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5

Additional Time Domain Topics

5.1 Introduction

In this chapter, we present material that may be considered special or ad-
vanced topics in the time domain. Chapter 6 is devoted to one of the most
useful and interesting time domain topics, state-space models. Consequently,
we do not cover state-space models or related topics—of which there are
many—in this chapter. This chapter consists of sections of independent topics
that may be read in any order. Most of the sections depend on a basic knowl-
edge of ARMA models, forecasting and estimation, which is the material that
is covered in Chapter 3, §3.1-§3.8. A few sections, for example the section
on long memory models, require some knowledge of spectral analysis and re-
lated topics covered in Chapter 4. In addition to long memory, we discuss
unit root testing, GARCH models, threshold models, regression with autocor-
related errors, lagged regression or transfer functions, and selected topics in
multivariate ARMAX models.

5.2 Long Memory ARMA and Fractional Di↵erencing

The conventional ARMA(p, q) process is often referred to as a short-memory
process because the coe�cients in the representation

xt =
1
X

j=0

 jwt�j ,

obtained by solving
�(z) (z) = ✓(z),

are dominated by exponential decay. As pointed out in §3.3, this result implies
the ACF of the short memory process ⇢(h) ! 0 exponentially fast as h ! 1.
When the sample ACF of a time series decays slowly, the advice given in
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Chapter 3 has been to di↵erence the series until it seems stationary. Following
this advice with the glacial varve series first presented in Example 3.32 leads
to the first di↵erence of the logarithms of the data being represented as a
first-order moving average. In Example 3.40, further analysis of the residuals
leads to fitting an ARIMA(1, 1, 1) model,

rxt = �rxt�1 + wt + ✓wt�1,

where we understand xt is the log-transformed varve series. In particular,
the estimates of the parameters (and the standard errors) were b� = .23(.05),
b✓ = �.89(.03), and b�2

w = .23. The use of the first di↵erence rxt = (1� B)xt

can be too severe a modification in the sense that the nonstationary model
might represent an overdi↵erencing of the original process.

Long memory (or persistent) time series were considered in Hosking (1981)
and Granger and Joyeux (1980) as intermediate compromises between the
short memory ARMA type models and the fully integrated nonstationary
processes in the Box–Jenkins class. The easiest way to generate a long memory
series is to think of using the di↵erence operator (1�B)d for fractional values
of d, say, 0 < d < .5, so a basic long memory series gets generated as

(1�B)dxt = wt, (5.1)

where wt still denotes white noise with variance �2
w. The fractionally di↵er-

enced series (5.1), for |d| < .5, is often called fractional noise (except when d is
zero). Now, d becomes a parameter to be estimated along with �2

w. Di↵erenc-
ing the original process, as in the Box–Jenkins approach, may be thought of
as simply assigning a value of d = 1. This idea has been extended to the class
of fractionally integrated ARMA, or ARFIMA models, where �.5 < d < .5;
when d is negative, the term antipersistent is used. Long memory processes
occur in hydrology (see Hurst, 1951, and McLeod and Hipel, 1978) and in
environmental series, such as the varve data we have previously analyzed, to
mention a few examples. Long memory time series data tend to exhibit sample
autocorrelations that are not necessarily large (as in the case of d = 1), but
persist for a long time. Figure 5.1 shows the sample ACF, to lag 100, of the
log-transformed varve series, which exhibits classic long memory behavior:
u = acf(log(varve), 100, plot=FALSE)
plot(u[1:100], ylim=c(-.1,1), main="log(varve)") # get rid of lag 0

To investigate its properties, we can use the binomial expansion (d > �1)
to write

wt = (1�B)dxt =
1
X

j=0

⇡jB
jxt =

1
X

j=0

⇡jxt�j (5.2)

where

⇡j =
� (j � d)

� (j + 1)� (�d)
(5.3)
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Fig. 5.1. Sample ACF of the log transformed varve series.

with � (x+ 1) = x� (x) being the gamma function. Similarly (d < 1), we can
write

xt = (1�B)�dwt =
1
X

j=0

 jB
jwt =

1
X

j=0

 jwt�j (5.4)

where

 j =
� (j + d)

� (j + 1)� (d)
. (5.5)

When |d| < .5, the processes (5.2) and (5.4) are well-defined stationary pro-
cesses (see Brockwell and Davis, 1991, for details). In the case of fractional
di↵erencing, however, the coe�cients satisfy

