2Lh
bf(!)

f(!)
·⇠ �

2
2L

h

. (4.58)

In analogy to (4.48), we will define the bandwidth in this case to be

Bw =

Lh

n
. (4.59)

Using the approximation (4.58) we obtain an approximate 100(1� ↵)% con-

fidence interval of the form

13 The approximation proceeds as follows: If b

f

·
⇠ c�

2
⌫

, where c is a constant, then
E

b

f ⇡ c⌫ and var bf ⇡ f

2 P

k

h

2
k

⇡ c

22⌫. Solving, c ⇡ f

P

k

h

2
k

/2 = f/2L
h

and

⌫ ⇡ 2
�

P

k

h

2
k

��1
= 2L

h

.
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2Lh
bf(!)

�

2
2L

h

(1� ↵/2)
 f(!)  2Lh

bf(!)

�

2
2L

h

(↵/2)
(4.60)

for the true spectrum, f(!). If the data are padded to n0
, then replace 2Lh in

(4.60) with df = 2Lhn/n0
as in (4.52).

An easy way to generate the weights in R is by repeated use of the Daniell

kernel. For example, with m = 1 and L = 2m + 1 = 3, the Daniell kernel

has weights {hk} = { 1
3 ,

1
3 ,

1
3}; applying this kernel to a sequence of numbers,

{ut}, produces
but =

1
3ut�1 +

1
3ut +

1
3ut+1.

We can apply the same kernel again to the but,

b

but =
1
3but�1 +

1
3but +

1
3but+1,

which simplifies to

b

but =
1
9ut�2 +

2
9ut�1 +

3
9ut +

2
9ut+1 +

1
9ut+2.

The modified Daniell kernel puts half weights at the end points, so with m = 1

the weights are {hk} = { 1
4 ,

2
4 ,

1
4} and

but =
1
4ut�1 +

1
2ut +

1
4ut+1.

Applying the same kernel again to but yields

b

but =
1
16ut�2 +

4
16ut�1 +

6
16ut +

4
16ut+1 +

1
16ut+2.

These coe�cients can be obtained in R by issuing the kernel command.

For example, kernel("modified.daniell", c(1,1)) would produce the co-

e�cients of the last example. It is also possible to use di↵erent values of

m, e.g., try kernel("modified.daniell", c(1,2)) or kernel("daniell",
c(5,3)). The other kernels that are currently available in R are the Dirichlet

kernel and the Fejér kernel, which we will discuss shortly.

Example 4.13 Smoothed Periodogram for SOI and Recruitment

In this example, we estimate the spectra of the SOI and Recruitment se-

ries using the smoothed periodogram estimate in (4.56). We used a mod-

ified Daniell kernel twice, with m = 3 both times. This yields Lh =

1/
Pm

k=�m h2
k = 9.232, which is close to the value of L = 9 used in Ex-

ample 4.11. In this case, the bandwidth is Bw = 9.232/480 = .019 and the

modified degrees of freedom is df = 2Lh453/480 = 17.43. The weights, hk,

can be obtained and graphed in R as follows:

kernel("modified.daniell", c(3,3))

coef[-6] = 0.006944 = coef[ 6]
coef[-5] = 0.027778 = coef[ 5]
coef[-4] = 0.055556 = coef[ 4]
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Fig. 4.8. Smoothed spectral estimates of the SOI and Recruitment series; see Ex-
ample 4.13 for details.

coef[-3] = 0.083333 = coef[ 3]
coef[-2] = 0.111111 = coef[ 2]
coef[-1] = 0.138889 = coef[ 1]
coef[ 0] = 0.152778

plot(kernel("modified.daniell", c(3,3))) # not shown

The resulting spectral estimates can be viewed in Figure 4.8 and we notice

that the estimates more appealing than those in Figure 4.5. Figure 4.8 was

generated in R as follows; we also show how to obtain df and Bw.

par(mfrow=c(2,1))
k = kernel("modified.daniell", c(3,3))
soi.smo = mvspec(soi, k, log="no")
abline(v=1, lty="dotted"); abline(v=1/4, lty="dotted")
## Repeat above lines with rec replacing soi in line 3
df = soi.smo$df # df = 17.42618
soi.smo$bandwidth # Bw = 0.2308103

Reissuing the mvspec commands with log="no" removed will result in a

figure similar to Figure 4.6. Finally, we mention that the modified Daniell
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kernel is used by default. For example, an easier way to obtain soi.smo is

to issue the command:

soi.smo = mvspec(soi, spans=c(7,7))

Notice that spans is a vector of odd integers, given in terms of L = 2m+ 1

instead of m. These values give the widths of the modified Daniell smoother

to be used to smooth the periodogram.

We are now ready to briefly introduce the concept of tapering; a more

detailed discussion may be found in Bloomfield (2000, §9.5). Suppose xt is a

mean-zero, stationary process with spectral density fx(!). If we replace the

original series by the tapered series

yt = htxt, (4.61)

for t = 1, 2, . . . , n, use the modified DFT

dy(!j) = n�1/2
n
X

t=1

htxte
�2⇡i!

j

t, (4.62)

and let Iy(!j) = |dy(!j)|2, we obtain (see Problem 4.15)

E[Iy(!j)] =

Z 1/2

�1/2
Wn(!j � !) fx(!) d! (4.63)

where

Wn(!) = |Hn(!)|2 (4.64)

and

Hn(!) = n�1/2
n
X

t=1

hte
�2⇡i!t. (4.65)

The value Wn(!) is called a spectral window because, in view of (4.63), it is

determining which part of the spectral density fx(!) is being “seen” by the

estimator Iy(!j) on average. In the case that ht = 1 for all t, Iy(!j) = Ix(!j)

is simply the periodogram of the data and the window is

Wn(!) =
sin

2
(n⇡!)

n sin

2
(⇡!)

(4.66)

with Wn(0) = n, which is known as the Fejér or modified Bartlett kernel. If

we consider the averaged periodogram in (4.46), namely

¯fx(!) =
1

L

m
X

k=�m

Ix(!j + k/n),

the window, Wn(!), in (4.63) will take the form
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Fig. 4.9. Averaged Fejér window (top row) and the corresponding cosine taper
window (bottom row) for L = 9, n = 480. The extra tic marks on the horizontal
axis of the left-hand plots exhibit the predicted bandwidth, B

w

= 9/480 = .01875.

Wn(!) =
1

nL

m
X

k=�m

sin

2
[n⇡(! + k/n)]

sin

2
[⇡(! + k/n)]

. (4.67)

Tapers generally have a shape that enhances the center of the data relative

to the extremities, such as a cosine bell of the form

ht = .5



1 + cos

✓

2⇡(t� t)

n

◆�

, (4.68)

where t = (n + 1)/2, favored by Blackman and Tukey (1959). In Figure 4.9,

we have plotted the shapes of two windows, Wn(!), for n = 480 and L = 9,

when (i) ht ⌘ 1, in which case, (4.67) applies, and (ii) ht is the cosine taper in

(4.68). In both cases the predicted bandwidth should be Bw = 9/480 = .01875
cycles per point, which corresponds to the “width” of the windows shown in

Figure 4.9. Both windows produce an integrated average spectrum over this

band but the untapered window in the top panels shows considerable ripples
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Fig. 4.10. Smoothed spectral estimates of the SOI without tapering (dashed line)
and with full tapering (solid line); see Example 4.14 for details.

over the band and outside the band. The ripples outside the band are called

sidelobes and tend to introduce frequencies from outside the interval that

may contaminate the desired spectral estimate within the band. For example,

a large dynamic range for the values in the spectrum introduces spectra in

contiguous frequency intervals several orders of magnitude greater than the

value in the interval of interest. This e↵ect is sometimes called leakage. Fig-

ure 4.9 emphasizes the suppression of the sidelobes in the Fejér kernel when

a cosine taper is used.

Example 4.14 The E↵ect of Tapering the SOI Series

In this example, we examine the e↵ect of tapering on the estimate of the

spectrum of the SOI series. The results for the Recruitment series are similar.

Figure 4.10 shows two spectral estimates plotted on a log scale. The degree of

smoothing here is the same as in Example 4.13. The dashed line in Figure 4.10

shows the estimate without any tapering and hence it is the same as the

estimated spectrum displayed in the top of Figure 4.8. The solid line shows

the result with full tapering. Notice that the tapered spectrum does a better

job in separating the yearly cycle (! = 1) and the El Niño cycle (! = 1/4).
The following R session was used to generate Figure 4.10. We note that,

by default, mvspec does not taper. For full tapering, we use the argument

taper=.5 to instruct mvspec to taper 50% of each end of the data; any value

between 0 and .5 is acceptable.

s0 = mvspec(soi, spans=c(7,7), plot=FALSE) # no taper
s50 = mvspec(soi, spans=c(7,7), taper=.5, plot=FALSE) # full taper
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plot(s0$freq, s0$spec, log="y", type="l", lty=2, ylab="spectrum",
xlab="frequency") # dashed line

lines(s50$freq, s50$spec) # solid line

We close this section with a brief discussion of lag window estimators.

First, consider the periodogram, I(!j), which was shown in (4.22) to be

I(!j) =

X

|h|<n

b�(h)e�2⇡i!
j

h.

Thus, (4.56) can be written as

bf(!) =
X

|k|m

hk I(!j + k/n)

=

X

|k|m

hk

X

|h|<n

b�(h)e�2⇡i(!
j

+k/n)h

=

X

|h|<n

g(h/n) b�(h)e�2⇡i!
j

h. (4.69)

where g(h/n) =
P

|k|m hk exp(�2⇡ikh/n). Equation (4.69) suggests estima-

tors of the form

ef(!) =
X

|h|r

w(h/r) b�(h)e�2⇡i!h
(4.70)

where w(·) is a weight function, called the lag window, that satisfies

(i) w(0) = 1

(ii) |w(x)|  1 and w(x) = 0 for |x| > 1,

(iii) w(x) = w(�x).

Note that if w(x) = 1 for |x| < 1 and r = n, then ef(!j) = I(!j), the

periodogram. This result indicates the problem with the periodogram as an

estimator of the spectral density is that it gives too much weight to the values

of b�(h) when h is large, and hence is unreliable [e.g, there is only one pair of

observations used in the estimate b�(n�1), and so on]. The smoothing window

is defined to be

W (!) =

r
X

h=�r

w(h/r)e�2⇡i!h, (4.71)

and it determines which part of the periodogram will be used to form the

estimate of f(!). The asymptotic theory for

bf(!) holds for

ef(!) under the

same conditions and provided r ! 1 as n ! 1 but with r/n ! 0. We have

E{ ef(!)} ! f(!), (4.72)

n

r
cov

⇣

ef(!), ef(�)
⌘

! f2
(!)

Z 1

�1
w2

(x)dx ! = � 6= 0, 1/2. (4.73)
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In (4.73), replace f2
(!) by 0 if ! 6= � and by 2f2

(!) if ! = � = 0 or 1/2.
Many authors have developed various windows and Brillinger (2001, Ch

3) and Brockwell and Davis (1991, Ch 10) are good sources of detailed infor-

mation on this topic. We mention a few.

The rectangular lag window, which gives uniform weight in (4.70),

w(x) = 1, |x|  1,

corresponds to the Dirichlet smoothing window given by

W (!) =

sin(2⇡r + ⇡)!

sin(⇡!)

. (4.74)

This smoothing window takes on negative values, which may lead to estimates

of the spectral density that are negative a various frequencies. Using (4.73) in

this case, for large n we have

var{ ef(!)} ⇡ 2r

n
f2

(!).

The Parzen lag window is defined to be

w(x) =

8

>

<

>

:

1� 6x+ 6|x|3 |x| < 1/2,

2(1� |x|)3 1/2  x  1,

0 otherwise.

This leads to an approximate smoothing window of

W (!) =

6

⇡r3
sin

4
(r!/4)

sin

4
(!/2)

.

For large n, the variance of the estimator is approximately

var{ ef(!)} ⇡ .539f2
(!)/n.

The Tukey-Hanning lag window has the form

w(x) =
1

2

(1 + cos(x)), |x|  1

which leads to the smoothing window

W (!) =

1

4

Dr(2⇡! � ⇡/r) +
1

2

Dr(2⇡!) +
1

4

Dr(2⇡! + ⇡/r)

where Dr(!) is the Dirichlet kernel in (4.74). The approximate large sample

variance of the estimator is

var{ ef(!)} ⇡ 3r

4n
f2

(!).
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The triangular lag window, also known as the Bartlett or Fejér window,

given by

w(x) = 1� |x|, |x|  1

leads to the Fejér smoothing window:

W (!) =

sin

2
(⇡r!)

r sin2(⇡!)
.

In this case, (4.73) yields

var{ ef(!)} ⇡ 2r

3n
f2

(!).

The idealized rectangular smoothing window, also called the Daniell win-

dow, is given by

W (!) =

(

r |!|  1/2r,

0 otherwise,

and leads to the sinc lag window, namely

w(x) =
sin(⇡x)

⇡x
, |x|  1.

From (4.73) we have

var{ ef(!)} ⇡ r

n
f2

(!).

