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Spectral Analysis and Filtering

4.1 Introduction

The notion that a time series exhibits repetitive or regular behavior over time
is of fundamental importance because it distinguishes time series analysis
from classical statistics, which assumes complete independence over time. We
have seen how dependence over time can be introduced through models that
describe in detail the way certain empirical data behaves, even to the extent
of producing forecasts based on the models. It is natural that models based on
predicting the present as a regression on the past, such as are provided by the
celebrated ARIMA or state-space forms, will be attractive to statisticians, who
are trained to view nature in terms of linear models. In fact, the di↵erence
equations used to represent these kinds of models are simply the discrete
versions of linear di↵erential equations that may, in some instances, provide
the ideal physical model for a certain phenomenon. An alternate version of
the way nature behaves exists, however, and is based on a decomposition of
an empirical series into its regular components.

In this chapter, we argue that the concept of regularity of a series can best
be expressed in terms of periodic variations of the underlying phenomenon
that produced the series, expressed as Fourier frequencies being driven by
sines and cosines. Such a possibility was discussed in Chapters 1 and 2. From
a regression point of view, we may imagine a system responding to various
driving frequencies by producing linear combinations of sine and cosine func-
tions. Expressed in these terms, the time domain approach may be thought
of as regression of the present on the past, whereas the frequency domain
approach may be considered as regression of the present on periodic sines and
cosines.

Frequency domain approaches are the focus of this chapter. To illustrate
the two methods for generating series with a single primary periodic com-
ponent, consider Figure 1.9, which was generated from a simple second-order
autoregressive model, and the middle and bottom panels of Figure 1.11, which
were generated by adding a cosine wave with a period of 50 points to white
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noise. Both series exhibit strong periodic fluctuations, illustrating that both
models can generate time series with regular behavior. As discussed in Exam-
ple 2.8, a fundamental objective of spectral analysis is to identify the dominant
frequencies in a series and to find an explanation of the system from which
the measurements were derived.

Of course, the primary justification for any alternate model must lie in
its potential for explaining the behavior of some empirical phenomenon. In
this sense, an explanation involving only a few kinds of primary oscillations
becomes simpler and more physically meaningful than a collection of param-
eters estimated for some selected di↵erence equation. It is the tendency of
observed data to show periodic kinds of fluctuations that justifies the use of
frequency domain methods. Many of the examples in §1.2 are time series rep-
resenting real phenomena that are driven by periodic components. The speech
recording of the syllable aa...hh in Figure 1.3 contains a complicated mixture
of frequencies related to the opening and closing of the glottis. Figure 1.5
shows the monthly SOI, which we later explain as a combination of two kinds
of periodicities, a seasonal periodic component of 12 months and an El Niño
component of about three to five years. Of fundamental interest is the return
period of the El Niño phenomenon, which can have profound e↵ects on lo-
cal climate. Also of interest is whether the di↵erent periodic components of
the new fish population depend on corresponding seasonal and El Niño-type
oscillations. We introduce the coherence as a tool for relating the common
periodic behavior of two series. Seasonal periodic components are often per-
vasive in economic time series; this phenomenon can be seen in the quarterly
earnings series shown in Figure 1.1. In Figure 1.6, we see the extent to which
various parts of the brain will respond to a periodic stimulus generated by
having the subject do alternate left and right finger tapping. Figure 1.7 shows
series from an earthquake and a nuclear explosion. The relative amounts of
energy at various frequencies for the two phases can produce statistics, useful
for discriminating between earthquakes and explosions.

In this chapter, we summarize an approach to handling correlation gen-
erated in stationary time series that begins by transforming the series to the
frequency domain. This simple linear transformation essentially matches sines
and cosines of various frequencies against the underlying data and serves two
purposes as discussed in Example 2.8 and Example 2.9. The periodogram
that was introduced in Example 2.9 has its population counterpart called the
power spectrum, and its estimation is a main goal of spectral analysis. An-
other purpose of exploring this topic is statistical convenience resulting from
the periodic components being nearly uncorrelated. This property facilitates
writing likelihoods based on classical statistical methods.

