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The triangular lag window, also known as the Bartlett or Fejér window,
given by
w(r) =1—lz|, |z|<1

leads to the Fejér smoothing window:

W(w) = sin®(7rw)

rsin?(rw)
In this case, (4.73) yields

var(f(@)} = 2 ().

The idealized rectangular smoothing window, also called the Daniell win-

dow, is given by
w| <1/2

0 otherwise,
and leads to the sinc lag window, namely

sin(mz)
w(x) = — |z| < 1.

From (4.73) we have N
var{ f(w)} = = f*(w).

For lag window estimators, the width of the idealized rectangular window
that leads to the same asymptotic variance as a given lag window estimator
is sometimes called the equivalent bandwidth. For example, the bandwidth of
the idealized rectangular window is b, = 1/r and the asymptotic variance is
anr f2. The asymptotic variance of the triangular window is g—g 2. s0 setting
nir 2= g—; f? and solving we get b, = 3/2r as the equivalent bandwidth.

4.6 Parametric Spectral Estimation

The methods of §4.5 lead to estimators generally referred to as nonparamet-
ric spectra because no assumption is made about the parametric form of the
spectral density. In Property 4.3, we exhibited the spectrum of an ARMA
process and we might consider basing a spectral estimator on this function,
substituting the parameter estimates from an ARMA(p, ¢) fit on the data into
the formula for the spectral density f,(w) given in (4.15). Such an estimator is
called a parametric spectral estimator. For convenience, a parametric spectral
estimator is obtained by fitting an AR(p) to the data, where the order p is de-
termined by one of the model selection criteria, such as AIC, AICc, and BIC,
defined in (2.19)-(2.21). Parametric autoregressive spectral estimators will of-
ten have superior resolution in problems when several closely spaced narrow
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spectral peaks are present and are preferred by engineers for a broad vari-

ety of problems (see Kay, 1988). The development of autoregressive spectral
estimators has been summarized by Parzen (1983).

(4.76)

The asymptotic dis estimator has been
obtained by Berk (1 — 0asp, n — o0,
which may be too severe for most applications. The limiting results imply a
confidence interval of the form

’ ~
distribution of f,(w) using a procedure similar to the one used for p = 1 in
Example 3.35. An alternative for higher order autoregressive series is to put

the AR(p) in state-space form and use the bootstrap procedure discussed in
86.7.

Property 4.5 AR Spectral Approximation
Let g(w) be the spectral density of a stationary process. Then, given € > 0,
there is a time series with the representation

p
Ty = § PLTi—k + Wy

k=1

2 such that

where wy 1s white noise with variance o2,

|fo(w) —g(w)| < e forall w e [-1/2,1/2].

Moreover, p is finite and the roots of ¢(z) =1 — i:l 2" are outside the
unit circle.
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Fig. 4.11. Model selection criteria AIC and BIC as a function of order p for au-
toregressive models fitted to the SOI series.

One drawback of the property is that it does not tell us how large p must be
before the approximation is reasonable; in some situations p may be extremely
large. Property 4.5 also holds for MA and for ARMA processes in general, and
a proof of the result may be found in Fuller (1996, Ch 4). We demonstrate
the technique in the following example.