For lag window estimators, the width of the idealized rectangular window

that leads to the same asymptotic variance as a given lag window estimator

is sometimes called the equivalent bandwidth. For example, the bandwidth of

the idealized rectangular window is br = 1/r and the asymptotic variance is

1
nb

r

f2
. The asymptotic variance of the triangular window is

2r
3nf

2
, so setting

1
nb

r

f2
=

2r
3nf

2
and solving we get br = 3/2r as the equivalent bandwidth.

4.6 Parametric Spectral Estimation

The methods of §4.5 lead to estimators generally referred to as nonparamet-

ric spectra because no assumption is made about the parametric form of the

spectral density. In Property 4.3, we exhibited the spectrum of an ARMA

process and we might consider basing a spectral estimator on this function,

substituting the parameter estimates from an ARMA(p, q) fit on the data into

the formula for the spectral density fx(!) given in (4.15). Such an estimator is

called a parametric spectral estimator. For convenience, a parametric spectral

estimator is obtained by fitting an AR(p) to the data, where the order p is de-

termined by one of the model selection criteria, such as AIC, AICc, and BIC,

defined in (2.19)-(2.21). Parametric autoregressive spectral estimators will of-

ten have superior resolution in problems when several closely spaced narrow
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spectral peaks are present and are preferred by engineers for a broad vari-

ety of problems (see Kay, 1988). The development of autoregressive spectral

estimators has been summarized by Parzen (1983).

If

b

�1, b�2, . . . , b�p and b�

2
w are the estimates from an AR(p) fit to xt, then

based on Property 4.3, a parametric spectral estimate of fx(!) is attained by

substituting these estimates into (4.15), that is,

bfx(!) =
b�

2
w

|b�(e�2⇡i!
)|2

, (4.75)

where

b

�(z) = 1� b�1z � b�2z2 � · · ·� b�pzp. (4.76)

The asymptotic distribution of the autoregressive spectral estimator has been

obtained by Berk (1974) under the conditions p ! 1, p3/n ! 0 as p, n ! 1,

which may be too severe for most applications. The limiting results imply a

confidence interval of the form

bfx(!)

(1 + Cz↵/2)
 fx(!) 

bfx(!)

(1� Cz↵/2)
, (4.77)

where C =

p

2p/n and z↵/2 is the ordinate corresponding to the upper ↵/2
probability of the standard normal distribution. If the sampling distribution is

to be checked, we suggest applying the bootstrap estimator to get the sampling

distribution of

bfx(!) using a procedure similar to the one used for p = 1 in

Example 3.35. An alternative for higher order autoregressive series is to put

the AR(p) in state-space form and use the bootstrap procedure discussed in

§6.7.
An interesting fact about rational spectra of the form (4.15) is that any

spectral density can be approximated, arbitrarily close, by the spectrum of an

AR process.

Property 4.5 AR Spectral Approximation
Let g(!) be the spectral density of a stationary process. Then, given ✏ > 0,

there is a time series with the representation

xt =

p
X

k=1

�kxt�k + wt

where wt is white noise with variance �2
w, such that

|fx(!)� g(!)| < ✏ forall ! 2 [�1/2, 1/2].

Moreover, p is finite and the roots of �(z) = 1 �Pp
k=1 �kz

k are outside the
unit circle.
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Fig. 4.11. Model selection criteria AIC and BIC as a function of order p for au-
toregressive models fitted to the SOI series.

One drawback of the property is that it does not tell us how large pmust be

before the approximation is reasonable; in some situations p may be extremely

large. Property 4.5 also holds for MA and for ARMA processes in general, and

a proof of the result may be found in Fuller (1996, Ch 4). We demonstrate

the technique in the following example.

Example 4.15 Autoregressive Spectral Estimator for SOI

Consider obtaining results comparable to the nonparametric estimators

shown in Figure 4.5 for the SOI series. Fitting successively higher order

AR(p) models for p = 1, 2, . . . , 30 yields a minimum BIC and a minimum

AIC at p = 15, as shown in Figure 4.11. We can see from Figure 4.11 that

BIC is very definite about which model it chooses; that is, the minimum BIC

is very distinct. On the other hand, it is not clear what is going to happen

with AIC; that is, the minimum is not so clear, and there is some concern

that AIC will start decreasing after p = 30. Minimum AICc selects the p = 15

model, but su↵ers from the same uncertainty as AIC. The spectrum is shown

in Figure 4.12, and we note the strong peaks at 52 months and 12 months

corresponding to the nonparametric estimators obtained in §4.5. In addition,

the harmonics of the yearly period are evident in the estimated spectrum.

To perform a similar analysis in R, the command spec.ar can be used to

fit the best model via AIC and plot the resulting spectrum. A quick way to

obtain the AIC values is to run the ar command as follows.

spaic = spec.ar(soi, log="no") # min AIC spec
abline(v=frequency(soi)*1/52, lty="dotted") # El Nino Cycle
(soi.ar = ar(soi, order.max=30)) # estimates and AICs
dev.new()
plot(1:30, soi.ar$aic[-1], type="o") # plot AICs

R works only with the AIC in this case. To generate Figure 4.11 we used

the following code to obtain AIC, AICc, and BIC. Because AIC and AICc
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Fig. 4.12. Autoregressive spectral estimator for the SOI series using the AR(15)
model selected by AIC, AICc, and BIC. The first peak (marked by a vertical dotted
line) corresponds to the El Niño period of 52 months.

are nearly identical in this example, we only graphed AIC and BIC+1; we

added 1 to the BIC to reduce white space in the graphic.

n = length(soi)
AIC = rep(0, 30) -> AICc -> BIC
for (k in 1:30){
sigma2 = ar(soi, order=k, aic=FALSE)$var.pred
BIC[k] = log(sigma2) + (k*log(n)/n)
AICc[k] = log(sigma2) + ((n+k)/(n-k-2))
AIC[k] = log(sigma2) + ((n+2*k)/n)
}
IC = cbind(AIC, BIC+1)
ts.plot(IC, type="o", xlab="p", ylab="AIC / BIC")

Finally, it should be mentioned that any parametric spectrum, say f(!; ✓✓✓),
depending on the vector parameter ✓✓✓ can be estimated via the Whittle likeli-

hood (Whittle, 1961), using the approximate properties of the discrete Fourier

transform derived in Appendix C. We have that the DFTs, d(!j), are approx-

imately complex normally distributed with mean zero and variance f(!j ; ✓✓✓)

and are approximately independent for !j 6= !k. This implies that an approx-

imate log likelihood can be written in the form



i
i

“tsa3” — 2015/8/18 — 22:47 — page 215 — #225 i
i

i
i

i
i

4.7 Multiple Series and Cross-Spectra 215

lnL(xxx; ✓✓✓) ⇡ �
X

0<!
j

<1/2

✓

ln fx(!j ; ✓✓✓) +
|d(!j)|2
fx(!j ; ✓✓✓)

◆

, (4.78)

where the sum is sometimes expanded to include the frequencies !j = 0, 1/2.
If the form with the two additional frequencies is used, the multiplier of the

sum will be unity, except for the purely real points at !j = 0, 1/2 for which

the multiplier is 1/2. For a discussion of applying the Whittle approximation

to the problem of estimating parameters in an ARMA spectrum, see Ander-

son (1978). The Whittle likelihood is especially useful for fitting long memory

models that will be discussed in Chapter 5.

4.7 Multiple Series and Cross-Spectra

The notion of analyzing frequency fluctuations using classical statistical ideas

extends to the case in which there are several jointly stationary series, for

example, xt and yt. In this case, we can introduce the idea of a correlation

indexed by frequency, called the coherence. The results in Appendix C, §C.2,
imply the covariance function

�xy(h) = E[(xt+h � µx)(yt � µy)]

has the representation

�xy(h) =

Z 1/2

�1/2
fxy(!)e

2⇡i!h d! h = 0,±1,±2, ..., (4.79)

where the cross-spectrum is defined as the Fourier transform

fxy(!) =
1
X

h=�1
�xy(h) e

�2⇡i!h � 1/2  !  1/2, (4.80)

assuming that the cross-covariance function is absolutely summable, as was

the case for the autocovariance. The cross-spectrum is generally a complex-

valued function, and it is often written as

14

fxy(!) = cxy(!)� iqxy(!), (4.81)

where

cxy(!) =
1
X

h=�1
�xy(h) cos(2⇡!h) (4.82)

and

14 For this section, it will be useful to recall the facts e

�i↵ = cos(↵) � i sin(↵) and
if z = a+ ib, then z = a� ib.
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qxy(!) =
1
X

h=�1
�xy(h) sin(2⇡!h) (4.83)

are defined as the cospectrum and quadspectrum, respectively. Because of

the relationship �yx(h) = �xy(�h), it follows, by substituting into (4.80) and

rearranging, that

fyx(!) = fxy(!). (4.84)

This result, in turn, implies that the cospectrum and quadspectrum satisfy

cyx(!) = cxy(!) (4.85)

and

qyx(!) = �qxy(!). (4.86)

An important example of the application of the cross-spectrum is to the

problem of predicting an output series yt from some input series xt through a

linear filter relation such as the three-point moving average considered below.

A measure of the strength of such a relation is the squared coherence function,

defined as

⇢

2
y·x(!) =

|fyx(!)|2
fxx(!)fyy(!)

, (4.87)

where fxx(!) and fyy(!) are the individual spectra of the xt and yt series,

respectively. Although we consider a more general form of this that applies to

multiple inputs later, it is instructive to display the single input case as (4.87)

to emphasize the analogy with conventional squared correlation, which takes

the form

⇢

2
yx =

�

2
yx

�

2
x�

2
y

,

for random variables with variances �

2
x and �

2
y and covariance �yx = �xy. This

motivates the interpretation of squared coherence and the squared correlation

between two time series at frequency !.

Example 4.16 Three-Point Moving Average

As a simple example, we compute the cross-spectrum between xt and the

three-point moving average yt = (xt�1+xt+xt+1)/3, where xt is a stationary

input process with spectral density fxx(!). First,

�xy(h) = cov(xt+h, yt) =
1
3 cov(xt+h, xt�1 + xt + xt+1)

=

1

3

�

�xx(h+ 1) + �xx(h) + �xx(h� 1)

�

=

1

3

Z 1/2

�1/2

�

e

2⇡i!
+ 1 + e

�2⇡i!
�

e

2⇡i!hfxx(!) d!

=

1

3

Z 1/2

�1/2
[1 + 2 cos(2⇡!)]fxx(!)e

2⇡i!h d!,
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where we have use (4.11). Using the uniqueness of the Fourier transform, we

argue from the spectral representation (4.79) that

fxy(!) =
1
3 [1 + 2 cos(2⇡!)] fxx(!)

so that the cross-spectrum is real in this case. From Example 4.5, the spectral

density of yt is

fyy(!) =
1
9 [3 + 4 cos(2⇡!) + 2 cos(4⇡!)]fxx(!)

=

1
9 [1 + 2 cos(2⇡!)]

2 fxx(!),

using the identity cos(2↵) = 2 cos

2
(↵) � 1 in the last step. Substituting

into (4.87) yields the squared coherence between xt and yt as unity over all

frequencies. This is a characteristic inherited by more general linear filters, as

will be shown in Problem 4.23. However, if some noise is added to the three-

point moving average, the coherence is not unity; these kinds of models will

be considered in detail later.

Property 4.6 Spectral Representation of a Vector Stationary
Process

If the elements of the p⇥ p autocovariance function matrix

� (h) = E[(xxxt+h � µµµ)(xxxt � µµµ)0]

of a p-dimensional stationary time series, xxxt = (xt1, xt2, . . . , xtp)
0, has ele-

ments satisfying
1
X

h=�1
|�jk(h)| < 1 (4.88)

for all j, k = 1, . . . , p, then � (h) has the representation

� (h) =

Z 1/2

�1/2
e

2⇡i!h f(!) d! h = 0,±1,±2, ..., (4.89)

as the inverse transform of the spectral density matrix, f(!) = {fjk(!)},
for j, k = 1, . . . , p, with elements equal to the cross-spectral components. The
matrix f(!) has the representation

f(!) =
1
X

h=�1
� (h)e�2⇡i!h � 1/2  !  1/2. (4.90)

Example 4.17 Spectral Matrix of a Bivariate Process

Consider a jointly stationary bivariate process (xt, yt). We arrange the au-

tocovariances in the matrix

� (h) =

✓

�xx(h) �xy(h)
�yx(h) �yy(h)

◆

.
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The spectral matrix would be given by

f(!) =

✓

fxx(!) fxy(!)
fyx(!) fyy(!)

◆

,

where the Fourier transform (4.89) and (4.90) relate the autocovariance and

spectral matrices.

The extension of spectral estimation to vector series is fairly obvious. For

the vector series xxxt = (xt1, xt2, . . . , xtp)
0
, we may use the vector of DFTs, say

ddd(!j) = (d1(!j), d2(!j), . . . , dp(!j))
0
, and estimate the spectral matrix by

¯f(!) = L�1
m
X

k=�m

I(!j + k/n) (4.91)

where now

I(!j) = ddd(!j)ddd
⇤
(!j) (4.92)

is a p⇥ p complex matrix.

15

Again, the series may be tapered before the DFT is taken in (4.91) and

we can use weighted estimation,

bf(!) =
m
X

k=�m

hk I(!j + k/n) (4.93)

where {hk} are weights as defined in (4.56). The estimate of squared coherence

between two series, yt and xt is

b⇢

2
y·x(!) =

| bfyx(!)|2
bfxx(!) bfyy(!)

