
i
i

“tsa3” — 2015/8/18 — 22:47 — page 211 — #221 i
i

i
i

i
i

4.6 Parametric Spectral Estimation 211

The triangular lag window, also known as the Bartlett or Fejér window,
given by

w(x) = 1� |x|, |x|  1

leads to the Fejér smoothing window:

W (!) =
sin2(⇡r!)

r sin2(⇡!)
.

In this case, (4.73) yields

var{ ef(!)} ⇡ 2r

3n
f2(!).

The idealized rectangular smoothing window, also called the Daniell win-
dow, is given by

W (!) =

(

r |!|  1/2r,

0 otherwise,

and leads to the sinc lag window, namely

w(x) =
sin(⇡x)

⇡x
, |x|  1.

From (4.73) we have

var{ ef(!)} ⇡ r

n
f2(!).

For lag window estimators, the width of the idealized rectangular window
that leads to the same asymptotic variance as a given lag window estimator
is sometimes called the equivalent bandwidth. For example, the bandwidth of
the idealized rectangular window is br = 1/r and the asymptotic variance is
1

nb
r

f2. The asymptotic variance of the triangular window is 2r
3nf

2, so setting
1

nb
r

f2 = 2r
3nf

2 and solving we get br = 3/2r as the equivalent bandwidth.

4.6 Parametric Spectral Estimation

The methods of §4.5 lead to estimators generally referred to as nonparamet-
ric spectra because no assumption is made about the parametric form of the
spectral density. In Property 4.3, we exhibited the spectrum of an ARMA
process and we might consider basing a spectral estimator on this function,
substituting the parameter estimates from an ARMA(p, q) fit on the data into
the formula for the spectral density fx(!) given in (4.15). Such an estimator is
called a parametric spectral estimator. For convenience, a parametric spectral
estimator is obtained by fitting an AR(p) to the data, where the order p is de-
termined by one of the model selection criteria, such as AIC, AICc, and BIC,
defined in (2.19)-(2.21). Parametric autoregressive spectral estimators will of-
ten have superior resolution in problems when several closely spaced narrow
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spectral peaks are present and are preferred by engineers for a broad vari-
ety of problems (see Kay, 1988). The development of autoregressive spectral
estimators has been summarized by Parzen (1983).

If b�1, b�2, . . . , b�p and b�2
w are the estimates from an AR(p) fit to xt, then

based on Property 4.3, a parametric spectral estimate of fx(!) is attained by
substituting these estimates into (4.15), that is,

bfx(!) =
b�2
w

|b�(e�2⇡i!)|2
, (4.75)

where
b�(z) = 1� b�1z � b�2z2 � · · ·� b�pzp. (4.76)

The asymptotic distribution of the autoregressive spectral estimator has been
obtained by Berk (1974) under the conditions p ! 1, p3/n ! 0 as p, n ! 1,
which may be too severe for most applications. The limiting results imply a
confidence interval of the form

bfx(!)

(1 + Cz↵/2)
 fx(!) 

bfx(!)

(1� Cz↵/2)
, (4.77)

where C =
p

2p/n and z↵/2 is the ordinate corresponding to the upper ↵/2
probability of the standard normal distribution. If the sampling distribution is
to be checked, we suggest applying the bootstrap estimator to get the sampling
distribution of bfx(!) using a procedure similar to the one used for p = 1 in
Example 3.35. An alternative for higher order autoregressive series is to put
the AR(p) in state-space form and use the bootstrap procedure discussed in
§6.7.

An interesting fact about rational spectra of the form (4.15) is that any
spectral density can be approximated, arbitrarily close, by the spectrum of an
AR process.

Property 4.5 AR Spectral Approximation
Let g(!) be the spectral density of a stationary process. Then, given ✏ > 0,

there is a time series with the representation

xt =
p
X

k=1

�kxt�k + wt

where wt is white noise with variance �2
w, such that

|fx(!)� g(!)| < ✏ forall ! 2 [�1/2, 1/2].

Moreover, p is finite and the roots of �(z) = 1 �Pp
k=1 �kz

k are outside the
unit circle.
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Fig. 4.11. Model selection criteria AIC and BIC as a function of order p for au-
toregressive models fitted to the SOI series.