An important part of analyzing data in the frequency domain, as well as
the time domain, is the investigation and exploitation of the properties of the
time-invariant linear filter. This special linear transformation is used similarly
to linear regression in conventional statistics, and we use many of the same
terms in the time series context. We have previously mentioned the coherence
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as a measure of the relation between two series at a given frequency, and
we show later that this coherence also measures the performance of the best
linear filter relating the two series. Linear filtering can also be an important
step in isolating a signal embedded in noise. For example, the lower panels
of Figure 1.11 contain a signal contaminated with an additive noise, whereas
the upper panel contains the pure signal. It might also be appropriate to
ask whether a linear filter transformation exists that could be applied to the
lower panel to produce a series closer to the signal in the upper panel. The
use of filtering for reducing noise will also be a part of the presentation in this
chapter. We emphasize, throughout, the analogy between filtering techniques
and conventional linear regression.

Many frequency scales will often coexist, depending on the nature of the
problem. For example, in the Johnson & Johnson data set in Figure 1.1,
the predominant frequency of oscillation is one cycle per year (4 quarters),
or .25 cycles per observation. The predominant frequency in the SOI and fish
populations series in Figure 1.5 is also one cycle per year, but this corresponds
to 1 cycle every 12 months, or .083 cycles per observation. For simplicity, we
measure frequency, !, at cycles per time point and discuss the implications
of certain frequencies in terms of the problem context. Of descriptive interest
is the period of a time series, defined as the number of points in a cycle, i.e.,
1/!. Hence, the predominant period of the Johnson & Johnson series is 1/.25
or 4 quarters per cycle, whereas the predominant period of the SOI series is
12 months per cycle.

4.2 Cyclical Behavior and Periodicity

As previously mentioned, we have already encountered the notion of period-
icity in numerous examples in Chapters 1, 2 and 3. The general notion of
periodicity can be made more precise by introducing some terminology. In or-
der to define the rate at which a series oscillates, we first define a cycle as one
complete period of a sine or cosine function defined over a unit time interval.
As in (1.5), we consider the periodic process

xt = A cos(2⇡!t+ �) (4.1)

for t = 0,±1,±2, . . ., where ! is a frequency index, defined in cycles per unit
time with A determining the height or amplitude of the function and �, called
the phase, determining the start point of the cosine function. We can introduce
random variation in this time series by allowing the amplitude and phase to
vary randomly.

As discussed in Example 2.8, for purposes of data analysis, it is easier to
use a trigonometric identity1 and write (4.1) as

1 cos(↵± �) = cos(↵) cos(�)⌥ sin(↵) sin(�).
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xt = U1 cos(2⇡!t) + U2 sin(2⇡!t), (4.2)

where U1 = A cos� and U2 = �A sin� are often taken to be normally dis-
tributed random variables. In this case, the amplitude is A =

p

U2
1 + U2

2

and the phase is � = tan�1(�U2/U1). From these facts we can show that if,
and only if, in (4.1), A and � are independent random variables, where A2

is chi-squared with 2 degrees of freedom, and � is uniformly distributed on
(�⇡,⇡), then U1 and U2 are independent, standard normal random variables
(see Problem 4.2).

The above random process is also a function of its frequency, defined by
the parameter !. The frequency is measured in cycles per unit time, or in
cycles per point in the above illustration. For ! = 1, the series makes one
cycle per time unit; for ! = .50, the series makes a cycle every two time units;
for ! = .25, every four units, and so on. In general, for data that occur at
discrete time points will need at least two points to determine a cycle, so the
highest frequency of interest is .5 cycles per point. This frequency is called
the folding frequency and defines the highest frequency that can be seen in
discrete sampling. Higher frequencies sampled this way will appear at lower
frequencies, called aliases; an example is the way a camera samples a rotating
wheel on a moving automobile in a movie, in which the wheel appears to be
rotating at a di↵erent rate. For example, movies are recorded at 24 frames
per second. If the camera is filming a wheel that is rotating at the rate of 24
cycles per second (or 24 Hertz), the wheel will appear to stand still (that’s
about 110 miles per hour in case you were wondering).

