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The confidence intervals for the SOI series at the yearly cycle, ! = 1/12 =

40/480, and the possible El Niño cycle of four years ! = 1/48 = 10/480 can

be computed in R as follows:

soi.per$spec[40] # 0.97223; soi pgram at freq 1/12 = 40/480
soi.per$spec[10] # 0.05372; soi pgram at freq 1/48 = 10/480
# conf intervals - returned value:
U = qchisq(.025,2) # 0.05063
L = qchisq(.975,2) # 7.37775
2*soi.per$spec[10]/L # 0.01456
2*soi.per$spec[10]/U # 2.12220
2*soi.per$spec[40]/L # 0.26355
2*soi.per$spec[40]/U # 38.40108

The example above makes it clear that the periodogram as an estimator

is susceptible to large uncertainties, and we need to find a way to reduce

the variance. Not surprisingly, this result follows if we think about the peri-

odogram, I(!j) as an estimator of the spectral density f(!) and realize that

it is the sum of squares of only two random variables for any sample size. The

solution to this dilemma is suggested by the analogy with classical statistics

where we look for independent random variables with the same variance and

average the squares of these common variance observations. Independence and

equality of variance do not hold in the time series case, but the covariance

structure of the two adjacent estimators given in Example 4.9 suggests that

for neighboring frequencies, these assumptions are approximately true.

4.5 Nonparametric Spectral Estimation

To continue the discussion that ended the previous section, we introduce a

frequency band, B, of L << n contiguous fundamental frequencies, centered

around frequency !j = j/n, which is chosen close to a frequency of interest,

!. For frequencies of the form !⇤
= !j + k/n, let

B =

⇢

!⇤
: !j � m

n
 !⇤  !j +

m

n

�

, (4.44)

where

L = 2m+ 1 (4.45)

is an odd number, chosen such that the spectral values in the interval B,

f(!j + k/n), k = �m, . . . , 0, . . . ,m

are approximately equal to f(!).
We now define an averaged (or smoothed) periodogram as the average of

the periodogram values, say,
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¯f(!) =
1

L

m
X

k=�m

I(!j + k/n), (4.46)

over the band B. Under the assumption that the spectral density is fairly

constant in the band B, and in view of (4.41) we can show that under appro-

priate conditions,

11
for large n, the periodograms in (4.46) are approximately

distributed as independent f(!)�2
2/2 random variables, for 0 < ! < 1/2, as

long as we keep L fairly small relative to n. This result is discussed formally

in §C.2. Thus, under these conditions, L ¯f(!) is the sum of L approximately

independent f(!)�2
2/2 random variables. It follows that, for large n,

2L ¯f(!)

f(!)
·⇠ �2

2L (4.47)

where

·⇠ means is approximately distributed as.
In this scenario, where we smooth the periodogram by simple averaging, it

seems reasonable to call the width of the frequency interval defined by (4.44),

Bw =

L

n
, (4.48)

the bandwidth.

12
The concept of the bandwidth, however, becomes more com-

plicated with the introduction of spectral estimators that smooth with unequal

weights. Note (4.48) implies the degrees of freedom can be expressed as

2L = 2Bwn, (4.49)

or twice the time-bandwidth product. The result (4.47) can be rearranged to

obtain an approximate 100(1� ↵)% confidence interval of the form

2L ¯f(!)

�2
2L(1� ↵/2)

 f(!)  2L ¯f(!)

�2
2L(↵/2)

(4.50)

for the true spectrum, f(!).
Many times, the visual impact of a spectral density plot will be improved

by plotting the logarithm of the spectrum instead of the spectrum (the log

11 The conditions, which are su�cient, are that x

t

is a linear process, as described
in Property 4.4, with

P

j

p

|j| | 

j

| < 1, and w

t

has a finite fourth moment.
12 The bandwidth value used in R is based on Grenander (1951). The basic idea

is that bandwidth can be related to the standard deviation of the weighting
distribution. For the uniform distribution on the frequency range �m/n to m/n,
the standard deviation is L/n

p

12 (using a continuity correction). Consequently,
in the case of (4.46), R will report a bandwidth of L/n

p

12, which amounts to
dividing our definition by

p

12. Note that in the extreme case L = n, we would
have B

w

= 1 indicating that everything was used in the estimation; in this case,
R would report a bandwidth of 1/

p

12. There are many definitions of bandwidth
and an excellent discussion may be found in Percival and Walden (1993, §6.7).
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transformation is the variance stabilizing transformation in this situation).