One drawback of the property is that it does not tell us how large pmust be
before the approximation is reasonable; in some situations p may be extremely
large. Property 4.5 also holds for MA and for ARMA processes in general, and
a proof of the result may be found in Fuller (1996, Ch 4). We demonstrate
the technique in the following example.

Example 4.15 Autoregressive Spectral Estimator for SOI

Consider obtaining results comparable to the nonparametric estimators
shown in Figure 4.5 for the SOI series. Fitting successively higher order
AR(p) models for p = 1, 2, . . . , 30 yields a minimum BIC and a minimum
AIC at p = 15, as shown in Figure 4.11. We can see from Figure 4.11 that
BIC is very definite about which model it chooses; that is, the minimum BIC
is very distinct. On the other hand, it is not clear what is going to happen
with AIC; that is, the minimum is not so clear, and there is some concern
that AIC will start decreasing after p = 30. Minimum AICc selects the p = 15
model, but su↵ers from the same uncertainty as AIC. The spectrum is shown
in Figure 4.12, and we note the strong peaks at 52 months and 12 months
corresponding to the nonparametric estimators obtained in §4.5. In addition,
the harmonics of the yearly period are evident in the estimated spectrum.

To perform a similar analysis in R, the command spec.ar can be used to
fit the best model via AIC and plot the resulting spectrum. A quick way to
obtain the AIC values is to run the ar command as follows.
spaic = spec.ar(soi, log="no") # min AIC spec
abline(v=frequency(soi)*1/52, lty="dotted") # El Nino Cycle
(soi.ar = ar(soi, order.max=30)) # estimates and AICs
dev.new()
plot(1:30, soi.ar$aic[-1], type="o") # plot AICs

R works only with the AIC in this case. To generate Figure 4.11 we used
the following code to obtain AIC, AICc, and BIC. Because AIC and AICc
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Fig. 4.12. Autoregressive spectral estimator for the SOI series using the AR(15)
model selected by AIC, AICc, and BIC. The first peak (marked by a vertical dotted
line) corresponds to the El Niño period of 52 months.

are nearly identical in this example, we only graphed AIC and BIC+1; we
added 1 to the BIC to reduce white space in the graphic.
n = length(soi)
AIC = rep(0, 30) -> AICc -> BIC
for (k in 1:30){
sigma2 = ar(soi, order=k, aic=FALSE)$var.pred
BIC[k] = log(sigma2) + (k*log(n)/n)
AICc[k] = log(sigma2) + ((n+k)/(n-k-2))
AIC[k] = log(sigma2) + ((n+2*k)/n)
}
IC = cbind(AIC, BIC+1)
ts.plot(IC, type="o", xlab="p", ylab="AIC / BIC")

Finally, it should be mentioned that any parametric spectrum, say f(!; ✓✓✓),
depending on the vector parameter ✓✓✓ can be estimated via the Whittle likeli-
hood (Whittle, 1961), using the approximate properties of the discrete Fourier
transform derived in Appendix C. We have that the DFTs, d(!j), are approx-
imately complex normally distributed with mean zero and variance f(!j ; ✓✓✓)
and are approximately independent for !j 6= !k. This implies that an approx-
imate log likelihood can be written in the form
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lnL(xxx; ✓✓✓) ⇡ �
X

0<!
j

<1/2

✓

ln fx(!j ; ✓✓✓) +
|d(!j)|2
fx(!j ; ✓✓✓)

◆

, (4.78)

where the sum is sometimes expanded to include the frequencies !j = 0, 1/2.
If the form with the two additional frequencies is used, the multiplier of the
sum will be unity, except for the purely real points at !j = 0, 1/2 for which
the multiplier is 1/2. For a discussion of applying the Whittle approximation
to the problem of estimating parameters in an ARMA spectrum, see Ander-
son (1978). The Whittle likelihood is especially useful for fitting long memory
models that will be discussed in Chapter 5.