P

⇡2
j < 1 and

P

 2
j < 1 as

opposed to the absolute summability of the coe�cients in ARMA processes.
Using the representation (5.4)–(5.5), and after some nontrivial manipula-

tions, it can be shown that the ACF of xt is

⇢(h) =
� (h+ d)� (1� d)

� (h� d+ 1)� (d)
⇠ h2d�1 (5.6)

for large h. From this we see that for 0 < d < .5

1
X

h=�1
|⇢(h)| = 1

and hence the term long memory.
In order to examine a series such as the varve series for a possible long

memory pattern, it is convenient to look at ways of estimating d. Using (5.3)
it is easy to derive the recursions
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⇡j+1(d) =
(j � d)⇡j(d)

(j + 1)
, (5.7)

for j = 0, 1, . . ., with ⇡0(d) = 1. Maximizing the joint likelihood of the errors
under normality, say, wt(d), will involve minimizing the sum of squared errors

Q(d) =
X

w2
t (d).

The usual Gauss–Newton method, described in §3.6, leads to the expansion

wt(d) = wt(d0) + w0
t(d0)(d� d0),

where

w0
t(d0) =

@wt

@d

�

�

�

�

d=d0

and d0 is an initial estimate (guess) at to the value of d. Setting up the usual
regression leads to

d = d0 �
P

t w
0
t(d0)wt(d0)

P

t w
0
t(d0)

2 . (5.8)

The derivatives are computed recursively by di↵erentiating (5.7) successively
with respect to d: ⇡0

j+1(d) = [(j � d)⇡0
j(d)� ⇡j(d)]/(j + 1), where ⇡0

0(d) = 0.
The errors are computed from an approximation to (5.2), namely,

wt(d) =
t

X

j=0

⇡j(d)xt�j . (5.9)

It is advisable to omit a number of initial terms from the computation and
start the sum, (5.8), at some fairly large value of t to have a reasonable
approximation.

Example 5.1 Long Memory Fitting of the Glacial Varve Series

We consider analyzing the glacial varve series discussed in Example 2.6
and Example 3.32. Figure 2.6 shows the original and log-transformed series
(which we denote by xt). In Example 3.40, we noted that xt could be mod-
eled as an ARIMA(1, 1, 1) process. We fit the fractionally di↵erenced model,
(5.1), to the mean-adjusted series, xt � x̄. Applying the Gauss–Newton it-
erative procedure previously described, starting with d = .1 and omitting
the first 30 points from the computation, leads to a final value of d = .384,
which implies the set of coe�cients ⇡j(.384), as given in Figure 5.2 with
⇡0(.384) = 1. We can compare roughly the performance of the fractional dif-
ference operator with the ARIMA model by examining the autocorrelation
functions of the two residual series as shown in Figure 5.3. The ACFs of the
two residual series are roughly comparable with the white noise model.

To perform this analysis in R, first download and install the fracdiff
package. Then use
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Fig. 5.2. Coe�cients ⇡
j

(.384), j = 1, 2, . . . , 30 in the representation (5.7).

library(fracdiff)
lvarve = log(varve)-mean(log(varve))
varve.fd = fracdiff(lvarve, nar=0, nma=0, M=30)
varve.fd$d # = 0.3841688
varve.fd$stderror.dpq # = 4.589514e-06 (questionable result!!)
p = rep(1,31)
for (k in 1:30){ p[k+1] = (k-varve.fd$d)*p[k]/(k+1) }
plot(1:30, p[-1], ylab=expression(pi(d)), xlab="Index", type="h")
res.fd = diffseries(log(varve), varve.fd$d) # frac diff resids
res.arima = resid(arima(log(varve), order=c(1,1,1))) # arima resids
par(mfrow=c(2,1))
acf(res.arima, 100, xlim=c(4,97), ylim=c(-.2,.2), main="")
acf(res.fd, 100, xlim=c(4,97), ylim=c(-.2,.2), main="")

The R package uses a truncated maximum likelihood procedure that was
discussed in Haslett and Raftery (1989), which is a little more elaborate
than simply zeroing out initial values. The default truncation value in R is
M = 100. In the default case, the estimate is bd = .37 with approximately
the same (questionable) standard error. The standard error is (supposedly)
obtained from the Hessian as described in Example 3.29.

Forecasting long memory processes is similar to forecasting ARIMA mod-
els. That is, (5.2) and (5.7) can be used to obtain the truncated forecasts

exn
n+m = �

n
X

j=1

⇡j(bd) ex
n
n+m�j , (5.10)

for m = 1, 2, . . . . Error bounds can be approximated by using
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Fig. 5.3. ACF of residuals from the ARIMA(1, 1, 1) fit to the logged varve series
(top) and of the residuals from the long memory model fit, (1 � B)dx

t

= w

t

, with
d = .384 (bottom).