This phenomenon can occur when regions of the spectrum exist with peaks of

interest much smaller than some of the main power components. For the log

spectrum, we obtain an interval of the form

⇥

log

¯f(!) + log 2L� log�2
2L(1� ↵/2),

log

¯f(!) + log 2L� log�2
2L(↵/2)

⇤

. (4.51)

We can also test hypotheses relating to the equality of spectra using the

fact that the distributional result (4.47) implies that the ratio of spectra based

on roughly independent samples will have an approximate F2L,2L distribution.

The independent estimators can either be from di↵erent frequency bands or

from di↵erent series.
If zeros are appended before computing the spectral estimators, we need

to adjust the degrees of freedom and an approximation is to replace 2L by

2Ln/n0
. Hence, we define the adjusted degrees of freedom as

df =

2Ln

n0 (4.52)

and use it instead of 2L in the confidence intervals (4.50) and (4.51). For

example, (4.50) becomes

df ¯f(!)

�2
df (1� ↵/2)

 f(!)  df ¯f(!)

�2
df (↵/2)

. (4.53)

A number of assumptions are made in computing the approximate confi-

dence intervals given above, which may not hold in practice. In such cases, it

may be reasonable to employ resampling techniques such as one of the para-

metric bootstraps proposed by Hurvich and Zeger (1987) or a nonparametric

local bootstrap proposed by Paparoditis and Politis (1999). To develop the

bootstrap distributions, we assume that the contiguous DFTs in a frequency

band of the form (4.44) all came from a time series with identical spectrum

f(!). This, in fact, is exactly the same assumption made in deriving the large-

sample theory. We may then simply resample the L DFTs in the band, with

replacement, calculating a spectral estimate from each bootstrap sample. The

sampling distribution of the bootstrap estimators approximates the distribu-

tion of the nonparametric spectral estimator. For further details, including the

theoretical properties of such estimators, see Paparoditis and Politis (1999).

Before proceeding further, we pause to consider computing the average

periodograms for the SOI and Recruitment series, as shown in Figure 4.5.

Example 4.11 Averaged Periodogram for SOI and Recruitment

Generally, it is a good idea to try several bandwidths that seem to be compat-

ible with the general overall shape of the spectrum, as suggested by the pe-

riodogram. The SOI and Recruitment series periodograms, previously com-

puted in Figure 4.4, suggest the power in the lower El Niño frequency needs
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Fig. 4.5. The averaged periodogram of the SOI and Recruitment series n =
453, n

0 = 480, L = 9, df = 17, showing common peaks at the four year period,
! = 1

4� = 1/48 cycles/month, the yearly period, ! = 1� = 1/12 cycles/month and
some of its harmonics ! = k� for k = 2, 3.

smoothing to identify the predominant overall period. Trying values of L
leads to the choice L = 9 as a reasonable value, and the result is displayed

in Figure 4.5.

The smoothed spectra shown in Figure 4.5 provide a sensible compromise

between the noisy version, shown in Figure 4.4, and a more heavily smoothed

spectrum, which might lose some of the peaks. An undesirable e↵ect of av-
eraging can be noticed at the yearly cycle, ! = 1�, where the narrow band

peaks that appeared in the periodograms in Figure 4.4 have been flattened

and spread out to nearby frequencies. We also notice, and have marked,

the appearance of harmonics of the yearly cycle, that is, frequencies of the

form ! = k� for k = 1, 2, . . . . Harmonics typically occur when a periodic

component is present, but not in a sinusoidal fashion; see Example 4.12.

