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par(mfrow=c(3,1))
spec.arma(log="no", main="White Noise")
spec.arma(ma=.5, log="no", main="Moving Average")
spec.arma(ar=c(1,-.9), log="no", main="Autoregression")

The above examples motivate the use of the power spectrum for describing
the theoretical variance fluctuations of a stationary time series. Indeed, the
interpretation of the spectral density function as the variance of the time series
over a given frequency band gives us the intuitive explanation for its physical
meaning. The plot of the function f(!) over the frequency argument ! can
even be thought of as an analysis of variance, in which the columns or block
e↵ects are the frequencies, indexed by !.

Example 4.7 Every Explosion has a Cause (cont)
In Example 3.3, we discussed the fact that explosive models have causal
counterparts. In that example, we also indicated that it was easier to show
this result in general in the spectral domain. In this example, we give the
details for an AR(1) model, but the techniques used here will indicate how
to generalize the result.

As in Example 3.3, we suppose that xt = 2xt�1 + wt, where wt ⇠ iid
N(0,�2

w). Then, the spectral density of xt is

fx(!) = �2
w |1� 2e�2⇡i!|�2

. (4.17)

But,

|1� 2e�2⇡i!| = |1� 2e2⇡i!| = |(2e2⇡i!) ( 12e�2⇡i! � 1)| = 2 |1� 1
2e

�2⇡i!|.
Thus, (4.17) can be written as

fx(!) =
1
4�

2
w |1� 1

2e
�2⇡i!|�2

,

which implies that xt =
1
2xt�1 + vt, with vt ⇠ iid N(0, 1

4�
2
w) is an equivalent

form of the model.

4.4 Periodogram and Discrete Fourier Transform

We are now ready to tie together the periodogram, which is the sample-based
concept presented in §4.2, with the spectral density, which is the population-
based concept of §4.3.
Definition 4.1 Given data x1, . . . , xn, we define the discrete Fourier trans-
form (DFT) to be

d(!j) = n

�1/2
n
X

t=1

xte
�2⇡i!

j

t (4.18)

for j = 0, 1, . . . , n� 1, where the frequencies !j = j/n are called the Fourier
or fundamental frequencies.
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If n is a highly composite integer (i.e., it has many factors), the DFT
can be computed by the fast Fourier transform (FFT) introduced in Cooley
and Tukey (1965). Also, di↵erent packages scale the FFT di↵erently, so it is
a good idea to consult the documentation. R computes the DFT defined in
(4.18) without the factor n

�1/2, but with an additional factor of e2⇡i!j that
can be ignored because we will be interested in the squared modulus of the
DFT. Sometimes it is helpful to exploit the inversion result for DFTs which
shows the linear transformation is one-to-one. For the inverse DFT we have,

xt = n

�1/2
n�1
X

j=0

d(!j)e
2⇡i!

j

t (4.19)

for t = 1, . . . , n. The following example shows how to calculate the DFT and
its inverse in R for the data set {1, 2, 3, 4}; note that R writes a complex
number z = a+ ib as a+bi.
(dft = fft(1:4)/sqrt(4))

[1] 5+0i -1+1i -1+0i -1-1i

(idft = fft(dft, inverse=TRUE)/sqrt(4))

[1] 1+0i 2+0i 3+0i 4+0i

(Re(idft)) # keep it real

[1] 1 2 3 4

We now define the periodogram as the squared modulus5 of the DFT.

Definition 4.2 Given data x1, . . . , xn, we define the periodogram to be

I(!j) = |d(!j)|2 (4.20)

for j = 0, 1, 2, . . . , n� 1.

Note that I(0) = nx̄

2, where x̄ is the sample mean. In addition, because
Pn

t=1 exp(�2⇡it jn ) = 0 for j 6= 0,6 we can write the DFT as

d(!j) = n

�1/2
n
X

t=1

(xt � x̄)e�2⇡i!
j

t (4.21)

for j 6= 0. Thus, for j 6= 0,

I(!j) = |d(!j)|2 = n

�1
n
X

t=1

n
X

s=1

(xt � x̄)(xs � x̄)e�2⇡i!
j

(t�s)

= n

�1
n�1
X

h=�(n�1)

n�|h|
X

t=1

(xt+|h| � x̄)(xt � x̄)e�2⇡i!
j

h

=
n�1
X

h=�(n�1)

b�(h)e�2⇡i!
j

h (4.22)

5 Recall that if z = a+ ib, then z̄ = a� ib, and |z|

2 = zz̄ = a

2 + b

2.
6 P

n

t=1 z
t = z

1�z

n

1�z

for z 6= 1.
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where we have put h = t� s, with b�(h) as given in (1.34). 7

Recall, P (!j) = (4/n)I(!j) where P (!j) is the scaled periodogram defined
in (4.6). Henceforth we will work with I(!j) instead of P (!j). In view of (4.22),
the periodogram, I(!j), is the sample version of f(!j) given in (4.12). That
is, we may think of the periodogram as the “sample spectral density” of xt.