Pn
n+m = b�2

w

0

@

m�1
X

j=0

 2
j (bd)

1

A (5.11)

where, as in (5.7),

 j(bd) =
(j + bd) j(bd)

(j + 1)
, (5.12)

with  0(bd) = 1.
No obvious short memory ARMA-type component can be seen in the ACF

of the residuals from the fractionally di↵erenced varve series shown in Fig-
ure 5.3. It is natural, however, that cases will exist in which substantial short
memory-type components will also be present in data that exhibits long mem-
ory. Hence, it is natural to define the general ARFIMA(p, d, q), �.5 < d < .5
process as

�(B)rd(xt � µ) = ✓(B)wt, (5.13)

where �(B) and ✓(B) are as given in Chapter 3. Writing the model in the
form

�(B)⇡d(B)(xt � µ) = ✓(B)wt (5.14)
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makes it clear how we go about estimating the parameters for the more general
model. Forecasting for the ARFIMA(p, d, q) series can be easily done, noting
that we may equate coe�cients in

�(z) (z) = (1� z)�d✓(z) (5.15)

and
✓(z)⇡(z) = (1� z)d�(z) (5.16)

to obtain the representations

xt = µ+
1
X

j=0

 jwt�j

and

wt =
1
X

j=0

⇡j(xt�j � µ).

We then can proceed as discussed in (5.10) and (5.11).
Comprehensive treatments of long memory time series models are given

in the texts by Beran (1994), Palma (2007), and Robinson (2003), and it
should be noted that several other techniques for estimating the parameters,
especially, the long memory parameter, can be developed in the frequency
domain. In this case, we may think of the equations as generated by an infinite
order autoregressive series with coe�cients ⇡j given by (5.7) . Using the same
approach as before, we obtain

fx(!) =
�2
w

|P1
k=0 ⇡ke

�2⇡ik!|2

= �2
w|1� e�2⇡i!|�2d = [4 sin2(⇡!)]�d�2

w

(5.17)

as equivalent representations of the spectrum of a long memory process. The
long memory spectrum approaches infinity as the frequency ! ! 0.

The main reason for defining the Whittle approximation to the log likeli-
hood is to propose its use for estimating the parameter d in the long memory
case as an alternative to the time domain method previously mentioned. The
time domain approach is useful because of its simplicity and easily computed
standard errors. One may also use an exact likelihood approach by developing
an innovations form of the likelihood as in Brockwell and Davis (1991).

For the approximate approach using the Whittle likelihood (4.78), we con-
sider using the approach of Fox and Taqqu (1986) who showed that maximiz-
ing the Whittle log likelihood leads to a consistent estimator with the usual
asymptotic normal distribution that would be obtained by treating (4.78) as a
conventional log likelihood (see also Dahlhaus, 1989; Robinson, 1995; Hurvich
et al., 1998). Unfortunately, the periodogram ordinates are not asymptoti-
cally independent (Hurvich and Beltrao, 1993), although a quasi-likelihood in
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the form of the Whittle approximation works well and has good asymptotic
properties.

To see how this would work for the purely long memory case, write the
long memory spectrum as

fx(!k; d,�2
w) = �2

wg
�d
k , (5.18)

where
gk = 4 sin2(⇡!k). (5.19)

Then, di↵erentiating the log likelihood, say,

lnL(xxx; d,�2
w) ⇡ �m ln�2

w + d
m
X

k=1

ln gk � 1

�2
w

m
X

k=1

gdk I(!k) (5.20)

at m = n/2� 1 frequencies and solving for �2
w yields

�2
w(d) =

1

m

m
X

k=1

gdk I(!k) (5.21)

as the approximate maximum likelihood estimator for the variance parameter.
To estimate d, we can use a grid search of the concentrated log likelihood

lnL(xxx; d) ⇡ �m ln�2
w(d) + d

m
X

k=1

ln gk �m (5.22)

over the interval (�.5, .5), followed by a Newton–Raphson procedure to con-
vergence.