Figure 4.5 can be reproduced in R using the following commands. The

basic call is to the function mvspec, which is available in astsa; alternately,
use R’s spec.pgram. To compute averaged periodograms, use the Daniell
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Fig. 4.6. Figure 4.5 with the average periodogram ordinates plotted on a log10
scale. The display in the upper right-hand corner represents a generic 95% confidence
interval.

kernel, and specify m, where L = 2m+1 (L = 9 and m = 4 in this example).

We will explain the kernel concept later in this section, specifically just prior

to Example 4.13.

par(mfrow=c(2,1))
k = kernel("daniell", 4)
soi.ave = mvspec(soi, k, log="no")
abline(v=c(.25,1,2,3), lty=2)
# Repeat above lines using rec in place of soi on line 3
soi.ave$bandwidth # = 0.225

The displayed bandwidth (.225) is adjusted for the fact that the frequency

scale of the plot is in terms of cycles per year instead of cycles per month

(the original unit of the data). Using (4.48), the bandwidth in terms of

months is 9/480 = .01875; the displayed value is simply converted to years,

.01875⇥ 12 = .225.
The adjusted degrees of freedom are df = 2(9)(453)/480 ⇡ 17. We can

use this value for the 95% confidence intervals, with �2
df (.025) = 7.56 and

�2
df (.975) = 30.17. Substituting into (4.53) gives the intervals in Table 4.1
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Table 4.1. Confidence Intervals for the Spectra of the SOI and Recruitment Series

Series ! Period Power Lower Upper

SOI 1/48 4 years .05 .03 .11
1/12 1 year .12 .07 .27

Recruits 1/48 4 years 6.59 3.71 14.82
⇥102 1/12 1 year 2.19 1.24 4.93

for the two frequency bands identified as having the maximum power. To

examine the two peak power possibilities, we may look at the 95% confi-

dence intervals and see whether the lower limits are substantially larger than

adjacent baseline spectral levels. For example, the El Niño frequency of 48

months has lower limits that exceed the values the spectrum would have if

there were simply a smooth underlying spectral function without the peaks.

The relative distribution of power over frequencies is di↵erent, with the SOI

having less power at the lower frequency, relative to the seasonal periods,

and the recruit series having relatively more power at the lower or El Niño

frequency.

The entries in Table 4.1 for SOI can be obtained in R as follows:

df = soi.ave$df # df = 16.9875 (returned values)
U = qchisq(.025, df) # U = 7.555916
L = qchisq(.975, df) # L = 30.17425
soi.ave$spec[10] # 0.0495202
soi.ave$spec[40] # 0.1190800
# intervals
df*soi.ave$spec[10]/L # 0.0278789
df*soi.ave$spec[10]/U # 0.1113333
df*soi.ave$spec[40]/L # 0.0670396
df*soi.ave$spec[40]/U # 0.2677201
# repeat above commands with soi replaced by rec

Finally, Figure 4.6 shows the averaged periodograms in Figure 4.5 plotted

on a log10 scale. This is the default plot in R, and these graphs can be

obtained by removing the statement log="no". Notice that the default plot

also shows a generic confidence interval of the form (4.51) (with log replaced

by log10) in the upper right-hand corner. To use it, imagine placing the tick

mark on the averaged periodogram ordinate of interest; the resulting bar

then constitutes an approximate 95% confidence interval for the spectrum

at that frequency. We note that displaying the estimates on a log scale tends

to emphasize the harmonic components.

Example 4.12 Harmonics
In the previous example, we saw that the spectra of the annual signals dis-

played minor peaks at the harmonics; that is, the signal spectra had a large

peak at ! = 1� = 1/12 cycles/month (the one-year cycle) and minor peaks
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Harmonics
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Fig. 4.7. A signal (thick solid line) formed by a fundamental sinusoid (thin solid
line) oscillating at two cycles per unit time and its harmonics as specified in (4.54).