It is sometimes useful to work with the real and imaginary parts of the
DFT individually. To this end, we define the following transforms.

Definition 4.3 Given data x1, . . . , xn, we define the cosine transform

dc(!j) = n

�1/2
n
X

t=1

xt cos(2⇡!jt) (4.23)

and the sine transform

ds(!j) = n

�1/2
n
X

t=1

xt sin(2⇡!jt) (4.24)

where !j = j/n for j = 0, 1, . . . , n� 1.

We note that d(!j) = dc(!j)� i ds(!j) and hence

I(!j) = d

2
c(!j) + d

2
s(!j). (4.25)

We have also discussed the fact that spectral analysis can be thought of
as an analysis of variance. The next example examines this notion.

Example 4.8 Spectral ANOVA
Let x1, . . . , xn be a sample of size n, where for ease, n is odd. Then, recalling
Example 2.9 on page 67 and the discussion around (4.7) and (4.8),

xt = a0 +
m
X

j=1

[aj cos(2⇡!jt) + bj sin(2⇡!jt)] , (4.26)

where m = (n� 1)/2, is exact for t = 1, . . . , n. In particular, using multiple
regression formulas, we have a0 = x̄,

aj =
2

n

n
X

t=1

xt cos(2⇡!jt) =
2p
n

dc(!j)

bj =
2

n

n
X

t=1

xt sin(2⇡!jt) =
2p
n

ds(!j).

Hence, we may write

7 Note that (4.22) can be used to obtain b�(h) by taking the inverse DFT of I(!
j

).
This approach was used in Example 1.27 to obtain a two-dimensional ACF.
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(xt � x̄) =
2p
n

m
X

j=1

[dc(!j) cos(2⇡!jt) + ds(!j) sin(2⇡!jt)]

for t = 1, . . . , n. Squaring both sides and summing we obtain

n
X

t=1

(xt � x̄)2 = 2
m
X

j=1

⇥

d

2
c(!j) + d

2
s(!j)

⇤

= 2
m
X

j=1

I(!j)

using the results of Problem 2.10(d) on page 81. Thus, we have partitioned
the sum of squares into harmonic components represented by frequency !j

with the periodogram, I(!j), being the mean square regression. This leads
to the ANOVA table for n odd:

Source df SS MS

!1 2 2I(!1) I(!1)
!2 2 2I(!2) I(!2)
...

...
...

...
!m 2 2I(!m) I(!m)

Total n� 1
Pn

t=1(xt � x̄)2

This decomposition means that if the data contain some strong periodic
components, the periodogram values corresponding to those frequencies (or
near those frequencies) will be large. On the other hand, the corresponding
values of the periodogram will be small for periodic components not present
in the data.

The following is an R example to help explain this concept. We consider
n = 5 observations given by x1 = 1, x2 = 2, x3 = 3, x4 = 2, x5 = 1. Note that
the data complete one cycle, but not in a sinusoidal way. Thus, we should
expect the !1 = 1/5 component to be relatively large but not exhaustive,
and the !2 = 2/5 component to be small.
x = c(1, 2, 3, 2, 1)
c1 = cos(2*pi*1:5*1/5); s1 = sin(2*pi*1:5*1/5)
c2 = cos(2*pi*1:5*2/5); s2 = sin(2*pi*1:5*2/5)
omega1 = cbind(c1, s1); omega2 = cbind(c2, s2)
anova(lm(x~omega1+omega2)) # ANOVA Table

Df Sum Sq Mean Sq
omega1 2 2.74164 1.37082
omega2 2 .05836 .02918
Residuals 0 .00000

abs(fft(x))^2/5 # the periodogram (as a check)

[1] 16.2 1.37082 .029179 .029179 1.37082
# I(0) I(1/5) I(2/5) I(3/5) I(4/5)

Note that x̄ = 1.8, and I(0) = 16.2 = 5⇥ 1.82(= nx̄

2). Also, note that

I(1/5) = 1.37082 = Mean Sq(!1) and I(2/5) = .02918 = Mean Sq(!2)
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and I(j/5) = I(1�j/5), for j = 3, 4. Finally, we note that the sum of squares
associated with the residuals (SSE) is zero, indicating an exact fit.