Example 4.15 Autoregressive Spectral Estimator for SOI

Consider obtaining results comparable to the nonparametric estimators
shown in Figure 4.5 for the SOI series. Fitting successively higher order
AR(p) models for p = 1,2,...,30 yields a minimum BIC and a minimum
AIC at p = 15, as shown in Figure 4.11. We can see from Figure 4.11 that
BIC is very definite about which model it chooses; that is, the minimum BIC
is very distinct. On the other hand, it is not clear what is going to happen
with AIC; that is, the minimum is not so clear, and there is some concern
that AIC will start decreasing after p = 30. Minimum AICc selects the p = 15
model, but suffers from the same uncertainty as AIC. The spectrum is shown
in Figure 4.12, and we note the strong peaks at 52 months and 12 months
corresponding to the nonparametric estimators obtained in §4.5. In addition,
the harmonics of the yearly period are evident in the estimated spectrum.
To perform a similar analysis in R, the command spec.ar can be used to
fit the best model via AIC and plot the resulting spectrum. A quick way to
obtain the AIC values is to run the ar command as follows.
spaic = spec.ar(soi, log="no") # min AIC spec
abline(v=frequency(soi)*1/52, lty="dotted") # El Nino Cycle
(soi.ar = ar(soi, order.max=30)) # estimates and AICs
dev.new()
plot(1:30, soi.ar$aic[-1], type="o") # plot AICs
R works only with the AIC in this case. To generate Figure 4.11 we used
the following code to obtain AIC, AICc, and BIC. Because AIC and AICc
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Fig. 4.12. Autoregressive spectral estimator for the SOI series using the AR(15)
model selected by AIC, AICc, and BIC. The first peak (marked by a vertical dotted
line) corresponds to the El Nifo period of 52 months.

are nearly identical in this example, we only graphed AIC and BIC+1; we
added 1 to the BIC to reduce white space in the graphic.
n = length(soi)

AIC = rep(0, 30) -> AICc -> BIC

for (k in 1:30){

sigma2 = ar(soi, order=k, aic=FALSE)$var.pred
BIC[k] = log(sigma2) + (k*log(n)/n)

AICc[k] = log(sigma2) + ((n+k)/(n-k-2))

AIC[k] = log(sigma2) + ((n+2%k)/n)

}

IC = cbind(AIC, BIC+1)

ts.plot(IC, type="o", xlab="p", ylab="AIC / BIC")

Finally, it should be mentioned that any parametric spectrum, say f(w;®),
depending on the vector parameter @ can be estimated via the Whittle likeli-
hood (Whittle, 1961), using the approximate properties of the discrete Fourier
transform derived in Appendix C. We have that the DFTs, d(w,), are approx-
imately complex normally distributed with mean zero and variance f(w;;6)
and are approximately independent for w; # wy. This implies that an approx-
imate log likelihood can be written in the form
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InL(z:0)~— > (mfm(wj;owM), (4.78)

0<w;<1/2 falw;:0)

where the sum is sometimes expanded to include the frequencies w; = 0,1/2.
If the form with the two additional frequencies is used, the multiplier of the
sum will be unity, except for the purely real points at w; = 0,1/2 for which
the multiplier is 1/2. For a discussion of applying the Whittle approximation
to the problem of estimating parameters in an ARMA spectrum, see Ander-
son (1978). The Whittle likelihood is especially useful for fitting long memory
models that will be discussed in Chapter 5.

4.7 Multiple Series and Cross-Spectra

The notion of analyzing frequency fluctuations using classical statistical ideas
extends to the case in which there are several jointly stationary series, for
example, z; and y;. In this case, we can introduce the idea of a correlation
indexed by frequency, called the coherence. The results in Appendix C, §C.2,
imply the covariance function

Yoy (h) = E[(Tt+n — pa) (Y — piy)]
has the representation
1/2 A
Yy (h) = / foy (@)™ dw b =0,41,42, ..., (4.79)
—1/2

where the cross-spectrum is defined as the Fourier transform

o0

F@y= D fay(h) 2™ —1/2<w<1/2, (4.80)

h=—o0

assuming that the cross-covariance function is absolutely summable, as was
the case for the autocovariance. The cross-spectrum is generally a complex-
valued function, and it is often written as'?

fmy(w) - czy(w) - iqu(“’), (481)
where .
Coy(W) = D Yay(h) cos(2mwh) (4.82)
h=—o00
and

14 For this section, it will be useful to recall the facts e

if z = a + ib, then Z = a — b.