. (4.94)

If the spectral estimates in (4.94) are obtained using equal weights, we will

write ⇢̄

2
y·x(!) for the estimate.

Under general conditions, if ⇢

2
y·x(!) > 0 then

|b⇢y·x(!)| ⇠ AN
⇣

|⇢y·x(!)|,
�

1� ⇢

2
y·x(!)

�2�
2Lh

⌘

(4.95)

where Lh is defined in (4.57); the details of this result may be found in Brock-

well and Davis (1991, Ch 11). We may use (4.95) to obtain approximate

confidence intervals for the squared coherency ⇢

2
y·x(!).

We can test the hypothesis that ⇢

2
y·x(!) = 0 if we use ⇢̄

2
y·x(!) for the

estimate with L > 1,

16
that is,

15 If Z is a complex matrix, then Z

⇤ = Z

0
denotes the conjugate transpose operation.

That is, Z⇤ is the result of replacing each element of Z by its complex conjugate
and transposing the resulting matrix.

16 If L = 1 then ⇢̄2
y·x(!) ⌘ 1.
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Fig. 4.13. Squared coherency between the SOI and Recruitment series; L = 19, n =
453, n

0 = 480, and ↵ = .001. The horizontal line is C
.001.

⇢̄

2
y·x(!) =

| ¯fyx(!)|2
¯fxx(!) ¯fyy(!)

. (4.96)

In this case, under the null hypothesis, the statistic

F =

⇢̄

2
y·x(!)

(1� ⇢̄

2
y·x(!))

(L� 1) (4.97)

has an approximate F -distribution with 2 and 2L � 2 degrees of freedom.

When the series have been extended to length n0
, we replace 2L�2 by df �2,

where df is defined in (4.52). Solving (4.97) for a particular significance level

↵ leads to

C↵ =

F2,2L�2(↵)

L� 1 + F2,2L�2(↵)
(4.98)

as the approximate value that must be exceeded for the original squared co-

herence to be able to reject ⇢

2
y·x(!) = 0 at an a priori specified frequency.

Example 4.18 Coherence Between SOI and Recruitment

Figure 4.13 shows the squared coherence between the SOI and Recruitment

series over a wider band than was used for the spectrum. In this case, we

used L = 19, df = 2(19)(453/480) ⇡ 36 and F2,df�2(.001) ⇡ 8.53 at the sig-

nificance level ↵ = .001. Hence, we may reject the hypothesis of no coherence

for values of ⇢̄

2
y·x(!) that exceed C.001 = .32. We emphasize that this method
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is crude because, in addition to the fact that the F -statistic is approximate,

we are examining the squared coherence across all frequencies with the Bon-

ferroni inequality, (4.55), in mind. Figure 4.13 also exhibits confidence bands

as part of the R plotting routine. We emphasize that these bands are only

valid for ! where ⇢

2
y·x(!) > 0.

In this case, the seasonal frequency and the El Niño frequencies ranging

between about 3 and 7 year periods are strongly coherent. Other frequencies

are also strongly coherent, although the strong coherence is less impressive

because the underlying power spectrum at these higher frequencies is fairly

small. Finally, we note that the coherence is persistent at the seasonal har-

monic frequencies.

This example may be reproduced using the following R commands.

sr=spec.pgram(cbind(soi,rec),kernel("daniell",9),taper=0,plot=FALSE)
sr$df # df = 35.8625
f = qf(.999, 2, sr$df-2) # = 8.529792
C = f/(18+f) # = 0.318878
plot(sr, plot.type = "coh", ci.lty = 2)
abline(h = C)

4.8 Linear Filters

Some of the examples of the previous sections have hinted at the possibility the

distribution of power or variance in a time series can be modified by making

a linear transformation. In this section, we explore that notion further by

defining a linear filter and showing how it can be used to extract signals from

a time series. The linear filter modifies the spectral characteristics of a time

series in a predictable way, and the systematic development of methods for

taking advantage of the special properties of linear filters is an important topic

in time series analysis.

A linear filter uses a set of specified coe�cients aj , for j = 0,±1,±2, . . .,
to transform an input series, xt, producing an output series, yt, of the form

yt =
1
X

j=�1
ajxt�j ,

1
X

j=�1
|aj | < 1. (4.99)

The form (4.99) is also called a convolution in some statistical contexts. The

coe�cients, collectively called the impulse response function, are required to

satisfy absolute summability so yt in (4.99) exists as a limit in mean square

and the infinite Fourier transform

Ayx(!) =

1
X

j=�1
aj e

�2⇡i!j , (4.100)

called the frequency response function, is well defined. We have already en-

countered several linear filters, for example, the simple three-point moving
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average in Example 4.16, which can be put into the form of (4.99) by letting

a�1 = a0 = a1 = 1/3 and taking at = 0 for |j| � 2.

The importance of the linear filter stems from its ability to enhance certain

parts of the spectrum of the input series. To see this, assuming that xt is

stationary with spectral density fxx(!), the autocovariance function of the

filtered output yt in (4.99) can be derived as

�yy(h) = cov(yt+h, yt)

= cov

 

X

r

arxt+h�r,
X

s

asxt�s

!

=

X

r

X

s

ar�xx(h� r + s)as

=

X

r

X

s

ar



Z 1/2

�1/2
e

2⇡i!(h�r+s)fxx(!)d!

�

as

=

Z 1/2

�1/2

✓

X

r

are
�2⇡i!r

◆✓

X

s

ase
2⇡i!s

◆

e

2⇡i!hfxx(!) d!

=

Z 1/2

�1/2
e

2⇡i!h|Ayx(!)|2fxx(!) d!,

where we have first replaced �xx(·) by its representation (4.11) and then sub-

stituted Ayx(!) from (4.100). The computation is one we do repeatedly, ex-

ploiting the uniqueness of the Fourier transform. Now, because the left-hand

side is the Fourier transform of the spectral density of the output, say, fyy(!),
we get the important filtering property as follows.

Property 4.7 Output Spectrum of a Filtered Stationary Series
The spectrum of the filtered output yt in (4.99) is related to the spectrum

of the input xt by
fyy(!) = |Ayx(!)|2 fxx(!), (4.101)

where the frequency response function Ayx(!) is defined in (4.100).

The result (4.101) enables us to calculate the exact e↵ect on the spectrum

of any given filtering operation. This important property shows the spectrum

of the input series is changed by filtering and the e↵ect of the change can

be characterized as a frequency-by-frequency multiplication by the squared

magnitude of the frequency response function. Again, an obvious analogy

to a property of the variance in classical statistics holds, namely, if x is a

random variable with variance �

2
x, then y = ax will have variance �

2
y = a2�2

x,

so the variance of the linearly transformed random variable is changed by

multiplication by a2 in much the same way as the linearly filtered spectrum

is changed in (4.101).
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Fig. 4.14. SOI series (top) compared with the di↵erenced SOI (middle) and a
centered 12-month moving average (bottom).

Finally, we mention that Property 4.3, which was used to get the spectrum

of an ARMA process, is just a special case of Property 4.7 where in (4.99),

xt = wt is white noise, in which case fxx(!) = �

2
w, and aj =  j , in which case

Ayx(!) =  (e

�2⇡i!
) = ✓(e

�2⇡i!
)

�

�(e

�2⇡i!
).

Example 4.19 First Di↵erence and Moving Average Filters

We illustrate the e↵ect of filtering with two common examples, the first

di↵erence filter

yt = rxt = xt � xt�1

and the symmetric moving average filter

yt =
1
24

�

xt�6 + xt+6

�

+

1
12

5
X

r=�5

xt�r,
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Fig. 4.15. Spectral analysis of SOI after applying a 12-month moving average filter.
The vertical line corresponds to the 52-month cycle.

which is a modified Daniell kernel with m = 6. The results of filtering the

SOI series using the two filters are shown in the middle and bottom panels

of Figure 4.14. Notice that the e↵ect of di↵erencing is to roughen the series

because it tends to retain the higher or faster frequencies. The centered mov-

ing average smoothes the series because it retains the lower frequencies and

tends to attenuate the higher frequencies. In general, di↵erencing is an ex-

ample of a high-pass filter because it retains or passes the higher frequencies,
whereas the moving average is a low-pass filter because it passes the lower

or slower frequencies.

Notice that the slower periods are enhanced in the symmetric moving

average and the seasonal or yearly frequencies are attenuated. The filtered

series makes about 9 cycles in the length of the data (about one cycle every

52 months) and the moving average filter tends to enhance or extract the

signal that is associated with El Niño. Moreover, by the low-pass filtering

of the data, we get a better sense of the El Niño e↵ect and its irregularity.

Figure 4.15 shows the results of a spectral analysis on the low-pass filtered

SOI series. It is clear that all high frequency behavior has been removed

and the El Niño cycle is accentuated; the dotted vertical line in the figure

corresponds to the 52 months cycle.

Now, having done the filtering, it is essential to determine the exact way in

which the filters change the input spectrum. We shall use (4.100) and (4.101)

for this purpose. The first di↵erence filter can be written in the form (4.99)

by letting a0 = 1, a1 = �1, and ar = 0 otherwise. This implies that
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Ayx(!) = 1� e

�2⇡i!,

and the squared frequency response becomes

|Ayx(!)|2 = (1� e

�2⇡i!
)(1� e

2⇡i!
) = 2[1� cos(2⇡!)]. (4.102)

The top panel of Figure 4.16 shows that the first di↵erence filter will atten-

uate the lower frequencies and enhance the higher frequencies because the

multiplier of the spectrum, |Ayx(!)|2, is large for the higher frequencies and

small for the lower frequencies. Generally, the slow rise of this kind of filter

does not particularly recommend it as a procedure for retaining only the

high frequencies.

For the centered 12-month moving average, we can take a�6 = a6 = 1/24,
ak = 1/12 for�5  k  5 and ak = 0 elsewhere. Substituting and recognizing

the cosine terms gives

Ayx(!) =
1
12

h

1 + cos(12⇡!) + 2

5
X

k=1

cos(2⇡!k)
i

. (4.103)

Plotting the squared frequency response of this function as in Figure 4.16

shows that we can expect this filter to cut most of the frequency content

above .05 cycles per point. This corresponds to eliminating periods shorter

than T = 1/.05 = 20 points. In particular, this drives down the yearly com-

ponents with periods of T = 12 months and enhances the El Niño frequency,

which is somewhat lower. The filter is not completely e�cient at attenuating

high frequencies; some power contributions are left at higher frequencies, as

shown in the function |Ayx(!)|2 and in the spectrum of the moving average

shown in Figure 4.3.

The following R session shows how to filter the data, perform the spectral

analysis of this example, and plot the squared frequency response curve of

the di↵erence filter.

par(mfrow=c(3,1))
plot(soi) # plot data
plot(diff(soi)) # plot first difference
k = kernel("modified.daniell", 6) # filter weights
plot(soif <- kernapply(soi, k)) # plot 12 month filter
dev.new()
spectrum(soif, spans=9, log="no") # spectral analysis
abline(v=12/52, lty="dashed")
dev.new()
w = seq(0, .5, length=500) # frequency response
FR = abs(1-exp(2i*pi*w))^2
plot(w, FR, type="l")

The two filters discussed in the previous example were di↵erent in that

the frequency response function of the first di↵erence was complex-valued,

whereas the frequency response of the moving average was purely real. A
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Fig. 4.16. Squared frequency response functions of the first di↵erence and 12-month
moving average filters.

short derivation similar to that used to verify (4.101) shows, when xt and yt
are related by the linear filter relation (4.99), the cross-spectrum satisfies

fyx(!) = Ayx(!)fxx(!),

so the frequency response is of the form

Ayx(!) =
fyx(!)

fxx(!)
(4.104)

=

cyx(!)

fxx(!)
� i

qyx(!)

fxx(!)
, (4.105)

where we have used (4.81) to get the last form. Then, we may write (4.105)

in polar coordinates as

Ayx(!) = |Ayx(!)| exp{�i �yx(!)}, (4.106)

where the amplitude and phase of the filter are defined by

|Ayx(!)| =
q

c2yx(!) + q2yx(!)

fxx(!)
(4.107)

and
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�yx(!) = tan

�1

✓

�qyx(!)

cyx(!)

◆

. (4.108)

A simple interpretation of the phase of a linear filter is that it exhibits time

delays as a function of frequency in the same way as the spectrum represents

the variance as a function of frequency. Additional insight can be gained by

considering the simple delaying filter

yt = Axt�D,

where the series gets replaced by a version, amplified by multiplying by A and

delayed by D points. For this case,

fyx(!) = Ae

�2⇡i!Dfxx(!),

and the amplitude is |A|, and the phase is

�yx(!) = �2⇡!D,

or just a linear function of frequency !. For this case, applying a simple

time delay causes phase delays that depend on the frequency of the periodic

component being delayed. Interpretation is further enhanced by setting

xt = cos(2⇡!t),

in which case

yt = A cos(2⇡!t� 2⇡!D).

Thus, the output series, yt, has the same period as the input series, xt, but

the amplitude of the output has increased by a factor of |A| and the phase

has been changed by a factor of �2⇡!D.