at its harmonics ! = k� for k = 2, 3, . . . (two-, three-, and so on, cycles per

year). This will often be the case because most signals are not perfect sinu-

soids (or perfectly cyclic). In this case, the harmonics are needed to capture

the non-sinusoidal behavior of the signal. As an example, consider the signal

formed in Figure 4.7 from a (fundamental) sinusoid oscillating at two cycles

per unit time along with the second through sixth harmonics at decreasing

amplitudes. In particular, the signal was formed as

xt = sin(2⇡2t) + .5 sin(2⇡4t) + .4 sin(2⇡6t)

+ .3 sin(2⇡8t) + .2 sin(2⇡10t) + .1 sin(2⇡12t) (4.54)

for 0  t  1. Notice that the signal is non-sinusoidal in appearance and

rises quickly then falls slowly.

A figure similar to Figure 4.7 can be generated in R as follows.

t = seq(0, 1, by=1/200)
amps = c(1, .5, .4, .3, .2, .1)
x = matrix(0, 201, 6)
for (j in 1:6) x[,j] = amps[j]*sin(2*pi*t*2*j)
x = ts(cbind(x, rowSums(x)), start=0, deltat=1/200)
ts.plot(x, lty=c(1:6, 1), lwd=c(rep(1,6), 2), ylab="Sinusoids")
names = c("Fundamental","2nd Harmonic","3rd Harmonic","4th Harmonic",

"5th Harmonic", "6th Harmonic", "Formed Signal")
legend("topright", names, lty=c(1:6, 1), lwd=c(rep(1,6), 2))

Example 4.11 points out the necessity for having some relatively systematic

procedure for deciding whether peaks are significant. The question of deciding
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whether a single peak is significant usually rests on establishing what we might

think of as a baseline level for the spectrum, defined rather loosely as the shape

that one would expect to see if no spectral peaks were present. This profile

can usually be guessed by looking at the overall shape of the spectrum that

includes the peaks; usually, a kind of baseline level will be apparent, with

the peaks seeming to emerge from this baseline level. If the lower confidence

limit for the spectral value is still greater than the baseline level at some

predetermined level of significance, we may claim that frequency value as a

statistically significant peak. To be consistent with our stated indi↵erence to

the upper limits, we might use a one-sided confidence interval.

An important aspect of interpreting the significance of confidence inter-

vals and tests involving spectra is that typically, more than one frequency

will be of interest, so that we will potentially be interested in simultaneous

statements about a whole collection of frequencies. For example, it would be

unfair to claim in Table 4.1 the two frequencies of interest as being statistically

significant and all other potential candidates as nonsignificant at the overall

level of ↵ = .05. In this case, we follow the usual statistical approach, not-

ing that if K statements S1, S2, . . . , Sk are made at significance level ↵, i.e.,
P{Sk} = 1 � ↵, then the overall probability all statements are true satisfies

the Bonferroni inequality

P{all Sk true} � 1�K↵. (4.55)

For this reason, it is desirable to set the significance level for testing each

frequency at ↵/K if there are K potential frequencies of interest. If, a priori,

potentially K = 10 frequencies are of interest, setting ↵ = .01 would give an

overall significance level of bound of .10.

The use of the confidence intervals and the necessity for smoothing requires

that we make a decision about the bandwidth Bw over which the spectrum

will be essentially constant. Taking too broad a band will tend to smooth out

valid peaks in the data when the constant variance assumption is not met over

the band. Taking too narrow a band will lead to confidence intervals so wide

that peaks are no longer statistically significant. Thus, we note that there

is a conflict here between variance properties or bandwidth stability, which

can be improved by increasing Bw and resolution, which can be improved by

decreasing Bw. A common approach is to try a number of di↵erent bandwidths
and to look qualitatively at the spectral estimators for each case.

To address the problem of resolution, it should be evident that the flatten-

ing of the peaks in Figure 4.5 and Figure 4.6 was due to the fact that simple

averaging was used in computing

¯f(!) defined in (4.46). There is no partic-

ular reason to use simple averaging, and we might improve the estimator by

employing a weighted average, say

bf(!) =
m
X

k=�m

hk I(!j + k/n), (4.56)
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using the same definitions as in (4.46) but where the weights hk > 0 satisfy

m
X

k=�m

hk = 1.