= cos(a) — isin(«) and
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oo

Qoy(W) = Z Yay(h) sin(2mwh) (4.83)

h=—00

are defined as the cospectrum and quadspectrum, respectively. Because of
the relationship ~y,,(h) = vz (—h), it follows, by substituting into (4.80) and
rearranging, that

fyz (W) = fay(w). (4.84)
This result, in turn, implies that the cospectrum and quadspectrum satisfy
Cya (W) = Czy (W) (4.85)
and
Qyz (W) = —qay(w). (4.86)

0= o
- Although we consider a more general form of this that applies to

multiple inputs later, it is instructive to display the single input case as (4.87)
to emphasize the analogy with conventional squared correlation, which takes

the form

2
ny

252"
040,

2
pyx_

for random variables with variances 0326 and 05 and covariance oy, = 0gy. This
motivates the interpretation of squared coherence and the squared correlation
between two time series at frequency w.

Example 4.16 Three-Point Moving Average

As a simple example, we compute
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where we have use (4.11). Using the uniqueness of the Fourier transformy, we

argue from the spectral representation (4.79) that

so that the cross-spectrum is real in this case. From Example 4.5, the spectral
density of y, is

fyy(w) = §[3 4+ 4cos(2mw) + 2 cos(4mw)] fre (w)
= % [1+ 2cos(27w)]? foul(w),

using the identity cos(2a) = 2cos?(a) — 1 in the last step.

his is a characteristic inherited by more general linear filters, as
will be shown in Problem 4.23. However, if some noise is added to the three-
point moving average, the coherence is not unity; these kinds of models will
be considered in detail later.

Property 4.6 Spectral Representation of a Vector Stationary
Process
If the elements of the p X p autocovariance function matrix

I'(h) = E[(@i4n — p) (@ — p)']

of a p-dimensional stationary time series, &, = (Ti1,T42,...,%1p) , has ele-

ments satisfying
o

> ik(h)] < oo (4.88)

h=—0oc0

forall j,k=1,...,p, then I'(h) has the representation

1/2 '
I'(h) :/ TR f(w) dw h=0,£1,42,..., (4.89)
—1/2
as the inverse transform of the spectral density matriz, f(w) = {fjr(w)},
for i,k =1,... p, with elements equal to the cross-spectral components. The

matriz f(w) has the representation

flw) = i [(h)e™?™wh  _1/2 <w<1/2. (4.90)

h=—0c0

Example 4.17 Spectral Matrix of a Bivariate Process

Consider a jointly stationary bivariate process (z:,y;). We arrange the au-
tocovariances in the matrix

_( Yaz(h) Yay(R)
F(h) N (’ny(h) ’Yyy(h)) .
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The spectral matrix would be given by

= (o 1)

where the Fourier transform (4.89) and (4.90) relate the autocovariance and
spectral matrices.

The extension of spectral estimation to vector series is fairly obvious. For
the vector series &, = (241, Z42, ..., Typ)’, we may use the vector of DFTs, say
d(w;) = (di(wj), da(wj), . ..,dp(w;))’, and estimate the spectral matrix by

=L Z (wj + k/n) (4.91)
k=—m
where now
I(wj) = d(w;) d"(wy) (4.92)

is a p X p complex matrix.'?

Again, the series may be tapered before the DFT is taken in (4.91) and
we can use weighted estimation,

Flw) = Z hy I(w; + k/n) (4.93)

k=—m

where {hy,} are weights as defined in (4.56). [Pl estimate of Squared coherence

NP
foz (W) fyy(w)

If the spectral estimates in (4.94) are obtained using equal weights, we will
write p2 ,(w) for the estimate.

7o) = (4.94)

(4.95)

ound in Brock-
to obtain approximate

where L, is de
well and Davis . .
confidence intervals for the squared coherency p ,(w).

We can test _lf we use py,(w) for the

estimate with L

15 Tf Z is a complex matrix, then Z* = 7' denotes the conjugate transpose operation.
That is, Z* is the result of replacing each element of Z by its complex conjugate
and transposing the resulting matrix.