Example 4.20 Di↵erence and Moving Average Filters

We consider calculating the amplitude and phase of the two filters discussed

in Example 4.19. The case for the moving average is easy because Ayx(!)

given in (4.103) is purely real. So, the amplitude is just |Ayx(!)| and the

phase is �yx(!) = 0. In general, symmetric (aj = a�j) filters have zero

phase. The first di↵erence, however, changes this, as we might expect from

the example above involving the time delay filter. In this case, the squared

amplitude is given in (4.102). To compute the phase, we write

Ayx(!) = 1� e�2⇡i!
= e�i⇡!

(ei⇡! � e�i⇡!
)

= 2ie�i⇡!
sin(⇡!) = 2 sin

2
(⇡!) + 2i cos(⇡!) sin(⇡!)

=

cyx(!)

fxx(!)
� i

qyx(!)

fxx(!)
,

so

�yx(!) = tan

�1

✓

�qyx(!)

cyx(!)

◆

= tan

�1

✓

cos(⇡!)

sin(⇡!)

◆

.



i
i

“tsa3” — 2015/8/18 — 22:47 — page 227 — #237 i
i

i
i

i
i

4.8 Linear Filters 227

Noting that

cos(⇡!) = sin(�⇡! + ⇡/2)

and that

sin(⇡!) = cos(�⇡! + ⇡/2),

we get

�yx(!) = �⇡! + ⇡/2,

and the phase is again a linear function of frequency.

The above tendency of the frequencies to arrive at di↵erent times in the

filtered version of the series remains as one of two annoying features of the

di↵erence type filters. The other weakness is the gentle increase in the fre-

quency response function. If low frequencies are really unimportant and high

frequencies are to be preserved, we would like to have a somewhat sharper

response than is obvious in Figure 4.16. Similarly, if low frequencies are impor-

tant and high frequencies are not, the moving average filters are also not very

e�cient at passing the low frequencies and attenuating the high frequencies.

Improvement is possible by designing better and longer filters, but we do not

discuss this here.

We will occasionally use results for multivariate series xxxt = (xt1, . . . , xtp)
0

that are comparable to the simple property shown in (4.101). Consider the

matrix filter

yyyt =
1
X

j=�1
Ajxxxt�j , (4.109)

where {Aj} denotes a sequence of q⇥p matrices such that

P1
j=�1 kAjk < 1

and k · k denotes any matrix norm, xxxt = (xt1, . . . , xtp)
0
is a p ⇥ 1 stationary

vector process with mean vector µµµx and p ⇥ p, matrix covariance function

�xx(h) and spectral matrix fxx(!), and yyyt is the q⇥ 1 vector output process.

Then, we can obtain the following property.

Property 4.8 Output Spectral Matrix of a Linearly Filtered
Stationary Vector Series

The spectral matrix of the filtered output yyyt in (4.109) is related to the
spectrum of the input xxxt by

fyy(!) = A(!)fxx(!)A⇤
(!), (4.110)

where the matrix frequency response function A(!) is defined by

A(!) =

1
X

j=�1
Aj exp(�2⇡i!j). (4.111)
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4.9 Dynamic Fourier Analysis and Wavelets

If a time series, xt, is stationary, its second-order behavior remains the same,

regardless of the time t. It makes sense to match a stationary time series with

sines and cosines because they, too, behave the same forever. Indeed, based

on the Spectral Representation Theorem (Appendix C, §C.1), we may regard

a stationary series as the superposition of sines and cosines that oscillate at

various frequencies. As seen in this text, however, many time series are not

stationary. Typically, the data are coerced into stationarity via transforma-

tions, or we restrict attention to parts of the data where stationarity appears

to adhere. In some cases, the nonstationarity of a time series is of interest.

That is to say, it is the local behavior of the process, and not the global

behavior of the process, that is of concern to the investigator. As a case in

point, we mention the explosion and earthquake series first presented in Ex-

ample 1.7 (see Figure 1.7). The following example emphasizes the importance

of dynamic (or time-frequency) Fourier analysis.

Example 4.21 Dynamic Spectral Analysis of Seismic Traces

Consider the earthquake and explosion series displayed in Figure 1.7; it

should be apparent that the dynamics of the series are changing with time.

The goal of this analysis is to summarize the spectral behavior of the signal

as it evolves over time.

First, a spectral analysis is performed on a short section of the data.

Then, the section is shifted, and a spectral analysis is performed on the

new section. This process is repeated until the end of the data, and the

results are shown an image in Figure 4.17 and Figure 4.18; in the images,

darker areas correspond to higher power. Specifically, in this example, let

xt, for t = 1, . . . , 2048, represent the series of interest. Then, the sections of

the data that were analyzed were {xt
k

+1, . . . , xt
k

+256}, for tk = 128k, and
k = 0, 1, . . . , 14; e.g., the first section analyzed is {x1, . . . , x256}, the second

section analyzed is {x129, . . . , x384}, and so on. Each section of 256 observa-

tions was tapered using a cosine bell, and spectral estimation was performed

using a repeated Daniell kernel with weights

1
9{1, 2, 3, 2, 1}; see page 204.

The sections overlap each other, however, this practice is not necessary and

sometimes not desirable.

17

The results of the dynamic analysis are shown as the estimated spectra

for frequencies up to 10 Hz (the folding frequency is 20 Hz) for each starting

location (time), tk = 128k, with k = 0, 1, . . . , 14. The S component for the

17 A number of technical problems exist in this setting because the process of interest
is nonstationary and we have not specified the nature of the nonstationarity. In
addition, overlapping intervals complicate matters by introducing another layer
of dependencies among the spectra. Consequently, the spectral estimates of con-
tiguous sections are dependent in a non-trivial way that we have not specified.
Nevertheless, as seen from this example, dynamic spectral analysis can be a help-
ful tool in summarizing the local behavior of a time series.
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Fig. 4.17. Time-frequency image for the dynamic Fourier analysis of the earthquake
series shown in Figure 1.7.

earthquake shows power at the low frequencies only, and the power remains

strong for a long time. In contrast, the explosion shows power at higher

frequencies than the earthquake, and the power of the signals (P and S

waves) does not last as long as in the case of the earthquake.

The following is an R session that corresponds to the analysis of the

explosion series. The images are generated using filled.contour() on

the log of the power; this, as well as using a gray scale and limiting the

number of levels was done to produce a decent black-and-white graphic. The

images look better in color, so we advise removing the nlevels=... and the

col=gray(...) parts of the code. We also include the code for obtaining a

three-dimensional graphic to display the information, however, the graphic

is not exhibited in the text.

nobs = length(EXP6) # number of observations
wsize = 256 # window size
overlap = 128 # overlap
ovr = wsize-overlap
nseg = floor(nobs/ovr)-1; # number of segments
krnl = kernel("daniell", c(1,1)) # kernel
ex.spec = matrix(0, wsize/2, nseg)
for (k in 1:nseg) {
a = ovr*(k-1)+1
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Fig. 4.18. Time-frequency image for the dynamic Fourier analysis of the explosion
series shown in Figure 1.7.

b = wsize+ovr*(k-1)
ex.spec[,k] = spectrum(EXP6[a:b], krnl, taper=.5, plot=F)$spec }

x = seq(0, 10, len = nrow(ex.spec)/2)
y = seq(0, ovr*nseg, len = ncol(ex.spec))
z = ex.spec[1:(nrow(ex.spec)/2),]
filled.contour(x, y, log(z), ylab="time", xlab="frequency (Hz)",

main="Explosion")
persp(x, y, z, zlab="Power", xlab="frequency (Hz)", ylab="time",

ticktype="detailed", theta=25,d=2, main="Explosion") # not shown

One way to view the time-frequency analysis of Example 4.21 is to consider

it as being based on local transforms of the data xt of the form

dj,k = n�1/2
n
X

t=1

xt j,k(t), (4.112)

where

 j,k(t) =

(

(n/m)

1/2ht e�2⇡itj/m t 2 [tk + 1, tk +m],

0 otherwise,
(4.113)

where ht is a taper and m is some fraction of n. In Example 4.21, n = 2048,

m = 256, tk = 128k, for k = 0, 1, . . . , 14, and ht was a cosine bell taper
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Fig. 4.19. Local, tapered cosines at various frequencies.

over 256 points. In (4.112) and (4.113), j indexes frequency, !j = j/m, for

j = 1, 2, . . . , [m/2], and k indexes the location, or time shift, of the transform.

In this case, the transforms are based on tapered cosines and sines that have

been zeroed out over various regions in time. The key point here is that the

transforms are based on local sinusoids. Figure 4.19 shows an example of four

local, tapered cosine functions at various frequencies. In that figure, the length

of the data is considered to be one, and the cosines are localized to a fourth

of the data length.

In addition to dynamic Fourier analysis as a method to overcome the

restriction of stationarity, researchers have sought various alternative meth-

ods. A recent, and successful, alternative is wavelet analysis. The website

http://www.wavelet.org is devoted to wavelets, which includes information

about books, technical papers, software, and links to other sites. In addi-

tion, we mention the monograph on wavelets by Daubechies (1992), the text

by Percival and Walden (2000), and we note that many statistical software

manufacturers have wavelet modules that sit on top of their base package.

In this section, we rely primarily on the S-PLUS wavelets module (with a

manual written by Bruce and Gao, 1996), however, we will present some R

code where possible. The basic idea of wavelet analysis is to imitate dynamic

Fourier analysis, but with functions (wavelets) that may be better suited to

capture the local behavior of nonstationary time series.
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Wavelets come in families generated by a father wavelet, �, and a mother

wavelet,  . The father wavelets are used to capture the smooth, low-frequency

nature of the data, whereas the mother wavelets are used to capture the

detailed, and high-frequency nature of the data. The father wavelet integrates

to one, and the mother wavelet integrates to zero

Z

�(t)dt = 1 and

Z

 (t)dt = 0. (4.114)

For a simple example, consider the Haar function,

 (t) =

8

<

:

1, 0  t < 1/2,
�1, 1/2  t < 1,
0, otherwise.

(4.115)

The father in this case is �(t) = 1 for t 2 [0, 1) and zero otherwise. The

Haar functions are useful for demonstrating properties of wavelets, but they

do not have good time-frequency localization properties. Figure 4.20 displays

two of the more commonly used wavelets that are available with the S-PLUS

wavelets module, the daublet4 and symmlet8 wavelets, which are described in

detail in Daubechies (1992). The number after the name refers to the width

and smoothness of the wavelet; for example, the symmlet10 wavelet is wider

and smoother than the symmlet8 wavelet. Daublets are one of the first type

of continuous orthogonal wavelets with compact support, and symmlets were

constructed to be closer to symmetry than daublets. In general, wavelets do

not have an analytical form, but instead they are generated using numerical

methods.

Figure 4.20 was generated in S-PLUS using the wavelet module as fol-

lows:

18

d4f <- wavelet("d4", mother=F)
d4m <- wavelet("d4")
s8f <- wavelet("s8", mother=F)
s8m <- wavelet("s8")
par(mfrow=c(2,2))
plot(d4f); plot(d4m)
plot(s8f); plot(s8m)

It is possible to draw some wavelets in R using the wavethresh pack-

age. In that package, daublets are called DaubExPhase and symmlets are

called DaubLeAsymm. The following R session displays some of the available

wavelets (this will produce a figure similar to Figure 4.20) and it assumes

the wavethresh package has been downloaded and installed (see Appendix

R, §R.2, for details on installing packages). The filter.number determines

the width and smoothness of the wavelet.

18 At this time, the R packages available for wavelet analysis are not extensive
enough for our purposes, hence we will rely on S-PLUS for some of the demon-
strations. We will provide R code when possible, and that will be based on the
wavethresh package (version 4.2-1) that accompanies Nason (2008).
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Fig. 4.20. Father and mother daublet4 wavelets (top row); father and mother
symmlet8 wavelets (bottom row).

library(wavethresh)
par(mfrow=c(2,2))
draw(filter.number=4, family="DaubExPhase", enhance=FALSE, main="")
draw(filter.number=8, family="DaubExPhase", enhance=FALSE, main="")
draw(filter.number=4, family="DaubLeAsymm", enhance=FALSE, main="")
draw(filter.number=8, family="DaubLeAsymm", enhance=FALSE, main="")

When we depart from periodic functions, such as sines and cosines, the

precise meaning of frequency, or cycles per unit time, is lost. When using

wavelets, we typically refer to scale rather than frequency. The orthogonal

wavelet decomposition of a time series, xt, for t = 1, . . . , n is

xt =

X

k

sJ,k�J,k(t) +
X

k

dJ,k J,k(t)

+

X

k

dJ�1,k J�1,k(t) + · · ·+
X

k

d1,k 1,k(t),
(4.116)

where J is the number of scales, and k ranges from one to the number of coe�-

cients associated with the specified component (see Example 4.22). In (4.116),

the wavelet functions �J,k(t), J,k(t), J�1,k(t), . . . , 1,k(t) are generated from

the father wavelet, �(t), and the mother wavelet,  (t), by translation (shift)

and scaling:
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Fig. 4.21. Scaled and translated daublet4 wavelets,  1,0(t) and  2,1(t) (top row);
scaled and translated symmlet8 wavelets,  1,0(t) and  2,1(t) (bottom row).