4.7 Multiple Series and Cross-Spectra

The notion of analyzing frequency fluctuations using classical statistical ideas
extends to the case in which there are several jointly stationary series, for
example, xt and yt. In this case, we can introduce the idea of a correlation
indexed by frequency, called the coherence. The results in Appendix C, §C.2,
imply the covariance function

�xy(h) = E[(xt+h � µx)(yt � µy)]

has the representation

�xy(h) =

Z 1/2

�1/2
fxy(!)e

2⇡i!h d! h = 0,±1,±2, ..., (4.79)

where the cross-spectrum is defined as the Fourier transform

fxy(!) =
1
X

h=�1
�xy(h) e

�2⇡i!h � 1/2  !  1/2, (4.80)

assuming that the cross-covariance function is absolutely summable, as was
the case for the autocovariance. The cross-spectrum is generally a complex-
valued function, and it is often written as14

fxy(!) = cxy(!)� iqxy(!), (4.81)

where

cxy(!) =
1
X

h=�1
�xy(h) cos(2⇡!h) (4.82)

and

14 For this section, it will be useful to recall the facts e

�i↵ = cos(↵) � i sin(↵) and
if z = a+ ib, then z = a� ib.
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qxy(!) =
1
X

h=�1
�xy(h) sin(2⇡!h) (4.83)

are defined as the cospectrum and quadspectrum, respectively. Because of
the relationship �yx(h) = �xy(�h), it follows, by substituting into (4.80) and
rearranging, that

fyx(!) = fxy(!). (4.84)

This result, in turn, implies that the cospectrum and quadspectrum satisfy

cyx(!) = cxy(!) (4.85)

and
qyx(!) = �qxy(!). (4.86)

An important example of the application of the cross-spectrum is to the
problem of predicting an output series yt from some input series xt through a
linear filter relation such as the three-point moving average considered below.
A measure of the strength of such a relation is the squared coherence function,
defined as

⇢2y·x(!) =
|fyx(!)|2

fxx(!)fyy(!)
, (4.87)

where fxx(!) and fyy(!) are the individual spectra of the xt and yt series,
respectively. Although we consider a more general form of this that applies to
multiple inputs later, it is instructive to display the single input case as (4.87)
to emphasize the analogy with conventional squared correlation, which takes
the form

⇢2yx =
�2
yx

�2
x�

2
y

,

for random variables with variances �2
x and �2

y and covariance �yx = �xy. This
motivates the interpretation of squared coherence and the squared correlation
between two time series at frequency !.

Example 4.16 Three-Point Moving Average

As a simple example, we compute the cross-spectrum between xt and the
three-point moving average yt = (xt�1+xt+xt+1)/3, where xt is a stationary
input process with spectral density fxx(!). First,

�xy(h) = cov(xt+h, yt) =
1
3 cov(xt+h, xt�1 + xt + xt+1)

=
1

3

�

�xx(h+ 1) + �xx(h) + �xx(h� 1)
�

=
1

3

Z 1/2

�1/2

�

e2⇡i! + 1 + e�2⇡i!
�

e2⇡i!hfxx(!) d!

=
1

3

Z 1/2

�1/2
[1 + 2 cos(2⇡!)]fxx(!)e

2⇡i!h d!,
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where we have use (4.11). Using the uniqueness of the Fourier transform, we
argue from the spectral representation (4.79) that

fxy(!) =
1
3 [1 + 2 cos(2⇡!)] fxx(!)

so that the cross-spectrum is real in this case. From Example 4.5, the spectral
density of yt is

fyy(!) =
1
9 [3 + 4 cos(2⇡!) + 2 cos(4⇡!)]fxx(!)

= 1
9 [1 + 2 cos(2⇡!)]2 fxx(!),

using the identity cos(2↵) = 2 cos2(↵) � 1 in the last step. Substituting
into (4.87) yields the squared coherence between xt and yt as unity over all
frequencies. This is a characteristic inherited by more general linear filters, as
will be shown in Problem 4.23. However, if some noise is added to the three-
point moving average, the coherence is not unity; these kinds of models will
be considered in detail later.