Consider a generalization of (4.2) that allows mixtures of periodic series
with multiple frequencies and amplitudes,

xt =
q
X

k=1

[Uk1 cos(2⇡!kt) + Uk2 sin(2⇡!kt)] , (4.3)

where Uk1, Uk2, for k = 1, 2, . . . , q, are independent zero-mean random vari-
ables with variances �2

k, and the !k are distinct frequencies. Notice that (4.3)
exhibits the process as a sum of independent components, with variance �2

k

for frequency !k. Using the independence of the Us and the trig identity in
footnote 1, it is easy to show2 (Problem 4.3) that the autocovariance function
of the process is

�(h) =
q
X

k=1

�2
k cos(2⇡!kh), (4.4)

and we note the autocovariance function is the sum of periodic components
with weights proportional to the variances �2

k. Hence, xt is a mean-zero sta-
tionary processes with variance

2 For example, for x
t

in (4.2) we have cov(x
t+h

, x

t

) = �

2
{cos(2⇡![t+h]) cos(2⇡!t)+

sin(2⇡![t+ h]) sin(2⇡!t)} = �

2 cos(2⇡!h), noting that cov(U1, U2) = 0.
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Fig. 4.1. Periodic components and their sum as described in Example 4.1.

�(0) = E(x2
t ) =

q
X

k=1

�2
k, (4.5)

which exhibits the overall variance as a sum of variances of each of the com-
ponent parts.

Example 4.1 A Periodic Series

Figure 4.1 shows an example of the mixture (4.3) with q = 3 constructed in
the following way. First, for t = 1, . . . , 100, we generated three series

xt1 = 2 cos(2⇡t 6/100) + 3 sin(2⇡t 6/100)
xt2 = 4 cos(2⇡t 10/100) + 5 sin(2⇡t 10/100)
xt3 = 6 cos(2⇡t 40/100) + 7 sin(2⇡t 40/100)

These three series are displayed in Figure 4.1 along with the corresponding
frequencies and squared amplitudes. For example, the squared amplitude of
xt1 is A2 = 22 + 32 = 13. Hence, the maximum and minimum values that
xt1 will attain are ±p

13 = ±3.61.
Finally, we constructed

xt = xt1 + xt2 + xt3

and this series is also displayed in Figure 4.1. We note that xt appears to
behave as some of the periodic series we saw in Chapters 1 and 2. The
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systematic sorting out of the essential frequency components in a time series,
including their relative contributions, constitutes one of the main objectives
of spectral analysis.

The R code to reproduce Figure 4.1 is
x1 = 2*cos(2*pi*1:100*6/100) + 3*sin(2*pi*1:100*6/100)
x2 = 4*cos(2*pi*1:100*10/100) + 5*sin(2*pi*1:100*10/100)
x3 = 6*cos(2*pi*1:100*40/100) + 7*sin(2*pi*1:100*40/100)
x = x1 + x2 + x3
par(mfrow=c(2,2))
plot.ts(x1, ylim=c(-10,10), main=expression(omega==6/100~~~A^2==13))
plot.ts(x2, ylim=c(-10,10), main=expression(omega==10/100~~~A^2==41))
plot.ts(x3, ylim=c(-10,10), main=expression(omega==40/100~~~A^2==85))
plot.ts(x, ylim=c(-16,16), main="sum")

Example 4.2 The Scaled Periodogram for Example 4.1

In §2.3, Example 2.9, we introduced the periodogram as a way to discover
the periodic components of a time series. Recall that the scaled periodogram
is given by

P (j/n) =

 

2

n

n
X

t=1

xt cos(2⇡tj/n)

!2

+

 

2

n

n
X

t=1

xt sin(2⇡tj/n)

!2

, (4.6)

and it may be regarded as a measure of the squared correlation of the data
with sinusoids oscillating at a frequency of !j = j/n, or j cycles in n time
points. Recall that we are basically computing the regression of the data
on the sinusoids varying at the fundamental frequencies, j/n. As discussed
in Example 2.9, the periodogram may be computed quickly using the fast
Fourier transform (FFT), and there is no need to run repeated regressions.