We are now ready to present some large sample properties of the peri-
odogram. First, let µ be the mean of a stationary process xt with absolutely
summable autocovariance function �(h) and spectral density f(!). We can
use the same argument as in (4.22), replacing x̄ by µ in (4.21), to write

I(!j) = n

�1
n�1
X

h=�(n�1)

n�|h|
X

t=1

(xt+|h| � µ)(xt � µ)e�2⇡i!
j

h (4.27)

where !j is a non-zero fundamental frequency. Taking expectation in (4.27)
we obtain

E [I(!j)] =
n�1
X

h=�(n�1)

✓

n� |h|
n

◆

�(h)e�2⇡i!
j

h
. (4.28)

For any given ! 6= 0, choose a sequence of fundamental frequencies !j:n ! !8

from which it follows by (4.28) that, as n ! 19

E [I(!j:n)] ! f(!) =
1
X

h=�1
�(h)e�2⇡ih!

. (4.29)

In other words, under absolute summability of �(h), the spectral density is
the long-term average of the periodogram.

To examine the asymptotic distribution of the periodogram, we note that
if xt is a normal time series, the sine and cosine transforms will also be jointly
normal, because they are linear combinations of the jointly normal random
variables x1, x2, . . . , xn. In that case, the assumption that the covariance func-
tion satisfies the condition

✓ =
1
X

h=�1
|h||�(h)| < 1 (4.30)

is enough to obtain simple large sample approximations for the variances and
covariances. Using the same argument used to develop (4.28) we have

cov[dc(!j), dc(!k)] = n

�1
n
X

s=1

n
X

t=1

�(s� t) cos(2⇡!js) cos(2⇡!kt), (4.31)

cov[dc(!j), ds(!k)] = n

�1
n
X

s=1

n
X

t=1

�(s� t) cos(2⇡!js) sin(2⇡!kt), (4.32)

8 By this we mean !

j:n = j

n

/n, where {j

n

} is a sequence of integers chosen so that
j

n

/n is the closest Fourier frequency to !; consequently, |j
n

/n� !| 

1
2n .

9 From Definition 4.2 we have I(0) = nx̄

2, so the analogous result of (4.29) for the
case ! = 0 is E[I(0)]� nµ

2 = n var(x̄) ! f(0) as n ! 1.
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and

cov[ds(!j), ds(!k)] = n

�1
n
X

s=1

n
X

t=1

�(s� t) sin(2⇡!js) sin(2⇡!kt), (4.33)

where the variance terms are obtained by setting !j = !k in (4.31) and (4.33).
In Appendix C, §C.2, we show the terms in (4.31)-(4.33) have interesting
properties under assumption (4.30), namely, for !j ,!k 6= 0 or 1/2,

cov[dc(!j), dc(!k)] =

(

f(!j)/2 + "n !j = !k,

"n !j 6= !k,
(4.34)

cov[ds(!j), ds(!k)] =

(

f(!j)/2 + "n !j = !k,

"n !j 6= !k,
(4.35)

and
cov[dc(!j), ds(!k)] = "n, (4.36)

where the error term "n in the approximations can be bounded,

|"n|  ✓/n, (4.37)

and ✓ is given by (4.30). If !j = !k = 0 or 1/2 in (4.34), the multiplier 1/2
disappears; note that ds(0) = ds(1/2) = 0, so (4.35) does not apply.

Example 4.9 Covariance of Sine and Cosine Transforms

For the three-point moving average series of Example 1.9 and n = 256 obser-
vations, the theoretical covariance matrix of the vector ddd = (dc(!26), ds(!26),
dc(!27), ds(!27))0 is

cov(ddd) =

0

B

B

@

.3752 � .0009 � .0022 � .0010
�.0009 .3777 �.0009 .0003
�.0022 �.0009 .3667 �.0010
�.0010 .0003 �.0010 .3692

1

C

C

A

.

The diagonal elements can be compared with half the theoretical spectral
values of 1

2f(!26) = .3774 for the spectrum at frequency !26 = 26/256, and
of 1

2f(!27) = .3689 for the spectrum at !27 = 27/256. Hence, the cosine and
sine transforms produce nearly uncorrelated variables with variances approx-
imately equal to one half of the theoretical spectrum. For this particular case,
the uniform bound is determined from ✓ = 8/9, yielding |"256|  .0035 for
the bound on the approximation error.