Property 4.6 Spectral Representation of a Vector Stationary
Process

If the elements of the p⇥ p autocovariance function matrix

� (h) = E[(xxxt+h � µµµ)(xxxt � µµµ)0]

of a p-dimensional stationary time series, xxxt = (xt1, xt2, . . . , xtp)0, has ele-
ments satisfying

1
X

h=�1
|�jk(h)| < 1 (4.88)

for all j, k = 1, . . . , p, then � (h) has the representation

� (h) =

Z 1/2

�1/2
e2⇡i!h f(!) d! h = 0,±1,±2, ..., (4.89)

as the inverse transform of the spectral density matrix, f(!) = {fjk(!)},
for j, k = 1, . . . , p, with elements equal to the cross-spectral components. The
matrix f(!) has the representation

f(!) =
1
X

h=�1
� (h)e�2⇡i!h � 1/2  !  1/2. (4.90)

Example 4.17 Spectral Matrix of a Bivariate Process

Consider a jointly stationary bivariate process (xt, yt). We arrange the au-
tocovariances in the matrix

� (h) =

✓

�xx(h) �xy(h)
�yx(h) �yy(h)

◆

.
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The spectral matrix would be given by

f(!) =

✓

fxx(!) fxy(!)
fyx(!) fyy(!)

◆

,

where the Fourier transform (4.89) and (4.90) relate the autocovariance and
spectral matrices.

The extension of spectral estimation to vector series is fairly obvious. For
the vector series xxxt = (xt1, xt2, . . . , xtp)0, we may use the vector of DFTs, say
ddd(!j) = (d1(!j), d2(!j), . . . , dp(!j))0, and estimate the spectral matrix by

f̄(!) = L�1
m
X

k=�m

I(!j + k/n) (4.91)

where now
I(!j) = ddd(!j)ddd

⇤(!j) (4.92)

is a p⇥ p complex matrix.15

Again, the series may be tapered before the DFT is taken in (4.91) and
we can use weighted estimation,

bf(!) =
m
X

k=�m

hk I(!j + k/n) (4.93)

where {hk} are weights as defined in (4.56). The estimate of squared coherence
between two series, yt and xt is

b⇢2y·x(!) =
| bfyx(!)|2
bfxx(!) bfyy(!)

. (4.94)

If the spectral estimates in (4.94) are obtained using equal weights, we will
write ⇢̄2y·x(!) for the estimate.

Under general conditions, if ⇢2y·x(!) > 0 then

|b⇢y·x(!)| ⇠ AN
⇣

|⇢y·x(!)|,
�

1� ⇢2y·x(!)
�2�

2Lh

⌘

(4.95)

where Lh is defined in (4.57); the details of this result may be found in Brock-
well and Davis (1991, Ch 11). We may use (4.95) to obtain approximate
confidence intervals for the squared coherency ⇢2y·x(!).

We can test the hypothesis that ⇢2y·x(!) = 0 if we use ⇢̄2y·x(!) for the
estimate with L > 1,16 that is,

15 If Z is a complex matrix, then Z

⇤ = Z

0
denotes the conjugate transpose operation.

That is, Z⇤ is the result of replacing each element of Z by its complex conjugate
and transposing the resulting matrix.

16 If L = 1 then ⇢̄

2
y·x(!) ⌘ 1.
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Fig. 4.13. Squared coherency between the SOI and Recruitment series; L = 19, n =
453, n

0 = 480, and ↵ = .001. The horizontal line is C
.001.

⇢̄2y·x(!) =
|f̄yx(!)|2

f̄xx(!)f̄yy(!)
. (4.96)

In this case, under the null hypothesis, the statistic

F =
⇢̄2y·x(!)

(1� ⇢̄2y·x(!))
(L� 1) (4.97)

has an approximate F -distribution with 2 and 2L � 2 degrees of freedom.
When the series have been extended to length n0, we replace 2L�2 by df �2,
where df is defined in (4.52). Solving (4.97) for a particular significance level
↵ leads to

C↵ =
F2,2L�2(↵)

L� 1 + F2,2L�2(↵)
(4.98)

as the approximate value that must be exceeded for the original squared co-
herence to be able to reject ⇢2y·x(!) = 0 at an a priori specified frequency.