The scaled periodogram of the data, xt, simulated in Example 4.1 is shown
in Figure 4.2, and it clearly identifies the three components xt1, xt2, and xt3

of xt. Note that

P (j/n) = P (1� j/n), j = 0, 1, . . . , n� 1,

so there is a mirroring e↵ect at the folding frequency of 1/2; consequently, the
periodogram is typically not plotted for frequencies higher than the folding
frequency. In addition, note that the heights of the scaled periodogram shown
in the figure are

P (6/100) = 13, P (10/100) = 41, P (40/100) = 85,

P (j/n) = P (1�j/n) and P (j/n) = 0 otherwise. These are exactly the values
of the squared amplitudes of the components generated in Example 4.1. This
outcome suggests that the periodogram may provide some insight into the
variance components, (4.5), of a real set of data.

Assuming the simulated data, x, were retained from the previous example,
the R code to reproduce Figure 4.2 is
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Fig. 4.2. Periodogram of the data generated in Example 4.1.

P = abs(2*fft(x)/100)^2; Fr = 0:99/100
plot(Fr, P, type="o", xlab="frequency", ylab="periodogram")

If we consider the data xt in Example 4.1 as a color (waveform) made
up of primary colors xt1, xt2, xt3 at various strengths (amplitudes), then we
might consider the periodogram as a prism that decomposes the color xt into
its primary colors (spectrum). Hence the term spectral analysis.

Another fact that may be of use in understanding the periodogram is that
for any time series sample x1, . . . , xn, where n is odd, we may write, exactly

xt = a0 +

(n�1)/2
X

j=1

[aj cos(2⇡t j/n) + bj sin(2⇡t j/n)] , (4.7)

for t = 1, . . . , n and suitably chosen coe�cients. If n is even, the representation
(4.7) can be modified by summing to (n/2 � 1) and adding an additional
component given by an/2 cos(2⇡t 1/2) = an/2(�1)t. The crucial point here
is that (4.7) is exact for any sample. Hence (4.3) may be thought of as an
approximation to (4.7), the idea being that many of the coe�cients in (4.7)
may be close to zero. Recall from Example 2.9 that

P (j/n) = a2j + b2j , (4.8)

so the scaled periodogram indicates which components in (4.7) are large in
magnitude and which components are small. We also saw (4.8) in Example 4.2.

The periodogram, which was introduced in Schuster (1898) and used in
Schuster (1906) for studying the periodicities in the sunspot series (shown in
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Figure 4.31 in the Problems section) is a sample based statistic. In Exam-
ple 4.2, we discussed the fact that the periodogram may be giving us an idea
of the variance components associated with each frequency, as presented in
(4.5), of a time series. These variance components, however, are population
parameters. The concepts of population parameters and sample statistics, as
they relate to spectral analysis of time series can be generalized to cover sta-
tionary time series and that is the topic of the next section.

4.3 The Spectral Density

The idea that a time series is composed of periodic components, appearing
in proportion to their underlying variances, is fundamental in the spectral
representation. The result is quite technical because it involves stochastic in-
tegration; that is, integration with respect to a stochastic process. The essence
of the result is that (4.3) is approximately true for any stationary time series.
In other words, we have the following.

Property 4.1 Spectral Representation of a Stationary Process
In nontechnical terms, any stationary time series may be thought of, ap-

proximately, as the random superposition of sines and cosines oscillating at
various frequencies.

Given that (4.3) is approximately true for all stationary time series, the next
question is whether a meaningful representation for its autocovariance func-
tion, like the one displayed in (4.4), also exists. The answer is yes. The fol-
lowing example will help explain the result.

Example 4.3 A Periodic Stationary Process

Consider a periodic stationary random process given by (4.2), with a fixed
frequency !0, say,

xt = U1 cos(2⇡!0t) + U2 sin(2⇡!0t),

where U1 and U2 are independent zero-mean random variables with equal
variance �2. The number of time periods needed for the above series to
complete one cycle is exactly 1/!0, and the process makes exactly !0 cycles
per point for t = 0,±1,±2, . . .. It is easily shown that3

�(h) = �2 cos(2⇡!0h) =
�2

2
e�2⇡i!0h +

�2

2
e2⇡i!0h

=

Z 1/2

�1/2
e2⇡i!hdF (!)