In particular, it seems reasonable that the resolution of the estimator will

improve if we use weights that decrease as distance from the center weight

h0 increases; we will return to this idea shortly. To obtain the averaged pe-

riodogram,

¯f(!), in (4.56), set hk = L�1
, for all k, where L = 2m + 1.

The asymptotic theory established for

¯f(!) still holds for bf(!) provided that

the weights satisfy the additional condition that if m ! 1 as n ! 1 but

m/n ! 0, then

m
X

k=�m

h2
k ! 0.

Under these conditions, as n ! 1,

(i) E
⇣

bf(!)
⌘

! f(!)

(ii)

⇣

Pm
k=�m h2

k

⌘�1
cov

⇣

bf(!), bf(�)
⌘

! f2
(!) for ! = � 6= 0, 1/2.

In (ii), replace f2
(!) by 0 if ! 6= � and by 2f2

(!) if ! = � = 0 or 1/2.
We have already seen these results in the case of

¯f(!), where the weights

are constant, hk = L�1
, in which case

Pm
k=�m h2

k = L�1
. The distributional

properties of (4.56) are more di�cult now because

bf(!) is a weighted linear

combination of asymptotically independent �2
random variables. An approx-

imation that seems to work well is to replace L by

�

Pm
k=�m h2

k

��1
. That is,

define

Lh =

 

m
X

k=�m

h2
k

!�1

(4.57)

and use the approximation

13

2Lh
bf(!)

f(!)
·⇠ �2

2L
h

. (4.58)

In analogy to (4.48), we will define the bandwidth in this case to be

Bw =

Lh

n
. (4.59)

Using the approximation (4.58) we obtain an approximate 100(1� ↵)% con-

fidence interval of the form

13 The approximation proceeds as follows: If b

f

·
⇠ c�

2
⌫

, where c is a constant, then
E

b

f ⇡ c⌫ and var bf ⇡ f

2 P

k

h

2
k

⇡ c

22⌫. Solving, c ⇡ f

P

k

h

2
k

/2 = f/2L
h

and

⌫ ⇡ 2
�

P

k

h

2
k

��1
= 2L

h

.
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2Lh
bf(!)

�2
2L

h

(1� ↵/2)
 f(!)  2Lh

bf(!)

�2
2L

h

(↵/2)
(4.60)

for the true spectrum, f(!). If the data are padded to n0
, then replace 2Lh in

(4.60) with df = 2Lhn/n0
as in (4.52).

An easy way to generate the weights in R is by repeated use of the Daniell

kernel. For example, with m = 1 and L = 2m + 1 = 3, the Daniell kernel

has weights {hk} = { 1
3 ,

1
3 ,

1
3}; applying this kernel to a sequence of numbers,

{ut}, produces
but =

1
3ut�1 +

1
3ut +

1
3ut+1.

We can apply the same kernel again to the but,

b

but =
1
3but�1 +

1
3but +

1
3but+1,

which simplifies to

b

but =
1
9ut�2 +

2
9ut�1 +

3
9ut +

2
9ut+1 +

1
9ut+2.

The modified Daniell kernel puts half weights at the end points, so with m = 1

the weights are {hk} = { 1
4 ,

2
4 ,

1
4} and

but =
1
4ut�1 +

1
2ut +

1
4ut+1.

Applying the same kernel again to but yields

b

but =
1
16ut�2 +

4
16ut�1 +

6
16ut +

4
16ut+1 +

1
16ut+2.

These coe�cients can be obtained in R by issuing the kernel command.

For example, kernel("modified.daniell", c(1,1)) would produce the co-

e�cients of the last example. It is also possible to use di↵erent values of

m, e.g., try kernel("modified.daniell", c(1,2)) or kernel("daniell",
c(5,3)). The other kernels that are currently available in R are the Dirichlet

kernel and the Fejér kernel, which we will discuss shortly.