If L =1 then p, . (w) = 1.
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Fig. 4.13.
453, n' = 480, and o = .001. The horizontal line is C.go1.

| fyeW)? 1.96
P (W) = Tl (@) (4.96)
In this case, under the null hypothesis, the statistic

where df is defined in (4.52). Solving (4.97) for a partlcular significance level
o leads to

Fyor_o(a)
L—1+For 9(x)

as the approximate value that must be exceeded for the original squared co-
herence to be able to reject pjw(w) = 0 at an a priori specified frequency.

Co = (4.98)

Example 4.18 Coherence Between SOI and Recruitment

We emphasize that this method
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is crude because, in addition to the fact that the F-statistic is approximate,
we are examining the squared coherence across all frequencies with the Bon-
ferroni inequality, (4.55), in mind. Figure 4.13 also exhibits confidence bands
as part of the R plotting routine. We emphasize that these bands are only
valid for w where p?_,(w) > 0.

This example may be reproduced using the following R, commands.
sr=spec.pgram(cbind(soi,rec) ,kernel("daniell",9) ,taper=0,plot=FALSE)

sr$df # df = 35.8625
= qf(.999, 2, sr$df-2) # = 8.529792
= £/(18+f) # = 0.318878

plot(sr, plot.type = "coh", ci.lty = 2)
abline(h = C)

4.8 Linear Filters

Some of the examples of the previous sections have hinted at the possibility the
distribution of power or variance in a time series can be modified by making
a linear transformation. In this section, we explore that notion further by
defining a linear filter and showing how it can be used to extract signals from
a time series. The linear filter modifies the spectral characteristics of a time
series in a predictable way, and the systematic development of methods for
taking advantage of the special properties of linear filters is an important topic
in time series analysis.

The form (4.99) is also called a GomvOlutiGH in some statistical contexts.

€ nhave alrea y en-

countered several linear filters, for example, fhe'Simple three=point moving
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ability to enhance certain
parts of the spectrum of the input series. To see this, assuming that x; is
stationary with spectral density f,.(w), the autocovariance function of the
filtered output y; in (4.99) can be derived as

Yyy(h) = cov(Yitn, yt)

= Cov <Z QrTt4h—r, Z asxt—s>
— Z Z arYoe(h — 1 + 8)a

1/2 _
=ZZ%U &Mmmmwﬂ%
T s —1/2

1/2 ) ) )
_ / <Z aTe—27mo.)T> <Z a36271'1w3> e27ru.uhfgmC (w) dw

—1/2
1/2 .

=/ T A ()2 fra () do,
—1/2

where we have first replaced 7., (-) by its representation (4.11) and then sub-
stituted Ay, (w) from (4.100). The computation is one we do repeatedly, ex-
ploiting the uniqueness of the Fourier transform. Now, because the left-hand
side is the Fourier transform of the spectral density of the output, say, fy,(w),
we get the important filtering property as follows.

Property 4.7 Output Spectrum of a Filtered Stationary Series

The spectrum of the filtered output y; in (4.99) is related to the spectrum
of the input x; by
fyy(w) = |Aym(w)|2 fmw(w), (4.101)

where the frequency response function Ayy(w) is defined in (4.100).
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Fig. 4.14. SOI series (top) compared with the differenced SOI (middle) and a
centered 12-month moving average (bottom).

Finally, we mention that Property 4.3, which was used to get the spectrum
of an ARMA process, is just a special case of Property 4.7 where in (4.99),
x = wy is white noise, in which case f,,(w) = 02, and a; = v, in which case

Aya(w) = h(e727) = 6(e727%) [ gle=2m)

Example 4.19 First Difference and Moving Average Filters
We illustrate the effect of filtering with two common examples, the first

S

Tt—r,
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Fig. 4.15. Spectral analysis of SOI after applying a 12-month moving average filter.
The vertical line corresponds to the 52-month cycle.