Example 4.18 Coherence Between SOI and Recruitment

Figure 4.13 shows the squared coherence between the SOI and Recruitment
series over a wider band than was used for the spectrum. In this case, we
used L = 19, df = 2(19)(453/480) ⇡ 36 and F2,df�2(.001) ⇡ 8.53 at the sig-
nificance level ↵ = .001. Hence, we may reject the hypothesis of no coherence
for values of ⇢̄2y·x(!) that exceed C.001 = .32. We emphasize that this method
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is crude because, in addition to the fact that the F -statistic is approximate,
we are examining the squared coherence across all frequencies with the Bon-
ferroni inequality, (4.55), in mind. Figure 4.13 also exhibits confidence bands
as part of the R plotting routine. We emphasize that these bands are only
valid for ! where ⇢2y·x(!) > 0.

In this case, the seasonal frequency and the El Niño frequencies ranging
between about 3 and 7 year periods are strongly coherent. Other frequencies
are also strongly coherent, although the strong coherence is less impressive
because the underlying power spectrum at these higher frequencies is fairly
small. Finally, we note that the coherence is persistent at the seasonal har-
monic frequencies.

This example may be reproduced using the following R commands.
sr=spec.pgram(cbind(soi,rec),kernel("daniell",9),taper=0,plot=FALSE)
sr$df # df = 35.8625
f = qf(.999, 2, sr$df-2) # = 8.529792
C = f/(18+f) # = 0.318878
plot(sr, plot.type = "coh", ci.lty = 2)
abline(h = C)

4.8 Linear Filters

Some of the examples of the previous sections have hinted at the possibility the
distribution of power or variance in a time series can be modified by making
a linear transformation. In this section, we explore that notion further by
defining a linear filter and showing how it can be used to extract signals from
a time series. The linear filter modifies the spectral characteristics of a time
series in a predictable way, and the systematic development of methods for
taking advantage of the special properties of linear filters is an important topic
in time series analysis.

A linear filter uses a set of specified coe�cients aj , for j = 0,±1,±2, . . .,
to transform an input series, xt, producing an output series, yt, of the form

yt =
1
X

j=�1
ajxt�j ,

1
X

j=�1
|aj | < 1. (4.99)

The form (4.99) is also called a convolution in some statistical contexts. The
coe�cients, collectively called the impulse response function, are required to
satisfy absolute summability so yt in (4.99) exists as a limit in mean square
and the infinite Fourier transform

Ayx(!) =
1
X

j=�1
aj e

�2⇡i!j , (4.100)

called the frequency response function, is well defined. We have already en-
countered several linear filters, for example, the simple three-point moving
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average in Example 4.16, which can be put into the form of (4.99) by letting
a�1 = a0 = a1 = 1/3 and taking at = 0 for |j| � 2.

The importance of the linear filter stems from its ability to enhance certain
parts of the spectrum of the input series. To see this, assuming that xt is
stationary with spectral density fxx(!), the autocovariance function of the
filtered output yt in (4.99) can be derived as

�yy(h) = cov(yt+h, yt)

= cov

 

X

r

arxt+h�r,
X

s

asxt�s

!

=
X

r

X

s

ar�xx(h� r + s)as

=
X

r

X

s

ar



Z 1/2

�1/2
e2⇡i!(h�r+s)fxx(!)d!

�

as

=

Z 1/2

�1/2

✓

X

r

are
�2⇡i!r

◆✓

X

s

ase
2⇡i!s

◆

e2⇡i!hfxx(!) d!

=

Z 1/2

�1/2
e2⇡i!h|Ayx(!)|2fxx(!) d!,

where we have first replaced �xx(·) by its representation (4.11) and then sub-
stituted Ayx(!) from (4.100). The computation is one we do repeatedly, ex-
ploiting the uniqueness of the Fourier transform. Now, because the left-hand
side is the Fourier transform of the spectral density of the output, say, fyy(!),
we get the important filtering property as follows.

Property 4.7 Output Spectrum of a Filtered Stationary Series
The spectrum of the filtered output yt in (4.99) is related to the spectrum

of the input xt by
fyy(!) = |Ayx(!)|2 fxx(!), (4.101)

where the frequency response function Ayx(!) is defined in (4.100).