3 Some identities may be helpful here: ei↵ = cos(↵) + i sin(↵) and consequently,
cos(↵) = (ei↵ + e�i↵)/2 and sin(↵) = (ei↵ � e�i↵)/2i.
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using a Riemann–Stieltjes integration, where F (!) is the function defined by

F (!) =

8

>

<

>

:

0 ! < �!0,

�2/2 �!0  ! < !0,

�2 ! � !0.

The function F (!) behaves like a cumulative distribution function for a dis-
crete random variable, except that F (1) = �2 = var(xt) instead of one.
In fact, F (!) is a cumulative distribution function, not of probabilities, but
rather of variances associated with the frequency !0 in an analysis of vari-
ance, with F (1) being the total variance of the process xt. Hence, we term
F (!) the spectral distribution function.

A representation such as the one given in Example 4.3 always exists for a
stationary process. In particular, if xt is stationary with autocovariance �(h) =
E[(xt+h � µ)(xt � µ)], then there exists a unique monotonically increasing
function F (!), called the spectral distribution function, that is bounded, with
F (�1) = F (�1/2) = 0, and F (1) = F (1/2) = �(0) such that

�(h) =

Z 1/2

�1/2
e2⇡i!h dF (!). (4.9)

A more important situation we use repeatedly is the case when the au-
tocovariance function is absolutely summable, in which case the spectral dis-
tribution function is absolutely continuous with dF (!) = f(!) d!, and the
representation (4.9) becomes the motivation for the property given below.

Property 4.2 The Spectral Density
If the autocovariance function, �(h), of a stationary process satisfies

1
X

h=�1
|�(h)| < 1, (4.10)

then it has the representation

�(h) =

Z 1/2

�1/2
e2⇡i!h f(!) d! h = 0,±1,±2, . . . (4.11)

as the inverse transform of the spectral density, which has the representation

f(!) =
1
X

h=�1
�(h)e�2⇡i!h � 1/2  !  1/2. (4.12)

This spectral density is the analogue of the probability density function;
the fact that �(h) is non-negative definite ensures
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f(!) � 0

for all !. It follows immediately from (4.12) that

f(!) = f(�!)
verifying the spectral density is an even function. Because of the evenness, we
will typically only plot f(!) for ! � 0. In addition, putting h = 0 in (4.11)
yields

�(0) = var(xt) =

Z 1/2

�1/2
f(!) d!,

which expresses the total variance as the integrated spectral density over all of
the frequencies. We show later on, that a linear filter can isolate the variance
in certain frequency intervals or bands.

Analogous to probability theory, �(h) in (4.11) is the characteristic func-
tion4 of the spectral density f(!) in (4.12). These facts should make it clear
that, when the conditions of Property 4.2 are satisfied, the autocovariance
function, �(h), and the spectral density function, f(!), contain the same in-
formation. That information, however, is expressed in di↵erent ways. The
autocovariance function expresses information in terms of lags, whereas the
spectral density expresses the same information in terms of cycles. Some prob-
lems are easier to work with when considering lagged information and we
would tend to handle those problems in the time domain. Nevertheless, other
problems are easier to work with when considering periodic information and
we would tend to handle those problems in the spectral domain.

We note that the autocovariance function, �(h), in (4.11) and the spectral
density, f(!), in (4.12) are Fourier transform pairs. In particular, this means
that if f(!) and g(!) are two spectral densities for which

�f (h) =

Z 1/2

�1/2
f(!)e2⇡i!h d! =

Z 1/2

�1/2
g(!)e2⇡i!h d! = �g(h) (4.13)

for all h = 0,±1,±2, . . . , then

f(!) = g(!). (4.14)

We also mention, at this point, that we have been focusing on the frequency
!, expressed in cycles per point rather than the more common (in statistics)
alternative � = 2⇡! that would give radians per point. Finally, the absolute
summability condition, (4.10), is not satisfied by (4.4), the example that we
have used to introduce the idea of a spectral representation. The condition,
however, is satisfied for ARMA models.