Now, having done the filtering, it is essential to determine the exact way in
which the filters change the input spectrum. We shall use (4.100) and (4.101)

for this purpose.

This implies that
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and the squared frequency response becomes

(4.102)

does not particularly recommend it as a procedure for retaining only the
high frequencies.

(4.103)

which is somewhat lower. The filter is not completely efficient at attenuating
high frequencies; some power contributions are left at higher frequencies, as

shown in the function |A4,,(w)|? and in the spectrum of the moving average
shown in Figure 4.3.

The following R session shows how to filter the data, perform the spectral
analysis of this example, and plot the squared frequency response curve of
the difference filter.
par (mfrow=c(3,1))
plot(soi) # plot data
plot(diff(soi)) # plot first difference
k = kernel("modified.daniell", 6) # filter weights
plot(soif <- Kermapplylsoi, k)) # plot 12 month filter
dev.new()
spectrum(soif, spans=9, log="no") # spectral analysis
abline(v=12/562, lty="dashed")
dev.new()

w = seq(0, .5, length=500) # frequency response
FR = abs(l-exp(2i*pi*w)) 2
plot(w, FR, type="1")

The two filters discussed in the previous example were different in that
the frequency response function of the first difference was complex-valued,
whereas the frequency response of the moving average was purely real. A
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Fig. 4.16. Squared frequency response functions of the first difference and 12-month
moving average filters.

short derivation similar to that used to verify (4.101) shows, when z; and y;
are related by the linear filter relation (4.99), the cross-spectrum satisfies

fym (W) = Ayw(w).fmx(w)v

so the frequency response is of the form

Ayalw) = ;ZEZ; (4.104)
eple) )
" @) @) (4109

where we have used (4.81) to get the last form. Then, we may write (4.105)
in polar coordinates as

Aya(@) = [ A2 ()] expl—i 6,a(w)}, (4.106)
where the amplitude and phase of the filter are defined by

V(@) + @3 (w)
foa(w)

Ayew)] = (4.107)

and
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Pye(w) = tan™" (—qy”’”—w). (4.108)

Cya (W)
A simple interpretation of the phase of a linear filter is that it exhibits time
delays as a function of frequency in the same way as the spectrum represents
the variance as a function of frequency. Additional insight can be gained by
considering the simple delaying filter

Yt = Axt—D7

where the series gets replaced by a version, amplified by multiplying by A and
delayed by D points. For this case,

fye(w) = Ae_zmefxm (w),

and the amplitude is |A|, and the phase is
Gyz(w) = —27wD,

or just a linear function of frequency w. For this case, applying a simple
time delay causes phase delays that depend on the frequency of the periodic
component being delayed. Interpretation is further enhanced by setting

xy = cos(2mwt),

in which case
yr = Acos(2mwt — 27wD).

Thus, the output series, y;, has the same period as the input series, x;, but
the amplitude of the output has increased by a factor of |A| and the phase
has been changed by a factor of —27wwD.

Example 4.20 Difference and Moving Average Filters
We consider calculating the amplitude and phase of the two filters discussed
in Example 4.19. The case for the moving average is easy because Ay, (w)
given in (4.103) is purely real. So, the amplitude is just |A,;(w)| and the
phase is ¢y ;(w) = 0. In general, symmetric (a; = a—;) filters have zero
phase. The first difference, however, changes this, as we might expect from
the example above involving the time delay filter. In this case, the squared
amplitude is given in (4.102). To compute the phase, we write

Ayw(w) =1— 67271'1'0.; —_ efimu(eiﬂ'w _ efimu)
= 2ie” ™ sin(rw) = 2sin®(7w) + 2i cos(nw) sin(mw)

_ Ca(@) gya(w)

T fr@) Feew)’

byele) = tan=! (~ 220 ) _ g1 (2l ),

Cyz (W) sin(7w)

SO