Example 5.2 Long Memory Spectra for the Varve Series

In Example 5.1, we fit a long memory model to the glacial varve data via
time domain methods. Fitting the same model using frequency domain meth-
ods and the Whittle approximation above gives bd = .380, with an estimated
standard error of .028. The earlier time domain method gave bd = .384 with
M = 30 and bd = .370 with M = 100. Both estimates obtained via time
domain methods had a standard error of about 4.6 ⇥ 10�6, which seems
implausible. The error variance estimate in this case is b�2

w = .2293; in Ex-
ample 5.1, we could have used var(res.fd) as an estimate, in which case
we obtain .2298. The R code to perform this analysis is
series = log(varve) # specify series to be analyzed
d0 = .1 # initial value of d
n.per = nextn(length(series))
m = (n.per)/2 - 1
per = abs(fft(series-mean(series))[-1])^2 # remove 0 freq
per = per/n.per # and scale the peridogram
g = 4*(sin(pi*((1:m)/n.per))^2)
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Fig. 5.4. Long Memory (d = .380) [solid line] and autoregressive AR(8) [dashed
line] spectral estimators for the paleoclimatic glacial varve series.

# Function to calculate -log.likelihood
whit.like = function(d){
g.d=g^d
sig2 = (sum(g.d*per[1:m])/m)
log.like = m*log(sig2) - d*sum(log(g)) + m
return(log.like) }
# Estimation (?optim for details - output not shown)
(est = optim(d0, whit.like, gr=NULL, method="L-BFGS-B",

hessian=TRUE, lower=-.5, upper=.5,
control=list(trace=1,REPORT=1)))

# Results: d.hat = .380, se(dhat) = .028, and sig2hat = .229
cat("d.hat =", est$par, "se(dhat) = ",1/sqrt(est$hessian),"\n")
g.dhat = g^est$par; sig2 = sum(g.dhat*per[1:m])/m
cat("sig2hat =",sig2,"\n")

One might also consider fitting an autoregressive model to these data using
a procedure similar to that used in Example 4.15. Following this approach
gave an autoregressive model with p = 8 and b��� = (.34, .11, .04, .09, .08, .08,
.02, .09)0, with b�2

w = .2267 as the error variance. The two log spectra are
plotted in Figure 5.4 for ! > 0, and we note that long memory spectrum will
eventually become infinite, whereas the AR(8) spectrum is finite at ! = 0.
The R code used for this part of the example (assuming the previous values
have been retained) is
u = spec.ar(log(varve), plot=FALSE) # produces AR(8)
g = 4*(sin(pi*((1:500)/2000))^2)
fhat = sig2*g^{-est$par} # long memory spectral estimate



i
i

“tsa3” — 2015/8/18 — 22:47 — page 276 — #286 i
i

i
i

i
i

276 5 Additional Time Domain Topics

plot(1:500/2000, log(fhat), type="l", ylab="log(spectrum)",
xlab="frequency")

lines(u$freq[1:250], log(u$spec[1:250]), lty="dashed")
ar.mle(log(varve)) # to get AR(8) estimates

Often, time series are not purely long memory. A common situation has the
long memory component multiplied by a short memory component, leading
to an alternate version of (5.18) of the form

fx(!k; d, ✓) = g�d
k f0(!k; ✓✓✓), (5.23)

where f0(!k; ✓) might be the spectrum of an autoregressive moving average
process with vector parameter ✓✓✓, or it might be unspecified. If the spectrum
has a parametric form, the Whittle likelihood can be used. However, there is
a substantial amount of semiparametric literature that develops the estima-
tors when the underlying spectrum f0(!; ✓✓✓) is unknown. A class of Gaussian
semi-parametric estimators simply uses the same Whittle likelihood (5.22),
evaluated over a sub-band of low frequencies, say m0 =

p
n. There is some

latitude in selecting a band that is relatively free from low frequency interfer-
ence due to the short memory component in (5.23).

Geweke and Porter–Hudak (1983) developed an approximate method for
estimating d based on a regression model, derived from (5.22). Note that we
may write a simple equation for the logarithm of the spectrum as

ln fx(!k; d) = ln f0(!k; ✓✓✓)� d ln[4 sin2(⇡!k)], (5.24)

with the frequencies !k = k/n restricted to a range k = 1, 2, . . . ,m0 near the
zero frequency with m0 =

p
n as the recommended value. Relationship (5.24)

suggests using a simple linear regression model of the form,

ln I(!k) = �0 � d ln[4 sin2(⇡!k)] + ek (5.25)

for the periodogram to estimate the parameters �2
w and d. In this case,

one performs least squares using ln I(!k) as the dependent variable, and
ln[4 sin2(⇡!k)] as the independent variable for k = 1, 2, . . . ,m. The resulting
slope estimate is then used as an estimate of �d. For a good discussion of
various alternative methods for selecting m, see Hurvich and Deo (1999). The
R package fracdiff also provides this method via the command fdGPH();
see the help file for further information.