If xt ⇠ iid(0,�2), then it follows from (4.30)-(4.36), Problem 2.10(d), and
a central limit theorem10 that
10 If Y

j

⇠ iid(0,�2) and {a

j

} are constants for which
P

n

j=1 a
2
j

/max1jn

a

2
j

! 1

as n ! 1, then
P

n

j=1 aj

Y

j

⇠ AN
⇣

0,�2 Pn

j=1 a
2
j

⌘

. AN is read asymptotically

normal.
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dc(!j:n) ⇠ AN(0,�2
/2) and ds(!j:n) ⇠ AN(0,�2

/2) (4.38)

jointly and independently, and independent of dc(!k:n) and ds(!k:n) provided
!j:n ! !1 and !k:n ! !2 where 0 < !1 6= !2 < 1/2. We note that in this
case, fx(!) = �2. In view of (4.38), it follows immediately that as n ! 1,

2I(!j:n)

�2

d! �2
2 and

2I(!k:n)

�2

d! �2
2 (4.39)

with I(!j:n) and I(!k:n) being asymptotically independent, where �2
⌫ denotes

a chi-squared random variable with ⌫ degrees of freedom.
Using the central limit theory of §C.2, it is fairly easy to extend the results

of the iid case to the case of a linear process.

Property 4.4 Distribution of the Periodogram Ordinates
If

xt =
1
X

j=�1
 jwt�j ,

1
X

j=�1
| j | < 1 (4.40)

where wt ⇠ iid(0,�2
w), and (4.30) holds, then for any collection of m distinct

frequencies !j 2 (0, 1/2) with !j:n ! !j

2I(!j:n)

f(!j)
d! iid �2

2 (4.41)

provided f(!j) > 0, for j = 1, . . . ,m.

This result is stated more precisely in Theorem C.7 of §C.3. Other ap-
proaches to large sample normality of the periodogram ordinates are in terms
of cumulants, as in Brillinger (1981), or in terms of mixing conditions, such as
in Rosenblatt (1956a). Here, we adopt the approach used by Hannan (1970),
Fuller (1996), and Brockwell and Davis (1991).

The distributional result (4.41) can be used to derive an approximate
confidence interval for the spectrum in the usual way. Let �2

⌫(↵) denote the
lower ↵ probability tail for the chi-squared distribution with ⌫ degrees of
freedom; that is,

Pr{�2
⌫  �2

⌫(↵)} = ↵. (4.42)

Then, an approximate 100(1�↵)% confidence interval for the spectral density
function would be of the form

2 I(!j:n)

�2
2(1� ↵/2)

 f(!)  2 I(!j:n)

�2
2(↵/2)

. (4.43)

Often, nonstationary trends are present that should be eliminated before
computing the periodogram. Trends introduce extremely low frequency com-
ponents in the periodogram that tend to obscure the appearance at higher
frequencies. For this reason, it is usually conventional to center the data prior









i
i

“tsa3” — 2015/8/18 — 22:47 — page 193 — #203 i
i

i
i

i
i

4.4 Periodogram and Discrete Fourier Transform 193

to a spectral analysis using either mean-adjusted data of the form xt � x̄ to
eliminate the zero or d-c component or to use detrended data of the form
xt � b�1 � b�2t to eliminate the term that will be considered a half cycle by
the spectral analysis. Note that higher order polynomial regressions in t or
nonparametric smoothing (linear filtering) could be used in cases where the
trend is nonlinear.

As previously indicated, it is often convenient to calculate the DFTs, and
hence the periodogram, using the fast Fourier transform algorithm. The FFT
utilizes a number of redundancies in the calculation of the DFT when n is
highly composite; that is, an integer with many factors of 2, 3, or 5, the best
case being when n = 2p is a factor of 2. Details may be found in Cooley and
Tukey (1965). To accommodate this property, we can pad the centered (or
detrended) data of length n to the next highly composite integer n0 by adding
zeros, i.e., setting xc

n+1 = x

c
n+2 = · · · = x

c
n0 = 0, where xc

t denotes the centered
data. This means that the fundamental frequency ordinates will be !j = j/n

0

instead of j/n. We illustrate by considering the periodogram of the SOI and
Recruitment series, as has been given in Figure 1.5 of Chapter 1. Recall that
they are monthly series and n = 453 months. To find n

0 in R, use the command
nextn(453) to see that n

0 = 480 will be used in the spectral analyses by
default [use help(spec.pgram) to see how to override this default].