Example 4.13 Smoothed Periodogram for SOI and Recruitment

In this example, we estimate the spectra of the SOI and Recruitment se-

ries using the smoothed periodogram estimate in (4.56). We used a mod-

ified Daniell kernel twice, with m = 3 both times. This yields Lh =

1/
Pm

k=�m h2
k = 9.232, which is close to the value of L = 9 used in Ex-

ample 4.11. In this case, the bandwidth is Bw = 9.232/480 = .019 and the

modified degrees of freedom is df = 2Lh453/480 = 17.43. The weights, hk,

can be obtained and graphed in R as follows:

kernel("modified.daniell", c(3,3))

coef[-6] = 0.006944 = coef[ 6]
coef[-5] = 0.027778 = coef[ 5]
coef[-4] = 0.055556 = coef[ 4]
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Fig. 4.8. Smoothed spectral estimates of the SOI and Recruitment series; see Ex-
ample 4.13 for details.

coef[-3] = 0.083333 = coef[ 3]
coef[-2] = 0.111111 = coef[ 2]
coef[-1] = 0.138889 = coef[ 1]
coef[ 0] = 0.152778

plot(kernel("modified.daniell", c(3,3))) # not shown

The resulting spectral estimates can be viewed in Figure 4.8 and we notice

that the estimates more appealing than those in Figure 4.5. Figure 4.8 was

generated in R as follows; we also show how to obtain df and Bw.

par(mfrow=c(2,1))
k = kernel("modified.daniell", c(3,3))
soi.smo = mvspec(soi, k, log="no")
abline(v=1, lty="dotted"); abline(v=1/4, lty="dotted")
## Repeat above lines with rec replacing soi in line 3
df = soi.smo$df # df = 17.42618
soi.smo$bandwidth # Bw = 0.2308103

Reissuing the mvspec commands with log="no" removed will result in a

figure similar to Figure 4.6. Finally, we mention that the modified Daniell
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kernel is used by default. For example, an easier way to obtain soi.smo is

to issue the command:

soi.smo = mvspec(soi, spans=c(7,7))

Notice that spans is a vector of odd integers, given in terms of L = 2m+ 1

instead of m. These values give the widths of the modified Daniell smoother

to be used to smooth the periodogram.

We are now ready to briefly introduce the concept of tapering; a more

detailed discussion may be found in Bloomfield (2000, §9.5). Suppose xt is a

mean-zero, stationary process with spectral density fx(!). If we replace the

original series by the tapered series

yt = htxt, (4.61)

for t = 1, 2, . . . , n, use the modified DFT

dy(!j) = n�1/2
n
X

t=1

htxte
�2⇡i!

j

t, (4.62)

and let Iy(!j) = |dy(!j)|2, we obtain (see Problem 4.15)

E[Iy(!j)] =

Z 1/2

�1/2
Wn(!j � !) fx(!) d! (4.63)

where

Wn(!) = |Hn(!)|2 (4.64)

and

Hn(!) = n�1/2
n
X

t=1

hte
�2⇡i!t. (4.65)

The value Wn(!) is called a spectral window because, in view of (4.63), it is

determining which part of the spectral density fx(!) is being “seen” by the

estimator Iy(!j) on average. In the case that ht = 1 for all t, Iy(!j) = Ix(!j)

is simply the periodogram of the data and the window is

Wn(!) =
sin

2
(n⇡!)

n sin

2
(⇡!)

(4.66)

with Wn(0) = n, which is known as the Fejér or modified Bartlett kernel. If

we consider the averaged periodogram in (4.46), namely

¯fx(!) =
1

L

m
X

k=�m

Ix(!j + k/n),

the window, Wn(!), in (4.63) will take the form
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Fig. 4.9. Averaged Fejér window (top row) and the corresponding cosine taper
window (bottom row) for L = 9, n = 480. The extra tic marks on the horizontal
axis of the left-hand plots exhibit the predicted bandwidth, B

w

= 9/480 = .01875.