�J,k(t) = 2

�J/2
�

✓

t� 2

Jk

2

J

◆

, (4.117)

 j,k(t) = 2

�j/2
 

✓

t� 2

jk

2

j

◆

, j = 1, . . . , J. (4.118)

The choice of dyadic shifts and scales is arbitrary but convenient. The shift or

translation parameter is 2

jk, and scale parameter is 2

j
. The wavelet functions

are spread out and shorter for larger values of j (or scale parameter 2

j
) and

tall and narrow for small values of the scale. Figure 4.21 shows  1,0(t) and

 2,1(t) generated from the daublet4 (top row), and the symmlet8 (bottom

row) mother wavelets. We may think of 1/2j (or 1/scale) in wavelet analysis as

being the analogue of frequency (!j = j/n) in Fourier analysis. For example,

when j = 1, the scale parameter of 2 is akin to the Nyquist frequency of

1/2, and when j = 6, the scale parameter of 2

6
is akin to a low frequency

(1/26 ⇡ 0.016). In other words, larger values of the scale refer to slower,

smoother (or coarser) movements of the signal, and smaller values of the scale

refer to faster, choppier (or finer) movements of the signal. Figure 4.21 was

generated in S-PLUS using the wavelet module as follows:

d4.1 <- wavelet("d4", level=1, shift=0)
d4.2 <- wavelet("d4", level=2, shift=1)
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s8.1 <- wavelet("s8", level=1, shift=0)
s8.2 <- wavelet("s8", level=2, shift=1)
par(mfrow=c(2,2))
plot(d4.1, ylim=c(-.8,.8), xlim=c(-6,20))
plot(d4.2, ylim=c(-.8,.8), xlim=c(-6,20))
plot(s8.1, ylim=c(-.8,.8), xlim=c(-6,20))
plot(s8.2, ylim=c(-.8,.8), xlim=c(-6,20))

The discrete wavelet transform (DWT) of the data xt are the coe�cients

sJ,k and dj,k for j = J, J � 1, . . . , 1, in (4.116). To some degree of approxima-

tion, they are given by

19

sJ,k = n�1/2
n
X

t=1

xt�J,k(t), (4.119)

dj,k = n�1/2
n
X

t=1

xt j,k(t) j = J, J � 1, . . . , 1. (4.120)

It is the magnitudes of the coe�cients that measure the importance of the

corresponding wavelet term in describing the behavior of xt. As in Fourier

analysis, the DWT is not computed as shown but is calculated using a fast

algorithm. The sJ,k are called the smooth coe�cients because they represent

the smooth behavior of the data. The dj,k are called the detail coe�cients

because they tend to represent the finer, more high-frequency nature, of the

data.

Example 4.22 Wavelet Analysis of Earthquake and Explosion
Figure 4.22 and Figure 4.23 show the DWTs, based on the symmlet8 wavelet

basis, for the earthquake and explosion series, respectively. Each series is of

length n = 2

11
= 2048, and in this example, the DWTs are calculated using

J = 6 levels. In this case, n/2 = 2

10
= 1024 values are in d1 = {d1,k; k =

1, . . . , 210}, n/22 = 2

9
= 512 values are in d2 = {d2,k; k = 1, . . . , 29}, and

so on, until finally, n/26 = 2

5
= 32 values are in d6 and in s6. The detail

values d1,k, . . . , d6,k are plotted at the same scale, and hence, the relative

importance of each value can be seen from the graph. The smooth values s6,k
are typically larger than the detail values and plotted on a di↵erent scale. The
top of Figure 4.22 and Figure 4.23 show the inverse DWT (IDWT) computed

from all of the coe�cients. The displayed IDWT is a reconstruction of the

data, and it reproduces the data except for round-o↵ error.

Comparing the DWTs, the earthquake is best represented by wavelets

with larger scale than the explosion. One way to measure the importance

of each level, d1, d2, . . . , d6, s6, is to evaluate the proportion of the total

power (or energy) explained by each. The total power of a time series xt, for

19 The actual DWT coe�cients are defined via a set of filters whose coe�cients are
close to what you would get by sampling the father and mother wavelets, but not
exactly so; see the discussion surrounding Figures 471 and 478 in Percival and
Walden (2000).
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Fig. 4.22. Discrete wavelet transform of the earthquake series using the symmlet8
wavelets, and J = 6 levels of scale.
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Fig. 4.23. Discrete wavelet transform of the explosion series using the symmlet8
wavelets and J = 6 levels of scale.
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Table 4.2. Fraction of Total Power

Component Earthquake Explosion

s6 0.009 0.002
d6 0.043 0.002
d5 0.377 0.007
d4 0.367 0.015
d3 0.160 0.559
d2 0.040 0.349
d1 0.003 0.066

t = 1, . . . , n, is TP =

Pn
t=1 x

2
t . The total power associated with each level of

scale is (recall n = 2

11
),

TP s
6 =

n/26
X

k=1

s26,k and TP d
j =

n/2j
X

k=1

d2j,k, j = 1, . . . , 6.

Because we are working with an orthogonal basis, we have

TP = TP s
6 +

6
X

j=1

TP d
j ,

and the proportion of the total power explained by each level of detail would

be the ratios TP d
j /TP for j = 1, . . . , 6, and for the smooth level, it would be

TP s
6 /TP . These values are listed in Table 4.2. From that table nearly 80%

of the total power of the earthquake series is explained by the higher scale

details d4 and d5, whereas 90% of the total power is explained by the smaller

scale details d2 and d3 for the explosion.

Figure 4.24 and Figure 4.25 show the time-scale plots (or scalograms)

based on the DWT of the earthquake series and the explosion series, re-

spectively. These figures are the wavelet analog of the time-frequency plots

shown in Figure 4.17 and Figure 4.18. The power axis represents the mag-

nitude of each value djk or s6,k. The time axis matches the time axis in the

DWTs shown in Figure 4.22 and Figure 4.23, and the scale axis is plotted

as 1/scale, listed from the coarsest scale to the finest scale. On the 1/scale

axis, the coarsest scale values, represented by the smooth coe�cients s6, are
plotted over the range [0, 2�6

), the coarsest detail values, d6, are plotted over

[2

�6, 2�5
), and so on. In these figures, we did not plot the finest scale values,

d1, so the finest scale values exhibited in Figure 4.24 and Figure 4.25 are in

d2, which are plotted over the range [2

�2, 2�1
).

The conclusions drawn from these plots are the same as those drawn from

Figures Figure 4.17 and Figure 4.18. That is, the S wave for the earthquake

shows power at the high scales (or low 1/scale) only, and the power remains

strong for a long time. In contrast, the explosion shows power at smaller
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Fig. 4.24. Time-scale image (scalogram) of the earthquake series.

scales (or higher 1/scale) than the earthquake, and the power of the signals

(P and S waves) do not last as long as in the case of the earthquake.

Assuming the data files EQ5 and EXP6 have been read into S-PLUS, the

analyses of this example can performed using the S-PLUS wavelets module

(which must be loaded prior to the analyses) as follows:

eq <- scale(EQ5)
ex <- scale(EXP6)
eq.dwt <- dwt(eq)
ex.dwt <- dwt(ex)
plot(eq.dwt)
plot(ex.dwt)
# energy distributions (Table 4.2)
dotchart(eq.dwt) # a graphic
summary(eq.dwt) # numerical details
dotchart(ex.dwt)
summary(ex.dwt)
# time scale plots
time.scale.plot(eq.dwt)
time.scale.plot(ex.dwt)
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Fig. 4.25. Time-scale image (scalogram) of the explosion series.

Similar analyses may be performed in R using the wavelets, wavethresh,
or waveslim packages. We exhibit the analysis for the earthquake series using

wavesthresh, assuming it has been downloaded and installed.

20

library(wavethresh)
eq = scale(EQ5) # standardize the series
ex = scale(EXP6)
eq.dwt = wd(eq, filter.number=8)
ex.dwt = wd(ex, filter.number=8)
# plot the wavelet transforms
par(mfrow = c(1,2))
plot(eq.dwt, main="Earthquake")
plot(ex.dwt, main="Explosion")
# total power
TPe = rep(NA,11) # for the earthquake series
for (i in 0:10){TPe[i+1] = sum(accessD(eq.dwt, level=i)^2)}
TotEq = sum(TPe) # check with sum(eq^2)
TPx = rep(NA,11) # for the explosion series
for (i in 0:10){TPx[i+1] = sum(accessD(ex.dwt, level=i)^2)}
TotEx = sum(TPx) # check with sum(ex^2)
# make a nice table

20 In wavethresh, the transforms are denoted by the resolution rather than the scale.
If the series is of length n = 2p, then resolution p � i corresponds to level i for
i = 1, . . . , p.
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Fig. 4.26. Waveshrink estimates of the earthquake and explosion signals.

Power = round(cbind(11:1, 100*TPe/TotEq, 100*TPx/TotEx), digits=3)
colnames(Power) = c("Level", "EQ(%)", "EXP(%)")
Power

Wavelets can be used to perform nonparametric smoothing along the lines

first discussed in §2.4, but with an emphasis on localized behavior. Although a

considerable amount of literature exists on this topic, we will present the basic

ideas. For further information, we refer the reader to Donoho and Johnstone

(1994, 1995). As in §2.4, we suppose the data xt can be written in terms of a

signal plus noise model as

xt = st + ✏t. (4.121)
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The goal here is to remove the noise from the data, and obtain an estimate of

the signal, st, without having to specify a parametric form of the signal. The

technique based on wavelets is referred to as waveshrink.

The basic idea behind waveshrink is to shrink the wavelet coe�cients in

the DWT of xt toward zero in an attempt to denoise the data and then to

estimate the signal via (4.116) with the new coe�cients. One obvious way to

shrink the coe�cients toward zero is to simply zero out any coe�cient smaller

in magnitude than some predetermined value, �. Such a shrinkage rule is

discontinuous and sometimes it is preferable to use a continuous shrinkage

function. One such method, termed soft shrinkage, proceeds as follows. If the

value of a coe�cient is a, we set that coe�cient to zero if |a|  �, and to

sign(a)(|a| � �) if |a| > �. The choice of a shrinkage method is based on

the goal of the signal extraction. This process entails choosing a value for the

shrinkage threshold, �, and we may wish to use a di↵erent threshold value, say,

�j , for each level of scale j = 1, . . . , J . One particular method that works well

if we are interested in a relatively high degree of smoothness in the estimate

is to choose � = b�✏

p
2 log n for all scale levels, where b�✏ is an estimate of

the scale of the noise, �✏. Typically a robust estimate of �✏ is used, e.g., the

median of the absolute deviations of the data from the median (MAD). For

other thresholding techniques or for a better understanding of waveshrink, see

Donoho and Johnstone (1994, 1995), or the S-PLUS wavelets module manual

(Bruce and Gao, 1996, Ch 6).

Example 4.23 Waveshrink Analysis of Earthquake and Explosion

Figure 4.26 shows the results of a waveshrink analysis on the earthquake and

explosion series. In this example, soft shrinkage was used with a universal

threshold of � = b�✏

p
2 log n where b�✏ is the MAD. Figure 4.26 displays the

data xt, the estimated signal bst, as well as the residuals xt�bst. According to

this analysis, the earthquake is mostly signal and characterized by prolonged

energy, whereas the explosion is comprised of short bursts of energy.

Figure 4.26 was generated in S-PLUS using the wavelets module. For ex-

ample, the analysis of the earthquake series was performed as follows.

eq.dwt <- dwt(eq)
eq.shrink <- waveshrink(eq.dwt, shrink.rule="universal",

shrink.fun="soft")

In R, using the wavethresh package, use the following commands for the

earthquake series.

library(wavethresh)
eq = scale(EQ5)
par(mfrow=c(3,1))
eq.dwt = wd(eq, filter.number=8)
eq.smo = wr(threshold(eq.dwt, levels=5:10))
ts.plot(eq, main="Earthquake", ylab="Data")
ts.plot(eq.smo, ylab="Signal")
ts.plot(eq-eq.smo, ylab="Resid")
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4.10 Lagged Regression Models

One of the intriguing possibilities o↵ered by the coherence analysis of the

relation between the SOI and Recruitment series discussed in Example 4.18

would be extending classical regression to the analysis of lagged regression

models of the form

yt =
1
X

r=�1
�rxt�r + vt, (4.122)

where vt is a stationary noise process, xt is the observed input series, and

yt is the observed output series. We are interested in estimating the filter

coe�cients �r relating the adjacent lagged values of xt to the output series

yt.
In the case of SOI and Recruitment series, we might identify the El Niño

driving series, SOI, as the input, xt, and yt, the Recruitment series, as the

output. In general, there will be more than a single possible input series and we

may envision a q⇥1 vector of driving series. This multivariate input situation

is covered in Chapter 7. The model given by (4.122) is useful under several

di↵erent scenarios, corresponding to di↵erent assumptions that can be made

about the components.

We assume that the inputs and outputs have zero means and are jointly

stationary with the 2 ⇥ 1 vector process (xt, yt)0 having a spectral matrix of

the form

f(!) =

✓

fxx(!) fxy(!)
fyx(!) fyy(!)

◆

. (4.123)

Here, fxy(!) is the cross-spectrum relating the input xt to the output yt, and
fxx(!) and fyy(!) are the spectra of the input and output series, respectively.

Generally, we observe two series, regarded as input and output and search for

regression functions {�t} relating the inputs to the outputs. We assume all

autocovariance functions satisfy the absolute summability conditions of the

form (4.30).