Example 4.10 Periodogram of SOI and Recruitment Series

Figure 4.4 shows the periodograms of each series, where the frequency axis
is labeled in multiples of � = 1/12. As previously indicated, the centered
data have been padded to a series of length 480. We notice a narrow-band
peak at the obvious yearly (12 month) cycle, ! = 1� = 1/12. In addition,
there is considerable power in a wide band at the lower frequencies that is
centered around the four-year (48 month) cycle ! = 1

4� = 1/48 representing
a possible El Niño e↵ect. This wide band activity suggests that the possible
El Niño cycle is irregular, but tends to be around four years on average.
We will continue to address this problem as we move to more sophisticated
analyses.

Noting �2
2(.025) = .05 and �2

2(.975) = 7.38, we can obtain approximate
95% confidence intervals for the frequencies of interest. For example, the
periodogram of the SOI series is IS(1/12) = .97 at the yearly cycle. An
approximate 95% confidence interval for the spectrum fS(1/12) is then

[2(.97)/7.38, 2(.97)/.05] = [.26, 38.4],

which is too wide to be of much use. We do notice, however, that the lower
value of .26 is higher than any other periodogram ordinate, so it is safe to
say that this value is significant. On the other hand, an approximate 95%
confidence interval for the spectrum at the four-year cycle, fS(1/48), is

[2(.05)/7.38, 2(.05)/.05] = [.01, 2.12],
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Fig. 4.4. Periodogram of SOI and Recruitment, n = 453 (n0 = 480), where the
frequency axis is labeled in multiples of � = 1/12. Note the common peaks at
! = 1� = 1/12, or one cycle per year (12 months), and ! = 1

4� = 1/48, or one
cycle every four years (48 months).

which again is extremely wide, and with which we are unable to establish
significance of the peak.

We now give the R commands that can be used to reproduce Figure 4.4.
To calculate and graph the periodogram, we used the spec.pgram command
in R. We note that the value of � is the reciprocal of the value of frequency
used in ts() when making the data a time series object. If the data are not
time series objects, frequency is set to 1. Also, we set log="no" because R
will plot the periodogram on a log10 scale by default. Figure 4.4 displays a
bandwidth. We will discuss bandwidth and tapering in the next section, so
ignore these concepts for the time being.
require(astsa) # needed for mvspec() - otherwise use spec.pgram()
par(mfrow=c(2,1))
soi.per = mvspec(soi, log="no")
abline(v=1/4, lty="dotted")
rec.per = mvspec(rec, log="no")
abline(v=1/4, lty="dotted")
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The confidence intervals for the SOI series at the yearly cycle, ! = 1/12 =
40/480, and the possible El Niño cycle of four years ! = 1/48 = 10/480 can
be computed in R as follows:
soi.per$spec[40] # 0.97223; soi pgram at freq 1/12 = 40/480
soi.per$spec[10] # 0.05372; soi pgram at freq 1/48 = 10/480
# conf intervals - returned value:
U = qchisq(.025,2) # 0.05063
L = qchisq(.975,2) # 7.37775
2*soi.per$spec[10]/L # 0.01456
2*soi.per$spec[10]/U # 2.12220
2*soi.per$spec[40]/L # 0.26355
2*soi.per$spec[40]/U # 38.40108

The example above makes it clear that the periodogram as an estimator
is susceptible to large uncertainties, and we need to find a way to reduce
the variance. Not surprisingly, this result follows if we think about the peri-
odogram, I(!j) as an estimator of the spectral density f(!) and realize that
it is the sum of squares of only two random variables for any sample size. The
solution to this dilemma is suggested by the analogy with classical statistics
where we look for independent random variables with the same variance and
average the squares of these common variance observations. Independence and
equality of variance do not hold in the time series case, but the covariance
structure of the two adjacent estimators given in Example 4.9 suggests that
for neighboring frequencies, these assumptions are approximately true.

4.5 Nonparametric Spectral Estimation

To continue the discussion that ended the previous section, we introduce a
frequency band, B, of L << n contiguous fundamental frequencies, centered
around frequency !j = j/n, which is chosen close to a frequency of interest,
!. For frequencies of the form !⇤ = !j + k/n, let

B =

⇢

!⇤ : !j � m

n

 !⇤  !j +
m

n

�

, (4.44)

where
L = 2m+ 1 (4.45)

is an odd number, chosen such that the spectral values in the interval B,

f(!j + k/n), k = �m, . . . , 0, . . . ,m

are approximately equal to f(!).
We now define an averaged (or smoothed) periodogram as the average of

the periodogram values, say,