Wn(!) =
1

nL

m
X

k=�m

sin

2
[n⇡(! + k/n)]

sin

2
[⇡(! + k/n)]

. (4.67)

Tapers generally have a shape that enhances the center of the data relative

to the extremities, such as a cosine bell of the form

ht = .5



1 + cos

✓

2⇡(t� t)

n

◆�

, (4.68)

where t = (n + 1)/2, favored by Blackman and Tukey (1959). In Figure 4.9,

we have plotted the shapes of two windows, Wn(!), for n = 480 and L = 9,

when (i) ht ⌘ 1, in which case, (4.67) applies, and (ii) ht is the cosine taper in

(4.68). In both cases the predicted bandwidth should be Bw = 9/480 = .01875
cycles per point, which corresponds to the “width” of the windows shown in

Figure 4.9. Both windows produce an integrated average spectrum over this

band but the untapered window in the top panels shows considerable ripples
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Fig. 4.10. Smoothed spectral estimates of the SOI without tapering (dashed line)
and with full tapering (solid line); see Example 4.14 for details.

over the band and outside the band. The ripples outside the band are called

sidelobes and tend to introduce frequencies from outside the interval that

may contaminate the desired spectral estimate within the band. For example,

a large dynamic range for the values in the spectrum introduces spectra in

contiguous frequency intervals several orders of magnitude greater than the

value in the interval of interest. This e↵ect is sometimes called leakage. Fig-

ure 4.9 emphasizes the suppression of the sidelobes in the Fejér kernel when

a cosine taper is used.

Example 4.14 The E↵ect of Tapering the SOI Series

In this example, we examine the e↵ect of tapering on the estimate of the

spectrum of the SOI series. The results for the Recruitment series are similar.

Figure 4.10 shows two spectral estimates plotted on a log scale. The degree of

smoothing here is the same as in Example 4.13. The dashed line in Figure 4.10

shows the estimate without any tapering and hence it is the same as the

estimated spectrum displayed in the top of Figure 4.8. The solid line shows

the result with full tapering. Notice that the tapered spectrum does a better

job in separating the yearly cycle (! = 1) and the El Niño cycle (! = 1/4).
The following R session was used to generate Figure 4.10. We note that,

by default, mvspec does not taper. For full tapering, we use the argument

taper=.5 to instruct mvspec to taper 50% of each end of the data; any value

between 0 and .5 is acceptable.

s0 = mvspec(soi, spans=c(7,7), plot=FALSE) # no taper
s50 = mvspec(soi, spans=c(7,7), taper=.5, plot=FALSE) # full taper
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plot(s0$freq, s0$spec, log="y", type="l", lty=2, ylab="spectrum",
xlab="frequency") # dashed line

lines(s50$freq, s50$spec) # solid line

We close this section with a brief discussion of lag window estimators.

First, consider the periodogram, I(!j), which was shown in (4.22) to be

I(!j) =

X

|h|<n

b�(h)e�2⇡i!
j

h.

Thus, (4.56) can be written as

bf(!) =
X

|k|m

hk I(!j + k/n)

=

X

|k|m

hk

X

|h|<n

b�(h)e�2⇡i(!
j

+k/n)h

=

X

|h|<n

g(h/n) b�(h)e�2⇡i!
j

h. (4.69)

where g(h/n) =
P

|k|m hk exp(�2⇡ikh/n). Equation (4.69) suggests estima-

tors of the form

ef(!) =
X

|h|r

w(h/r) b�(h)e�2⇡i!h
(4.70)

where w(·) is a weight function, called the lag window, that satisfies

(i) w(0) = 1

(ii) |w(x)|  1 and w(x) = 0 for |x| > 1,

(iii) w(x) = w(�x).

Note that if w(x) = 1 for |x| < 1 and r = n, then ef(!j) = I(!j), the

periodogram. This result indicates the problem with the periodogram as an

estimator of the spectral density is that it gives too much weight to the values

of b�(h) when h is large, and hence is unreliable [e.g, there is only one pair of

observations used in the estimate b�(n�1), and so on]. The smoothing window

is defined to be

W (!) =
r
X

h=�r

w(h/r)e�2⇡i!h, (4.71)

and it determines which part of the periodogram will be used to form the

estimate of f(!). The asymptotic theory for

bf(!) holds for

ef(!) under the

same conditions and provided r ! 1 as n ! 1 but with r/n ! 0. We have

E{ ef(!)} ! f(!), (4.72)

n

r
cov

⇣

ef(!), ef(�)
⌘

! f2
(!)