The result (4.101) enables us to calculate the exact e↵ect on the spectrum
of any given filtering operation. This important property shows the spectrum
of the input series is changed by filtering and the e↵ect of the change can
be characterized as a frequency-by-frequency multiplication by the squared
magnitude of the frequency response function. Again, an obvious analogy
to a property of the variance in classical statistics holds, namely, if x is a
random variable with variance �2

x, then y = ax will have variance �2
y = a2�2

x,
so the variance of the linearly transformed random variable is changed by
multiplication by a2 in much the same way as the linearly filtered spectrum
is changed in (4.101).
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Fig. 4.14. SOI series (top) compared with the di↵erenced SOI (middle) and a
centered 12-month moving average (bottom).

Finally, we mention that Property 4.3, which was used to get the spectrum
of an ARMA process, is just a special case of Property 4.7 where in (4.99),
xt = wt is white noise, in which case fxx(!) = �2

w, and aj =  j , in which case

Ayx(!) =  (e�2⇡i!) = ✓(e�2⇡i!)
�

�(e�2⇡i!).

Example 4.19 First Di↵erence and Moving Average Filters

We illustrate the e↵ect of filtering with two common examples, the first
di↵erence filter

yt = rxt = xt � xt�1

and the symmetric moving average filter

yt =
1
24

�

xt�6 + xt+6

�

+ 1
12

5
X

r=�5

xt�r,
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Fig. 4.15. Spectral analysis of SOI after applying a 12-month moving average filter.
The vertical line corresponds to the 52-month cycle.

which is a modified Daniell kernel with m = 6. The results of filtering the
SOI series using the two filters are shown in the middle and bottom panels
of Figure 4.14. Notice that the e↵ect of di↵erencing is to roughen the series
because it tends to retain the higher or faster frequencies. The centered mov-
ing average smoothes the series because it retains the lower frequencies and
tends to attenuate the higher frequencies. In general, di↵erencing is an ex-
ample of a high-pass filter because it retains or passes the higher frequencies,
whereas the moving average is a low-pass filter because it passes the lower
or slower frequencies.

Notice that the slower periods are enhanced in the symmetric moving
average and the seasonal or yearly frequencies are attenuated. The filtered
series makes about 9 cycles in the length of the data (about one cycle every
52 months) and the moving average filter tends to enhance or extract the
signal that is associated with El Niño. Moreover, by the low-pass filtering
of the data, we get a better sense of the El Niño e↵ect and its irregularity.
Figure 4.15 shows the results of a spectral analysis on the low-pass filtered
SOI series. It is clear that all high frequency behavior has been removed
and the El Niño cycle is accentuated; the dotted vertical line in the figure
corresponds to the 52 months cycle.

Now, having done the filtering, it is essential to determine the exact way in
which the filters change the input spectrum. We shall use (4.100) and (4.101)
for this purpose. The first di↵erence filter can be written in the form (4.99)
by letting a0 = 1, a1 = �1, and ar = 0 otherwise. This implies that
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224 4 Spectral Analysis and Filtering

Ayx(!) = 1� e�2⇡i!,

and the squared frequency response becomes

|Ayx(!)|2 = (1� e�2⇡i!)(1� e2⇡i!) = 2[1� cos(2⇡!)]. (4.102)

The top panel of Figure 4.16 shows that the first di↵erence filter will atten-
uate the lower frequencies and enhance the higher frequencies because the
multiplier of the spectrum, |Ayx(!)|2, is large for the higher frequencies and
small for the lower frequencies. Generally, the slow rise of this kind of filter
does not particularly recommend it as a procedure for retaining only the
high frequencies.

For the centered 12-month moving average, we can take a�6 = a6 = 1/24,
ak = 1/12 for�5  k  5 and ak = 0 elsewhere. Substituting and recognizing
the cosine terms gives

Ayx(!) =
1
12

h

1 + cos(12⇡!) + 2
5
X

k=1

cos(2⇡!k)
i

. (4.103)

Plotting the squared frequency response of this function as in Figure 4.16
shows that we can expect this filter to cut most of the frequency content
above .05 cycles per point. This corresponds to eliminating periods shorter
than T = 1/.05 = 20 points. In particular, this drives down the yearly com-
ponents with periods of T = 12 months and enhances the El Niño frequency,
which is somewhat lower. The filter is not completely e�cient at attenuating
high frequencies; some power contributions are left at higher frequencies, as
shown in the function |Ayx(!)|2 and in the spectrum of the moving average
shown in Figure 4.3.