Then, minimizing the mean squared error

MSE = E

 

yt �
1
X

r=�1
�rxt�r

!2

(4.124)

leads to the usual orthogonality conditions

E

" 

yt �
1
X

r=�1
�rxt�r

!

xt�s

#

= 0 (4.125)

for all s = 0,±1,±2, . . .. Taking the expectations inside leads to the normal

equations

1
X

r=�1
�r �xx(s� r) = �yx(s) (4.126)
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for s = 0,±1,±2, . . .. These equations might be solved, with some e↵ort, if
the covariance functions were known exactly. If data (xt, yt) for t = 1, ..., n
are available, we might use a finite approximation to the above equations

with b�xx(h) and b�yx(h) substituted into (4.126). If the regression vectors are

essentially zero for |s| � M/2, and M < n, the system (4.126) would be of full

rank and the solution would involve inverting an (M � 1)⇥ (M � 1) matrix.

A frequency domain approximate solution is easier in this case for two rea-

sons. First, the computations depend on spectra and cross-spectra that can

be estimated from sample data using the techniques of §4.6. In addition, no

matrices will have to be inverted, although the frequency domain ratio will

have to be computed for each frequency. In order to develop the frequency do-

main solution, substitute the representation (4.89) into the normal equations,

using the convention defined in (4.123). The left side of (4.126) can then be

written in the form

Z 1/2

�1/2

1
X

r=�1
�r e

2⇡i!(s�r) fxx(!) d! =

Z 1/2

�1/2
e

2⇡i!sB(!)fxx(!) d!,

where

B(!) =

1
X

r=�1
�r e

�2⇡i!r
(4.127)

is the Fourier transform of the regression coe�cients �t. Now, because �yx(s)
is the inverse transform of the cross-spectrum fyx(!), we might write the

system of equations in the frequency domain, using the uniqueness of the

Fourier transform, as

B(!)fxx(!) = fyx(!), (4.128)

which then become the analogs of the usual normal equations. Then, we may

take

bB(!k) =

bfyx(!k)

bfxx(!k)

(4.129)

as the estimator for the Fourier transform of the regression coe�cients, evalu-

ated at some subset of fundamental frequencies !k = k/M withM << n. Gen-

erally, we assume smoothness of B(·) over intervals of the form {!k+`/n; ` =
�(L�1)/2, . . . , (L�1)/2}. The inverse transform of the function

bB(!) would

give

b

�t, and we note that the discrete time approximation can be taken as

b

�t = M�1
M�1
X

k=0

bB(!k)e
2⇡i!

k

t
(4.130)

for t = 0,±1,±2, . . . ,±(M/2 � 1). If we were to use (4.130) to define

b

�t for

|t| � M/2, we would end up with a sequence of coe�cients that is periodic

with a period of M . In practice we define

b

�t = 0 for |t| � M/2 instead.

Problem 4.32 explores the error resulting from this approximation.
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Fig. 4.27. Estimated impulse response functions relating SOI to Recruitment (top)
and Recruitment to SOI (bottom) L = 15,M = 32.

Example 4.24 Lagged Regression for SOI and Recruitment

The high coherence between the SOI and Recruitment series noted in Ex-

ample 4.18 suggests a lagged regression relation between the two series. A

natural direction for the implication in this situation is implied because we

feel that the sea surface temperature or SOI should be the input and the

Recruitment series should be the output. With this in mind, let xt be the

SOI series and yt the Recruitment series.

Although we think naturally of the SOI as the input and the Recruitment

as the output, two input-output configurations are of interest. With SOI as

the input, the model is

yt =
1
X

r=�1
arxt�r + wt

whereas a model that reverses the two roles would be

xt =

1
X

r=�1
bryt�r + vt,

where wt and vt are white noise processes. Even though there is no plausible

environmental explanation for the second of these two models, displaying

both possibilities helps to settle on a parsimonious transfer function model.

Based on the script LagReg (see Appendix R, §R.1), the estimated re-

gression or impulse response function for SOI, with M = 32 and L = 15

is
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LagReg(soi, rec, L=15, M=32, threshold=6)

lag s beta(s)
[1,] 5 -18.479306
[2,] 6 -12.263296
[3,] 7 -8.539368
[4,] 8 -6.984553

The prediction equation is
rec(t) = alpha + sum_s[ beta(s)*soi(t-s) ], where alpha = 65.97
MSE = 414.08

Note the negative peak at a lag of five points in the top of Figure 4.27;

in this case, SOI is the input series. The fall-o↵ after lag five seems to be

approximately exponential and a possible model is

yt = 66� 18.5xt�5 � 12.3xt�6 � 8.5xt�7 � 7xt�8 + wt.

If we examine the inverse relation, namely, a regression model with the Re-

cruitment series yt as the input, the bottom of Figure 4.27 implies a much

simpler model,

LagReg(rec, soi, L=15, M=32, inverse=TRUE, threshold=.01)

lag s beta(s)
[1,] 4 0.01593167
[2,] 5 -0.02120013

The prediction equation is
soi(t) = alpha + sum_s[ beta(s)*rec(t+s) ], where alpha = 0.41
MSE = 0.07

depending on only two coe�cients, namely,

xt = .41 + .016yt+4 � .02yt+5 + vt.

Multiplying both sides by 50B5
and rearranging, we have

(1� .8B)yt = 20.5� 50B5xt + ✏t,

where ✏t is white noise, as our final, parsimonious model.

The example shows we can get a clean estimator for the transfer functions

relating the two series if the coherence b⇢

2
xy(!) is large. The reason is that we

can write the minimized mean squared error (4.124) as

MSE = E



�

yt �
1
X

r=�1
�rxt�r

�

yt

�

= �yy(0)�
1
X

r=�1
�r�xy(�r),

using the result about the orthogonality of the data and error term in the Pro-

jection theorem. Then, substituting the spectral representations of the autoco-

variance and cross-covariance functions and identifying the Fourier transform

(4.127) in the result leads to
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MSE =

Z 1/2

�1/2
[fyy(!)�B(!)fxy(!)] d!

=

Z 1/2

�1/2
fyy(!)[1� ⇢

2
yx(!)]d!, (4.131)

where ⇢

2
yx(!) is just the squared coherence given by (4.87). The similarity of

(4.131) to the usual mean square error that results from predicting y from x
is obvious. In that case, we would have

E(y � �x)2 = �

2
y(1� ⇢

2
xy)

for jointly distributed random variables x and y with zero means, variances

�

2
x and �

2
y, and covariance �xy = ⇢xy�x�y. Because the mean squared error

in (4.131) satisfies MSE � 0 with fyy(!) a non-negative function, it follows

that the coherence satisfies

0  ⇢

2
xy(!)  1

for all !. Furthermore, Problem 4.33 shows the squared coherence is one when

the output are linearly related by the filter relation (4.122), and there is

no noise, i.e., vt = 0. Hence, the multiple coherence gives a measure of the

association or correlation between the input and output series as a function

of frequency.

The matter of verifying that the F -distribution claimed for (4.97) will hold

when the sample coherence values are substituted for theoretical values still

remains. Again, the form of the F -statistic is exactly analogous to the usual

t-test for no correlation in a regression context. We give an argument lead-

ing to this conclusion later using the results in Appendix C, §C.3. Another

question that has not been resolved in this section is the extension to the

case of multiple inputs xt1, xt2, . . . , xtq. Often, more than just a single input

series is present that can possibly form a lagged predictor of the output series

yt. An example is the cardiovascular mortality series that depended on possi-

bly a number of pollution series and temperature. We discuss this particular

extension as a part of the multivariate time series techniques considered in

Chapter 7.

4.11 Signal Extraction and Optimum Filtering

A model closely related to regression can be developed by assuming again that

yt =
1
X

r=�1
�rxt�r + vt, (4.132)

but where the �s are known and xt is some unknown random signal that is

uncorrelated with the noise process vt. In this case, we observe only yt and

are interested in an estimator for the signal xt of the form
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bxt =

1
X

r=�1
aryt�r. (4.133)

In the frequency domain, it is convenient to make the additional assumptions

that the series xt and vt are both mean-zero stationary series with spectra

fxx(!) and fvv(!), often referred to as the signal spectrum and noise spec-

trum, respectively. Often, the special case �t = �t, in which �t is the Kronecker

delta, is of interest because (4.132) reduces to the simple signal plus noise

model

yt = xt + vt (4.134)

in that case. In general, we seek the set of filter coe�cients at that minimize

the mean squared error of estimation, say,

MSE = E

2

4

 

xt �
1
X

r=�1
aryt�r

!2
3

5 . (4.135)

This problem was originally solved by Kolmogorov (1941) and by Wiener

(1949), who derived the result in 1941 and published it in classified reports

during World War II.

We can apply the orthogonality principle to write

E

" 

xt �
1
X

r=�1
aryt�r

!

yt�s

#

= 0

for s = 0,±1,±2, . . ., which leads to

1
X

r=�1
ar�yy(s� r) = �xy(s),

to be solved for the filter coe�cients. Substituting the spectral representations

for the autocovariance functions into the above and identifying the spectral

densities through the uniqueness of the Fourier transform produces

A(!)fyy(!) = fxy(!), (4.136)

where A(!) and the optimal filter at are Fourier transform pairs for B(!) and

�t. Now, a special consequence of the model is that (see Problem 4.23)

fxy(!) = B(!)fxx(!) (4.137)

and

fyy(!) = |B(!)|2fxx(!) + fvv(!), (4.138)

implying the optimal filter would be Fourier transform of
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A(!) =

B(!)

✓

|B(!)|2 + f
vv

(!)
f
xx

(!)

◆ , (4.139)

where the second term in the denominator is just the inverse of the signal to

noise ratio, say,

SNR(!) =

fxx(!)

fvv(!)
. (4.140)

The result shows the optimum filters can be computed for this model if

the signal and noise spectra are both known or if we can assume knowledge

of the signal-to-noise ratio SNR(!) as function of frequency. In Chapter 7,

we show some methods for estimating these two parameters in conjunction

with random e↵ects analysis of variance models, but we assume here that it is

possible to specify the signal-to-noise ratio a priori. If the signal-to-noise ratio

is known, the optimal filter can be computed by the inverse transform of the

function A(!). It is more likely that the inverse transform will be intractable

and a finite filter approximation like that used in the previous section can be

applied to the data. In this case, we will have

aMt = M�1
M�1
X

k=0

A(!k)e
2⇡i!

k

t
(4.141)

as the estimated filter function. It will often be the case that the form of the

specified frequency response will have some rather sharp transitions between

regions where the signal-to-noise ratio is high and regions where there is little

signal. In these cases, the shape of the frequency response function will have

ripples that can introduce frequencies at di↵erent amplitudes. An aesthetic

solution to this problem is to introduce tapering as was done with spectral

estimation in (4.61)-(4.68). We use below the tapered filter ãt = htat where

ht is the cosine taper given in (4.68). The squared frequency response of the

resulting filter will be | ˜A(!)|2, where

˜A(!) =

1
X

t=�1
athte

�2⇡i!t. (4.142)

The results are illustrated in the following example that extracts the El Niño

component of the sea surface temperature series.

Example 4.25 Estimating the El Niño Signal via Optimal Filters
Figure 4.5 shows the spectrum of the SOI series, and we note that essentially

two components have power, the El Niño frequency of about .02 cycles per

month (the four-year cycle) and a yearly frequency of about .08 cycles per

month (the annual cycle). We assume, for this example, that we wish to

preserve the lower frequency as signal and to eliminate the higher order
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Fig. 4.28. Filter coe�cients (top) and frequency response functions (bottom) for
designed SOI filters.

frequencies, and in particular, the annual cycle. In this case, we assume the

simple signal plus noise model

yt = xt + vt,

so that there is no convolving function �t. Furthermore, the signal-to-noise

ratio is assumed to be high to about .06 cycles per month and zero thereafter.

The optimal frequency response was assumed to be unity to .05 cycles per

point and then to decay linearly to zero in several steps. Figure 4.28 shows

the coe�cients as specified by (4.141) with M = 64, as well as the frequency

response function given by (4.142), of the cosine tapered coe�cients; recall

Figure 4.9, where we demonstrated the need for tapering to avoid severe

ripples in the window. The constructed response function is compared to the

ideal window in Figure 4.28.

Figure 4.29 shows the original and filtered SOI index, and we see a smooth

extracted signal that conveys the essence of the underlying El Niño signal.

The frequency response of the designed filter can be compared with that

of the symmetric 12-month moving average applied to the same series in

Example 4.19. The filtered series, shown in Figure 4.14, shows a good deal
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Fig. 4.29. Original SOI series (top) compared to filtered version showing the esti-
mated El Niño temperature signal (bottom).

of higher frequency chatter riding on the smoothed version, which has been

introduced by the higher frequencies that leak through in the squared fre-

quency response, as in Figure 4.16.

The analysis can be replicated using the script SigExtract; see Appendix

R, §R.1, for details.
SigExtract(soi, L=9, M=64, max.freq=.05)

The design of finite filters with a specified frequency response requires some

experimentation with various target frequency response functions and we have

only touched on the methodology here. The filter designed here, sometimes

called a low-pass filter reduces the high frequencies and keeps or passes the

low frequencies. Alternately, we could design a high-pass filter to keep high

frequencies if that is where the signal is located. An example of a simple

high-pass filter is the first di↵erence with a frequency response that is shown

in Figure 4.16. We can also design band-pass filters that keep frequencies in

specified bands. For example, seasonal adjustment filters are often used in

economics to reject seasonal frequencies while keeping both high frequencies,

lower frequencies, and trend (see, for example, Grether and Nerlove, 1970).