Z 1

�1
w2

(x)dx ! = � 6= 0, 1/2. (4.73)
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In (4.73), replace f2
(!) by 0 if ! 6= � and by 2f2

(!) if ! = � = 0 or 1/2.
Many authors have developed various windows and Brillinger (2001, Ch

3) and Brockwell and Davis (1991, Ch 10) are good sources of detailed infor-

mation on this topic. We mention a few.

The rectangular lag window, which gives uniform weight in (4.70),

w(x) = 1, |x|  1,

corresponds to the Dirichlet smoothing window given by

W (!) =
sin(2⇡r + ⇡)!

sin(⇡!)
. (4.74)

This smoothing window takes on negative values, which may lead to estimates

of the spectral density that are negative a various frequencies. Using (4.73) in

this case, for large n we have

var{ ef(!)} ⇡ 2r

n
f2

(!).

The Parzen lag window is defined to be

w(x) =

8

>

<

>

:

1� 6x+ 6|x|3 |x| < 1/2,

2(1� |x|)3 1/2  x  1,

0 otherwise.

This leads to an approximate smoothing window of

W (!) =
6

⇡r3
sin

4
(r!/4)

sin

4
(!/2)

.

For large n, the variance of the estimator is approximately

var{ ef(!)} ⇡ .539f2
(!)/n.

The Tukey-Hanning lag window has the form

w(x) =
1

2

(1 + cos(x)), |x|  1

which leads to the smoothing window

W (!) =
1

4

Dr(2⇡! � ⇡/r) +
1

2

Dr(2⇡!) +
1

4

Dr(2⇡! + ⇡/r)

where Dr(!) is the Dirichlet kernel in (4.74). The approximate large sample

variance of the estimator is

var{ ef(!)} ⇡ 3r

4n
f2

(!).
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The triangular lag window, also known as the Bartlett or Fejér window,

given by

w(x) = 1� |x|, |x|  1

leads to the Fejér smoothing window:

W (!) =
sin

2
(⇡r!)

r sin2(⇡!)
.

In this case, (4.73) yields

var{ ef(!)} ⇡ 2r

3n
f2

(!).

The idealized rectangular smoothing window, also called the Daniell win-

dow, is given by

W (!) =

(

r |!|  1/2r,

0 otherwise,

and leads to the sinc lag window, namely

w(x) =
sin(⇡x)

⇡x
, |x|  1.

From (4.73) we have

var{ ef(!)} ⇡ r

n
f2

(!).

For lag window estimators, the width of the idealized rectangular window

that leads to the same asymptotic variance as a given lag window estimator

is sometimes called the equivalent bandwidth. For example, the bandwidth of

the idealized rectangular window is br = 1/r and the asymptotic variance is

1
nb

r

f2
. The asymptotic variance of the triangular window is

2r
3nf

2
, so setting

1
nb

r

f2
=

2r
3nf

2
and solving we get br = 3/2r as the equivalent bandwidth.

4.6 Parametric Spectral Estimation

The methods of §4.5 lead to estimators generally referred to as nonparamet-

ric spectra because no assumption is made about the parametric form of the

spectral density. In Property 4.3, we exhibited the spectrum of an ARMA

process and we might consider basing a spectral estimator on this function,

substituting the parameter estimates from an ARMA(p, q) fit on the data into

the formula for the spectral density fx(!) given in (4.15). Such an estimator is

called a parametric spectral estimator. For convenience, a parametric spectral

estimator is obtained by fitting an AR(p) to the data, where the order p is de-

termined by one of the model selection criteria, such as AIC, AICc, and BIC,

defined in (2.19)-(2.21). Parametric autoregressive spectral estimators will of-

ten have superior resolution in problems when several closely spaced narrow