The following R session shows how to filter the data, perform the spectral
analysis of this example, and plot the squared frequency response curve of
the di↵erence filter.
par(mfrow=c(3,1))
plot(soi) # plot data
plot(diff(soi)) # plot first difference
k = kernel("modified.daniell", 6) # filter weights
plot(soif <- kernapply(soi, k)) # plot 12 month filter
dev.new()
spectrum(soif, spans=9, log="no") # spectral analysis
abline(v=12/52, lty="dashed")
dev.new()
w = seq(0, .5, length=500) # frequency response
FR = abs(1-exp(2i*pi*w))^2
plot(w, FR, type="l")

The two filters discussed in the previous example were di↵erent in that
the frequency response function of the first di↵erence was complex-valued,
whereas the frequency response of the moving average was purely real. A
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Fig. 4.16. Squared frequency response functions of the first di↵erence and 12-month
moving average filters.

short derivation similar to that used to verify (4.101) shows, when xt and yt
are related by the linear filter relation (4.99), the cross-spectrum satisfies

fyx(!) = Ayx(!)fxx(!),

so the frequency response is of the form

Ayx(!) =
fyx(!)

fxx(!)
(4.104)

=
cyx(!)

fxx(!)
� i

qyx(!)

fxx(!)
, (4.105)

where we have used (4.81) to get the last form. Then, we may write (4.105)
in polar coordinates as

Ayx(!) = |Ayx(!)| exp{�i �yx(!)}, (4.106)

where the amplitude and phase of the filter are defined by

|Ayx(!)| =
q

c2yx(!) + q2yx(!)

fxx(!)
(4.107)

and
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226 4 Spectral Analysis and Filtering

�yx(!) = tan�1

✓

�qyx(!)

cyx(!)

◆

. (4.108)

A simple interpretation of the phase of a linear filter is that it exhibits time
delays as a function of frequency in the same way as the spectrum represents
the variance as a function of frequency. Additional insight can be gained by
considering the simple delaying filter

yt = Axt�D,

where the series gets replaced by a version, amplified by multiplying by A and
delayed by D points. For this case,

fyx(!) = Ae�2⇡i!Dfxx(!),

and the amplitude is |A|, and the phase is

�yx(!) = �2⇡!D,

or just a linear function of frequency !. For this case, applying a simple
time delay causes phase delays that depend on the frequency of the periodic
component being delayed. Interpretation is further enhanced by setting

xt = cos(2⇡!t),

in which case
yt = A cos(2⇡!t� 2⇡!D).

Thus, the output series, yt, has the same period as the input series, xt, but
the amplitude of the output has increased by a factor of |A| and the phase
has been changed by a factor of �2⇡!D.

Example 4.20 Di↵erence and Moving Average Filters

We consider calculating the amplitude and phase of the two filters discussed
in Example 4.19. The case for the moving average is easy because Ayx(!)
given in (4.103) is purely real. So, the amplitude is just |Ayx(!)| and the
phase is �yx(!) = 0. In general, symmetric (aj = a�j) filters have zero
phase. The first di↵erence, however, changes this, as we might expect from
the example above involving the time delay filter. In this case, the squared
amplitude is given in (4.102). To compute the phase, we write

Ayx(!) = 1� e�2⇡i! = e�i⇡!(ei⇡! � e�i⇡!)

= 2ie�i⇡! sin(⇡!) = 2 sin2(⇡!) + 2i cos(⇡!) sin(⇡!)

=
cyx(!)

fxx(!)
� i

qyx(!)

fxx(!)
,

so

�yx(!) = tan�1

✓

�qyx(!)

cyx(!)

◆

= tan�1

✓

cos(⇡!)

sin(⇡!)

◆

.