It is illuminating to examine the spectral density for the series that we
have looked at in earlier discussions.
4 If M

X

(�) = E(e�X) for � 2 R is the moment generating function of random
variable X, then '

X

(�) = M

X

(i�) is the characteristic function.
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Example 4.4 White Noise Series

As a simple example, consider the theoretical power spectrum of a sequence
of uncorrelated random variables, wt, with variance �2

w. A simulated set
of data is displayed in the top of Figure 1.8. Because the autocovariance
function was computed in Example 1.16 as �w(h) = �2

w for h = 0, and zero,
otherwise, it follows from (4.12), that

fw(!) = �2
w

for �1/2  !  1/2. Hence the process contains equal power at all fre-
quencies. This property is seen in the realization, which seems to contain all
di↵erent frequencies in a roughly equal mix. In fact, the name white noise
comes from the analogy to white light, which contains all frequencies in the
color spectrum at the same level of intensity. Figure 4.3 shows a plot of the
white noise spectrum for �2

w = 1.

If xt is ARMA, its spectral density can be obtained explicitly using the
fact that it is a linear process, i.e., xt =

P1
j=0  jwt�j , where

P1
j=0 | j | < 1.

In the following property, we exhibit the form of the spectral density of an
ARMA model. The proof of the property follows directly from the proof of a
more general result, Property 4.7 given on page 221, by using the additional
fact that  (z) = ✓(z)/�(z); recall Property 3.1.

Property 4.3 The Spectral Density of ARMA
If xt is ARMA(p, q), �(B)xt = ✓(B)wt, its spectral density is given by

fx(!) = �2
w

|✓(e�2⇡i!)|2
|�(e�2⇡i!)|2 (4.15)

where �(z) = 1�Pp
k=1 �kz

k and ✓(z) = 1 +
Pq

k=1 ✓kz
k.

Example 4.5 Moving Average

As an example of a series that does not have an equal mix of frequencies,
we consider a moving average model. Specifically, consider the MA(1) model
given by

xt = wt + .5wt�1.

A sample realization is shown in the top of Figure 3.2 and we note that the
series has less of the higher or faster frequencies. The spectral density will
verify this observation.

The autocovariance function is displayed in Example 3.4 on page 90, and
for this particular example, we have

�(0) = (1 + .52)�2
w = 1.25�2

w; �(±1) = .5�2
w; �(±h) = 0 for h > 1.

Substituting this directly into the definition given in (4.12), we have
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Fig. 4.3. Theoretical spectra of white noise (top), a first-order moving average
(middle), and a second-order autoregressive process (bottom).

f(!) =
1
X

h=�1
�(h) e�2⇡i!h = �2

w

⇥

1.25 + .5
�

e�2⇡i! + e2⇡!
�⇤

= �2
w [1.25 + cos(2⇡!)] .

(4.16)

We can also compute the spectral density using Property 4.3, which states
that for an MA, f(!) = �2

w|✓(e�2⇡i!)|2. Because ✓(z) = 1 + .5z, we have

|✓(e�2⇡i!)|2 = |1 + .5e�2⇡i!|2 = (1 + .5e�2⇡i!)(1 + .5e2⇡i!)

= 1.25 + .5
�

e�2⇡i! + e2⇡!
�

which leads to agreement with (4.16).
Plotting the spectrum for �2

w = 1, as in the middle of Figure 4.3, shows
the lower or slower frequencies have greater power than the higher or faster
frequencies.

Example 4.6 A Second-Order Autoregressive Series

We now consider the spectrum of an AR(2) series of the form

xt � �1xt�1 � �2xt�2 = wt,
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for the special case �1 = 1 and �2 = �.9. Figure 1.9 on page 14 shows a
sample realization of such a process for �w = 1. We note the data exhibit a
strong periodic component that makes a cycle about every six points.

To use Property 4.3, note that ✓(z) = 1, �(z) = 1� z + .9z2 and

|�(e�2⇡i!)|2 = (1� e�2⇡i! + .9e�4⇡i!)(1� e2⇡i! + .9e4⇡i!)

= 2.81� 1.9(e2⇡i! + e�2⇡i!) + .9(e4⇡i! + e�4⇡i!)

= 2.81� 3.8 cos(2⇡!) + 1.8 cos(4⇡!).