The filters we have discussed here are all symmetric two-sided filters, be-

cause the designed frequency response functions were purely real. Alterna-

tively, we may design recursive filters to produce a desired response. An ex-
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ample of a recursive filter is one that replaces the input xt by the filtered

output

yt =
p
X

k=1

�kyt�k + xt �
q
X

k=1

✓kxt�k. (4.143)

Note the similarity between (4.143) and the ARIMA(p, 1, q) model, in which

the white noise component is replaced by the input. Transposing the terms

involving yt and using the basic linear filter result in Property 4.7 leads to

fy(!) =
|✓(e�2⇡i!

)|2
|�(e�2⇡i!

)|2 fx(!), (4.144)

where

�(e

�2⇡i!
) = 1�

p
X

k=1

�ke
�2⇡ik!

and

✓(e

�2⇡i!
) = 1�

q
X

k=1

✓ke
�2⇡ik!.

Recursive filters such as those given by (4.144) distort the phases of arriving

frequencies, and we do not consider the problem of designing such filters in

any detail.

4.12 Spectral Analysis of Multidimensional Series

Multidimensional series of the form xsss, where sss = (s1, s2, . . . , sr)0 is an r-
dimensional vector of spatial coordinates or a combination of space and time

coordinates, were introduced in §1.7. The example given there, shown in Fig-

ure 1.15, was a collection of temperature measurements taking on a rectan-

gular field. These data would form a two-dimensional process, indexed by

row and column in space. In that section, the multidimensional autocovari-

ance function of an r-dimensional stationary series was given as �x(hhh) =

E[xsss+hhhxsss], where the multidimensional lag vector is hhh = (h1, h2, . . . , hr)
0
.

The multidimensional wavenumber spectrum is given as the Fourier trans-

form of the autocovariance, namely,

fx(!!!) =
X

hhh

�x(hhh)e
�2⇡i!!!0hhh. (4.145)

Again, the inverse result

�x(hhh) =

Z 1/2

�1/2
fx(!!!)e

2⇡i!!!0hhhd!!! (4.146)
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holds, where the integral is over the multidimensional range of the vector !!!.

The wavenumber argument is exactly analogous to the frequency argument,

and we have the corresponding intuitive interpretation as the cycling rate !i

per distance traveled si in the i-th direction.

Two-dimensional processes occur often in practical applications, and the

representations above reduce to

fx(!1,!2) =

1
X

h1=�1

1
X

h2=�1
�x(h1, h2)e

�2⇡i(!1h1+!2h2)
(4.147)

and

�x(h1, h2) =

Z 1/2

�1/2

Z 1/2

�1/2
fx(!1,!2)e

2⇡i(!1h1+!2h2)d!1 d!2 (4.148)

in the case r = 2. The notion of linear filtering generalizes easily to the two-

dimensional case by defining the impulse response function as1,s2 and the

spatial filter output as

ys1,s2 =

X

u1

X

u2

au1,u2xs1�u1,s2�u2 . (4.149)

The spectrum of the output of this filter can be derived as

fy(!1,!2) = |A(!1,!2)|2fx(!1,!2), (4.150)

where

A(!1,!2) =

X

u1

X

u2

au1,u2e
�2⇡i(!1u1+!2u2). (4.151)

These results are analogous to those in the one-dimensional case, described

by Property 4.7.

The multidimensional DFT is also a straightforward generalization of the

univariate expression. In the two-dimensional case with data on a rectangular

grid, {xs1,s2 ; s1 = 1, ..., n1, s2 = 1, ..., n2}, we will write, for �1/2  !1,!2 
1/2,

d(!1,!2) = (n1n2)
�1/2

n1
X

s1=1

n2
X

s2=1

xs1,s2e
�2⇡i(!1s1+!2s2)

(4.152)

as the two-dimensional DFT, where the frequencies !1,!2 are evaluated at

multiples of (1/n1, 1/n2) on the spatial frequency scale. The two-dimensional

wavenumber spectrum can be estimated by the smoothed sample wavenumber

spectrum

¯fx(!1,!2) = (L1L2)
�1
X

`1,`2

|d(!1 + `1/n1,!2 + `2/n2)|2 , (4.153)
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Fig. 4.30. Two-dimensional periodogram of soil temperature profile showing peak
at .0625 cycles/row. The period is 16 rows, and this corresponds to 16⇥ 17 ft = 272
ft.

where the sum is taken over the grid {�mj  `j  mj ; j = 1, 2}, where
L1 = 2m1 + 1 and L2 = 2m2 + 1. The statistic

2L1L2
¯fx(!1,!2)

fx(!1,!2)

·⇠ �

2
2L1L2

(4.154)

can be used to set confidence intervals or make approximate tests against

a fixed assumed spectrum f0(!1,!2). We may also extend this analysis to

weighted estimation and window estimation as discussed in §4.5.
Example 4.26 Soil Surface Temperatures
As an example, consider the periodogram of the two-dimensional tempera-

ture series shown in Figure 1.15 and analyzed by Bazza et al. (1988). We

recall the spatial coordinates in this case will be (s1, s2), which define the

spatial coordinates rows and columns so that the frequencies in the two direc-

tions will be expressed as cycles per row and cycles per column. Figure 4.30

shows the periodogram of the two-dimensional temperature series, and we

note the ridge of strong spectral peaks running over rows at a column fre-

quency of zero. An obvious periodic component appears at frequencies of

.0625 and �.0625 cycles per row, which corresponds to 16 rows or about

272 ft. On further investigation of previous irrigation patterns over this field,
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treatment levels of salt varied periodically over columns. This analysis is

extended in Problem 4.17, where we recover the salt treatment profile over

rows and compare it to a signal, computed by averaging over columns.

Figure 4.30 may be reproduced in R as follows. In the code for this example,

the periodogram is computed in one step as per; the rest of the code is simply

manipulation to obtain a nice graphic.

per = abs(fft(soiltemp-mean(soiltemp))/sqrt(64*36))^2
per2 = cbind(per[1:32,18:2], per[1:32,1:18])
per3 = rbind(per2[32:2,],per2)
par(mar=c(1,2.5,0,0)+.1)
persp(-31:31/64, -17:17/36, per3, phi=30, theta=30, expand=.6,

ticktype="detailed", xlab="cycles/row", ylab="cycles/column",
zlab="Periodogram Ordinate")

Another application of two-dimensional spectral analysis of agricultural

field trials is given in McBratney and Webster (1981), who used it to de-

tect ridge and furrow patterns in yields. The requirement for regular, equally

spaced samples on fairly large grids has tended to limit enthusiasm for strict

two-dimensional spectral analysis. An exception is when a propagating signal

from a given velocity and azimuth is present so predicting the wavenumber

spectrum as a function of velocity and azimuth becomes feasible (see Shumway

et al., 1999).

Problems

Section 4.2

4.1 Repeat the simulations and analyses in Example 4.1 and Example 4.2

with the following changes:

(a) Change the sample size to n = 128 and generate and plot the same series

as in Example 4.1:

xt1 = 2 cos(2⇡ .06 t) + 3 sin(2⇡ .06 t),

xt2 = 4 cos(2⇡ .10 t) + 5 sin(2⇡ .10 t),

xt3 = 6 cos(2⇡ .40 t) + 7 sin(2⇡ .40 t),

xt = xt1 + xt2 + xt3.

What is the major di↵erence between these series and the series generated

in Example 4.1? (Hint: The answer is fundamental. But if your answer is
the series are longer, you may be punished severely.)

(b) As in Example 4.2, compute and plot the periodogram of the series, xt,

generated in (a) and comment.

(c) Repeat the analyses of (a) and (b) but with n = 100 (as in Example 4.1),

and adding noise to xt; that is
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xt = xt1 + xt2 + xt3 + wt

where wt ⇠ iid N(0, 25). That is, you should simulate and plot the data,

and then plot the periodogram of xt and comment.

4.2 With reference to equations (4.1) and (4.2), let Z1 = U1 and Z2 = �U2

be independent, standard normal variables. Consider the polar coordinates of

the point (Z1, Z2), that is,

A2
= Z2

1 + Z2
2 and � = tan

�1
(Z2/Z1).

(a) Find the joint density of A2
and �, and from the result, conclude that

A2
and � are independent random variables, where A2

is a chi-squared

random variable with 2 df, and � is uniformly distributed on (�⇡,⇡).
(b) Going in reverse from polar coordinates to rectangular coordinates, sup-

pose we assume that A2
and � are independent random variables, where

A2
is chi-squared with 2 df, and � is uniformly distributed on (�⇡,⇡).

With Z1 = A cos(�) and Z2 = A sin(�), where A is the positive square

root of A2
, show that Z1 and Z2 are independent, standard normal random

variables.

4.3 Verify (4.4).

Section 4.3

4.4 A time series was generated by first drawing the white noise series wt

from a normal distribution with mean zero and variance one. The observed

series xt was generated from

xt = wt � ✓wt�1, t = 0,±1,±2, . . . ,

where ✓ is a parameter.

(a) Derive the theoretical mean value and autocovariance functions for the

series xt and wt. Are the series xt and wt stationary? Give your reasons.

(b) Give a formula for the power spectrum of xt, expressed in terms of ✓ and

!.

4.5 A first-order autoregressive model is generated from the white noise series

wt using the generating equations

xt = �xt�1 + wt,

where �, for |�| < 1, is a parameter and the wt are independent random

variables with mean zero and variance �

2
w.

(a) Show that the power spectrum of xt is given by

fx(!) =
�

2
w

1 + �

2 � 2� cos(2⇡!)

.
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(b) Verify the autocovariance function of this process is

�x(h) =
�

2
w �

|h|

1� �

2
,

h = 0,±1,±2, . . ., by showing that the inverse transform of �x(h) is the

spectrum derived in part (a).

4.6 In applications, we will often observe series containing a signal that has

been delayed by some unknown time D, i.e.,

xt = st +Ast�D + nt,

where st and nt are stationary and independent with zero means and spectral

densities fs(!) and fn(!), respectively. The delayed signal is multiplied by

some unknown constant A.

(a) Prove

fx(!) = [1 +A2
+ 2A cos(2⇡!D)]fs(!) + fn(!).

(b) How could the periodicity expected in the spectrum derived in (a) be used

to estimate the delay D? (Hint: Consider the case where fn(!) = 0; i.e.,

there is no noise.)

4.7 Suppose xt and yt are stationary zero-mean time series with xt indepen-

dent of ys for all s and t. Consider the product series

zt = xtyt.

Prove the spectral density for zt can be written as

fz(!) =

Z 1/2

�1/2
fx(! � ⌫)fy(⌫) d⌫.

Section 4.4

4.8 Figure 4.31 shows the biyearly smoothed (12-month moving average) num-

ber of sunspots from June 1749 to December 1978 with n = 459 points that

were taken twice per year; the data are contained in sunspotz. With Exam-

ple 4.10 as a guide, perform a periodogram analysis identifying the predom-

inant periods and obtaining confidence intervals for the identified periods.

Interpret your findings.

4.9 The levels of salt concentration known to have occurred over rows, corre-

sponding to the average temperature levels for the soil science data considered

in Figure 1.15 and Figure 1.16, are in salt and saltemp. Plot the series and

then identify the dominant frequencies by performing separate spectral analy-

ses on the two series. Include confidence intervals for the dominant frequencies

and interpret your findings.
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Fig. 4.31. Smoothed 12-month sunspot numbers (sunspotz) sampled twice per
year.

4.10 Let the observed series xt be composed of a periodic signal and noise so

it can be written as

xt = �1 cos(2⇡!kt) + �2 sin(2⇡!kt) + wt,

where wt is a white noise process with variance �

2
w. The frequency !k is as-

sumed to be known and of the form k/n in this problem. Suppose we consider

estimating �1, �2 and �

2
w by least squares, or equivalently, by maximum like-

lihood if the wt are assumed to be Gaussian.

(a) Prove, for a fixed !k, the minimum squared error is attained by

 

b

�1

b

�2

!

= 2n�1/2

✓

dc(!k)

ds(!k)

◆

,

where the cosine and sine transforms (4.23) and (4.24) appear on the

right-hand side.

(b) Prove that the error sum of squares can be written as

SSE =

n
X

t=1

x2
t � 2Ix(!k)

so that the value of !k that minimizes squared error is the same as the

value that maximizes the periodogram Ix(!k) estimator (4.20).

(c) Under the Gaussian assumption and fixed !k, show that the F -test of no

regression leads to an F -statistic that is a monotone function of Ix(!k).

4.11 Prove the convolution property of the DFT, namely,

n
X

s=1

asxt�s =

n�1
X

k=0

dA(!k)dx(!k) exp{2⇡!kt},
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for t = 1, 2, . . . , n, where dA(!k) and dx(!k) are the discrete Fourier trans-

forms of at and xt, respectively, and we assume that xt = xt+n is periodic.