Using this result in (4.15), we have that the spectral density of xt is

fx(!) =
�2
w

2.81� 3.8 cos(2⇡!) + 1.8 cos(4⇡!)
.

Setting �w = 1, the bottom of Figure 4.3 displays fx(!) and shows a strong
power component at about ! = .16 cycles per point or a period between
six and seven cycles per point and very little power at other frequencies. In
this case, modifying the white noise series by applying the second-order AR
operator has concentrated the power or variance of the resulting series in a
very narrow frequency band.

The spectral density can also be obtained from first principles, without
having to use Property 4.3. Because wt = xt�xt�1+ .9xt�2 in this example,
we have

�w(h) = cov(wt+h, wt)

= cov(xt+h � xt+h�1 + .9xt+h�2, xt � xt�1 + .9xt�2)

= 2.81�x(h)� 1.9[�x(h+ 1) + �x(h� 1)] + .9[�x(h+ 2) + �x(h� 2)]

Now, substituting the spectral representation (4.11) for �x(h) in the above
equation yields

�w(h)=

Z 1/2

�1/2

⇥

2.81� 1.9(e2⇡i!+ e�2⇡i!) + .9(e4⇡i!+ e�4⇡i!)
⇤

e2⇡i!hfx(!)d!

=

Z 1/2

�1/2

⇥

2.81� 3.8 cos(2⇡!) + 1.8 cos(4⇡!)
⇤

e2⇡i!hfx(!)d!.

If the spectrum of the white noise process, wt, is gw(!), the uniqueness of
the Fourier transform allows us to identify

gw(!) = [2.81� 3.8 cos(2⇡!) + 1.8 cos(4⇡!)] fx(!).

But, as we have already seen, gw(!) = �2
w, from which we deduce that

fx(!) =
�2
w

2.81� 3.8 cos(2⇡!) + 1.8 cos(4⇡!)

is the spectrum of the autoregressive series.
To reproduce Figure 4.3, use the spec.arma script (see §R.1):
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par(mfrow=c(3,1))
spec.arma(log="no", main="White Noise")
spec.arma(ma=.5, log="no", main="Moving Average")
spec.arma(ar=c(1,-.9), log="no", main="Autoregression")

The above examples motivate the use of the power spectrum for describing
the theoretical variance fluctuations of a stationary time series. Indeed, the
interpretation of the spectral density function as the variance of the time series
over a given frequency band gives us the intuitive explanation for its physical
meaning. The plot of the function f(!) over the frequency argument ! can
even be thought of as an analysis of variance, in which the columns or block
e↵ects are the frequencies, indexed by !.

Example 4.7 Every Explosion has a Cause (cont)
In Example 3.3, we discussed the fact that explosive models have causal
counterparts. In that example, we also indicated that it was easier to show
this result in general in the spectral domain. In this example, we give the
details for an AR(1) model, but the techniques used here will indicate how
to generalize the result.

As in Example 3.3, we suppose that xt = 2xt�1 + wt, where wt ⇠ iid
N(0,�2

w). Then, the spectral density of xt is

fx(!) = �2
w |1� 2e�2⇡i!|�2. (4.17)

But,

|1� 2e�2⇡i!| = |1� 2e2⇡i!| = |(2e2⇡i!) ( 12e�2⇡i! � 1)| = 2 |1� 1
2e

�2⇡i!|.
Thus, (4.17) can be written as

fx(!) =
1
4�

2
w |1� 1

2e
�2⇡i!|�2,

which implies that xt =
1
2xt�1 + vt, with vt ⇠ iid N(0, 1

4�
2
w) is an equivalent

form of the model.

4.4 Periodogram and Discrete Fourier Transform

We are now ready to tie together the periodogram, which is the sample-based
concept presented in §4.2, with the spectral density, which is the population-
based concept of §4.3.
Definition 4.1 Given data x1, . . . , xn, we define the discrete Fourier trans-
form (DFT) to be

d(!j) = n�1/2
n
X

t=1

xte
�2⇡i!

j

t (4.18)

for j = 0, 1, . . . , n� 1, where the frequencies !j = j/n are called the Fourier
or fundamental frequencies.