Section 4.5

4.12 Repeat Problem 4.8 using a nonparametric spectral estimation proce-

dure. In addition to discussing your findings in detail, comment on your choice

of a spectral estimate with regard to smoothing and tapering.

4.13 Repeat Problem 4.9 using a nonparametric spectral estimation proce-

dure. In addition to discussing your findings in detail, comment on your choice

of a spectral estimate with regard to smoothing and tapering.

4.14 The periodic behavior of a time series induced by echoes can also be

observed in the spectrum of the series; this fact can be seen from the results

stated in Problem 4.6(a). Using the notation of that problem, suppose we

observe xt = st + Ast�D + nt, which implies the spectra satisfy fx(!) =

[1 + A2
+ 2A cos(2⇡!D)]fs(!) + fn(!). If the noise is negligible (fn(!) ⇡ 0)

then log fx(!) is approximately the sum of a periodic component, log[1 +

A2
+2A cos(2⇡!D)], and log fs(!). Bogart et al. (1962) proposed treating the

detrended log spectrum as a pseudo time series and calculating its spectrum,

or cepstrum, which should show a peak at a quefrency corresponding to 1/D.

The cepstrum can be plotted as a function of quefrency, from which the delaty

D can be estimated.

For the speech series presented in Example 1.3, estimate the pitch period

using cepstral analysis as follows. The data are in speech.

(a) Calculate and display the log-periodogram of the data. Is the periodogram

periodic, as predicted?

(b) Perform a cepstral (spectral) analysis on the detrended logged peri-

odogram, and use the results to estimate the delay D. How does your

answer compare with the analysis of Example 1.24, which was based on

the ACF?

4.15 Use Property 4.2 to verify (4.63). Then verify (4.66) and (4.67).

4.16 Consider two time series

xt = wt � wt�1,

yt =
1
2 (wt + wt�1),

formed from the white noise series wt with variance �

2
w = 1.

(a) Are xt and yt jointly stationary? Recall the cross-covariance function must

also be a function only of the lag h and cannot depend on time.

(b) Compute the spectra fy(!) and fx(!), and comment on the di↵erence
between the two results.
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(c) Suppose sample spectral estimators

¯fy(.10) are computed for the series

using L = 3. Find a and b such that

P

⇢

a  ¯fy(.10)  b

�

= .90.

This expression gives two points that will contain 90% of the sample spec-

tral values. Put 5% of the area in each tail.

Section 4.6

4.17 Analyze the coherency between the temperature and salt data discussed

in Problem 4.9. Discuss your findings.

4.18 Consider two processes

xt = wt and yt = �xt�D + vt

where wt and vt are independent white noise processes with common variance

�

2
, � is a constant, and D is a fixed integer delay.

(a) Compute the coherency between xt and yt.
(b) Simulate n = 1024 normal observations from xt and yt for � = .9, �2

= 1,

and D = 0. Then estimate and plot the coherency between the simulated

series for the following values of L and comment:

(i) L = 1, (ii) L = 3, (iii) L = 41, and (iv) L = 101.

Section 4.7

4.19 For the processes in Problem 4.18:

(a) Compute the phase between xt and yt.
(b) Simulate n = 1024 observations from xt and yt for � = .9, �2

= 1, and

D = 1. Then estimate and plot the phase between the simulated series for

the following values of L and comment:

(i) L = 1, (ii) L = 3, (iii) L = 41, and (iv) L = 101.

4.20 Consider the bivariate time series records containing monthly U.S. pro-

duction as measured by the Federal Reserve Board Production Index and

monthly unemployment as given in Figure 3.22.

(a) Compute the spectrum and the log spectrum for each series, and identify

statistically significant peaks. Explain what might be generating the peaks.

Compute the coherence, and explain what is meant when a high coherence

is observed at a particular frequency.
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(b) What would be the e↵ect of applying the filter

ut = xt � xt�1 followed by vt = ut � ut�12

to the series given above? Plot the predicted frequency responses of the

simple di↵erence filter and of the seasonal di↵erence of the first di↵erence.
(c) Apply the filters successively to one of the two series and plot the out-

put. Examine the output after taking a first di↵erence and comment on

whether stationarity is a reasonable assumption. Why or why not? Plot

after taking the seasonal di↵erence of the first di↵erence. What can be

noticed about the output that is consistent with what you have predicted

from the frequency response? Verify by computing the spectrum of the

output after filtering.

4.21 Determine the theoretical power spectrum of the series formed by com-

bining the white noise series wt to form

yt = wt�2 + 4wt�1 + 6wt + 4wt+1 + wt+2.

Determine which frequencies are present by plotting the power spectrum.

4.22 Let xt = cos(2⇡!t), and consider the output

yt =
1
X

k=�1
akxt�k,

where

P

k |ak| < 1. Show

yt = |A(!)| cos(2⇡!t+ �(!)),

where |A(!)| and �(!) are the amplitude and phase of the filter, respectively.

Interpret the result in terms of the relationship between the input series, xt,

and the output series, yt.

4.23 Suppose xt is a stationary series, and we apply two filtering operations

in succession, say,

yt =
X

r

arxt�r then zt =
X

s

bsyt�s.

(a) Show the spectrum of the output is

fz(!) = |A(!)|2|B(!)|2fx(!),
where A(!) and B(!) are the Fourier transforms of the filter sequences at
and bt, respectively.

(b) What would be the e↵ect of applying the filter

ut = xt � xt�1 followed by vt = ut � ut�12

to a time series?
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(c) Plot the predicted frequency responses of the simple di↵erence filter and

of the seasonal di↵erence of the first di↵erence. Filters like these are called
seasonal adjustment filters in economics because they tend to attenuate

frequencies at multiples of the monthly periods. The di↵erence filter tends
to attenuate low-frequency trends.

4.24 Suppose we are given a stationary zero-mean series xt with spectrum

fx(!) and then construct the derived series

yt = ayt�1 + xt, t = ±1,±2, ... .

(a) Show how the theoretical fy(!) is related to fx(!).
(b) Plot the function that multiplies fx(!) in part (a) for a = .1 and for a = .8.

This filter is called a recursive filter.

Section 4.8

4.25 Often, the periodicities in the sunspot series are investigated by fitting

an autoregressive spectrum of su�ciently high order. The main periodicity

is often stated to be in the neighborhood of 11 years. Fit an autoregressive

spectral estimator to the sunspot data using a model selection method of

your choice. Compare the result with a conventional nonparametric spectral

estimator found in Problem 4.8.

4.26 Fit an autoregressive spectral estimator to the Recruitment series and

compare it to the results of Example 4.13.

4.27 Suppose a sample time series with n = 256 points is available from the

first-order autoregressive model. Furthermore, suppose a sample spectrum

computed with L = 3 yields the estimated value

¯fx(1/8) = 2.25. Is this

sample value consistent with �

2
w = 1,� = .5? Repeat using L = 11 if we just

happen to obtain the same sample value.

4.28 Suppose we wish to test the noise alone hypothesis H0 : xt = nt against

the signal-plus-noise hypothesis H1 : xt = st+nt, where st and nt are uncorre-

lated zero-mean stationary processes with spectra fs(!) and fn(!). Suppose
that we want the test over a band of L = 2m + 1 frequencies of the form

!j:n + k/n, for k = 0,±1,±2, . . . ,±m near some fixed frequency !. Assume

that both the signal and noise spectra are approximately constant over the

interval.

(a) Prove the approximate likelihood-based test statistic for testingH0 against

H1 is proportional to

T =

X

k

|dx(!j:n + k/n)|2
✓

1

fn(!)
� 1

fs(!) + fn(!)

◆

.
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(b) Find the approximate distributions of T under H0 and H1.

(c) Define the false alarm and signal detection probabilities as PF = P{T >
K|H0} and Pd = P{T > k|H1}, respectively. Express these probabilities in
terms of the signal-to-noise ratio fs(!)/fn(!) and appropriate chi-squared

integrals.

Section 4.9

4.29 Repeat the dynamic Fourier analysis of Example 4.21 on the remaining

seven earthquakes and seven explosions in the data file eqexp. Do the conclu-

sions about the di↵erence between earthquakes and explosions stated in the

example still seem valid?

4.30 Repeat the wavelet analyses of Example 4.22 and Example 4.23 on all

earthquake and explosion series in the data file eqexp. Do the conclusions

about the di↵erence between earthquakes and explosions stated in Exam-

ple 4.22 and Example 4.23 still seem valid?

4.31 Using Example 4.21–Example 4.23 as a guide, perform a dynamic Fourier

analysis and wavelet analyses (dwt and waveshrink analysis) on the event of

unknown origin that took place near the Russian nuclear test facility in Novaya

Zemlya. State your conclusion about the nature of the event at Novaya Zemlya.

Section 4.10

4.32 Consider the problem of approximating the filter output

yt =
1
X

k=�1
akxt�k,

1
X

�1
|ak| < 1,

by

yMt =

X

|k|<M/2

aMk xt�k

for t = M/2� 1,M/2, . . . , n�M/2, where xt is available for t = 1, . . . , n and

aMt = M�1
M�1
X

k=0

A(!k) exp{2⇡i!kt}

with !k = k/M . Prove

E{(yt � yMt )

2}  4�x(0)

✓

X

|k|�M/2

|ak|
◆2

.
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4.33 Prove the squared coherence ⇢

2
y·x(!) = 1 for all ! when

yt =
1
X

r=�1
arxt�r,

that is, when xt and yt can be related exactly by a linear filter.

4.34 The data set climhyd, contains 454 months of measured values for six

climatic variables: (i) air temperature [Temp], (ii) dew point [DewPt], (iii) cloud
cover [CldCvr], (iv) wind speed [WndSpd], (v) precipitation [Precip], and (vi)

inflow [Inflow], at Lake Shasta in California; the data are displayed in Fig-

ure 7.3. We would like to look at possible relations among the weather factors

and between the weather factors and the inflow to Lake Shasta.

(a) First transform the inflow and precipitation series as follows: It = log it,
where it is inflow, and Pt =

p
p
t
, where pt is precipitation. Then, com-

pute the square coherencies between all the weather variables and trans-

formed inflow and argue that the strongest determinant of the inflow

series is (transformed) precipitation. [Tip: If x contains multiple time

series, then the easiest way to display all the squared coherencies is to

first make an object of class spec; e.g., u = spectrum(x, span=c(7,7),
plot=FALSE) and then plot the coherencies suppressing the confidence

intervals, plot(u, ci=-1, plot.type="coh").]
(b) Fit a lagged regression model of the form

It = �0 +

1
X

j=0

�jPt�j + wt,

using thresholding, and then comment of the predictive ability of precipi-

tation for inflow.

Section 4.11

4.35 Consider the signal plus noise model

yt =
1
X

r=�1
�rxt�r + vt,

where the signal and noise series, xt and vt are both stationary with spectra

fx(!) and fv(!), respectively. Assuming that xt and vt are independent of

each other for all t, verify (4.137) and (4.138).

4.36 Consider the model

yt = xt + vt,

where
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xt = �xt�1 + wt,

such that vt is Gaussian white noise and independent of xt with var(vt) = �

2
v ,

and wt is Gaussian white noise and independent of vt, with var(wt) = �

2
w,

and |�| < 1 and Ex0 = 0. Prove that the spectrum of the observed series yt is

fy(!) =
�

2|1� ✓e�2⇡i!|2
|1� �e�2⇡i!|2 ,

where

✓ =

c±p
c2 � 4

2

, �

2
=

�

2
v�

✓

,

and

c =
�

2
w + �

2
v(1 + �

2
)

�

2
v�

.

4.37 Consider the same model as in the preceding problem.

(a) Prove the optimal smoothed estimator of the form

bxt =

1
X

s=�1
asyt�s

has

as =
�

2
w

�

2

✓

|s|

1� ✓

2
.

(b) Show the mean square error is given by

E{(xt � bxt)
2} =

�

2
v�

2
w

�

2
(1� ✓

2
)

.

(c) Compare mean square error of the estimator in part (b) with that of the

optimal finite estimator of the form

bxt = a1yt�1 + a2yt�2

when �

2
v = .053,�2

w = .172, and �1 = .9.

Section 4.12

4.38 Consider the two-dimensional linear filter given as the output (4.149).

(a) Express the two-dimensional autocovariance function of the output, say,

�y(h1, h2), in terms of an infinite sum involving the autocovariance func-

tion of xsss and the filter coe�cients as1,s2 .
(b) Use the expression derived in (a), combined with (4.148) and (4.151) to

derive the spectrum of the filtered output (4.150).
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The following problems require supplemental material from Appendix C

4.39 Let wt be a Gaussian white noise series with variance �

2
w. Prove that

the results of Theorem C.4 hold without error for the DFT of wt.

4.40 Show that condition (4.40) implies (C.19) by showing

n�1/2
X

h�0

h |�(h)|  �

2
w

X

k�0

| k|
X

j�0

p

j | j |.

4.41 Prove Lemma C.4.

4.42 Finish the proof of Theorem C.5.

4.43 For the zero-mean complex random vector zzz = xxxc � ixxxs, with cov(zzz) =
⌃ = C � iQ, with ⌃ = ⌃

⇤
, define

w = 2Re(aaa⇤zzz),

where aaa = aaac � iaaas is an arbitrary non-zero complex vector. Prove

cov(w) = 2aaa⇤⌃aaa.

Recall

⇤
denotes the complex conjugate transpose.