One of the above two procedures works well for estimating the long mem-
ory component but there will be cases (such as ARFIMA) where there will
be a parameterized short memory component f0(!k; ✓✓✓) that needs to be esti-
mated. If the spectrum is highly parameterized, one might estimate using the
Whittle log likelihood (5.19) and

fx(!k; ✓✓✓) = g�d
k f0(!k; ✓✓✓)



i
i

“tsa3” — 2015/8/18 — 22:47 — page 277 — #287 i
i

i
i

i
i

5.3 Unit Root Testing 277

and jointly estimating the parameters d and ✓✓✓ using the Newton–Raphson
method. If we are interested in a nonparametric estimator, using the conven-
tional smoothed spectral estimator for the periodogram, adjusted for the long
memory component, say gdk I(!k) might be a possible approach.

5.3 Unit Root Testing

As discussed in the previous section, the use of the first di↵erence rxt =
(1�B)xt can be too severe a modification in the sense that the nonstationary
model might represent an overdi↵erencing of the original process. For example,
consider a causal AR(1) process (we assume throughout this section that the
noise is Gaussian),

xt = �xt�1 + wt. (5.26)

Applying (1�B) to both sides shows that di↵erencing, rxt = �rxt�1+rwt,
or

yt = �yt�1 + wt � wt�1,

where yt = rxt, introduces extraneous correlation and invertibility problems.
That is, while xt is a causal AR(1) process, working with the di↵erenced
process yt will be problematic because it is a non-invertible ARMA(1, 1).

A unit root test provides a way to test whether (5.26) is a random walk
(the null case) as opposed to a causal process (the alternative). That is, it
provides a procedure for testing

H0 : � = 1 versus H1 : |�| < 1.

An obvious test statistic would be to consider (b�� 1), appropriately normal-

ized, in the hope to develop an asymptotically normal test statistic, where b�
is one of the optimal estimators discussed in Chapter 3, §3.6. Unfortunately,
the theory of §3.6 will not work in the null case because the process is non-
stationary. Moreover, as seen in Example 3.35, estimation near the boundary
of stationarity produces highly skewed sample distributions (see Figure 3.11)
and this is a good indication that the problem will be atypical.

To examine the behavior of (b�� 1) under the null hypothesis that � = 1,
or more precisely that the model is a random walk, xt =

Pt
j=1 wj , or xt =

xt�1 +wt with x0 = 0, consider the least squares estimator of �. Noting that
µx = 0, the least squares estimator can be written as

b� =
1
n

Pn
t=1 xtxt�1

1
n

Pn
t=1 x

2
t�1

= 1 +
1
n

Pn
t=1 wtxt�1

1
n

Pn
t=1 x

2
t�1

, (5.27)

where we have written xt = xt�1 + wt in the numerator; recall that x0 = 0
and in the least squares setting, we are regressing xt on xt�1 for t = 1, . . . , n.
Hence, under H0, we have that
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b�� 1 =

1
n�2

w

Pn
t=1 wtxt�1

1
n�2

w

Pn
t=1 x

2
t�1

. (5.28)

Consider the numerator of (5.28). Note first that by squaring both sides
of xt = xt�1 + wt, we obtain x2

t = x2
t�1 + 2xt�1wt + w2

t so that

xt�1wt =
1

2
(x2

t � x2
t�1 � w2

t ),

and summing,

1

n�2
w

n
X

t=1

xt�1wt =
1

2

⇣ x2
n

n�2
w

�
Pn

t=1 w
2
t

n�2
w

⌘

.

Because xn =
Pn

1 wt, we have that xn ⇠ N(0, n�2
w), so that 1

n�2
w

x2
n ⇠ �2

1 , the

chi-squared distribution with one degree of freedom. Moreover, because wt is
white Gaussian noise, 1

n

Pn
1 w

2
t !p �2

w, or
1

n�2
w

Pn
1 w

2
t !p 1. Consequently,

(n ! 1)
1

n�2
w

n
X

t=1

xt�1wt
d! 1

2

�

�2
1 � 1

�

. (5.29)

Next we focus on the denominator of (5.28). First, we introduce standard
Brownian motion.

Definition 5.1 A continuous time process {W (t); t � 0} is called standard
Brownian motion if it satisfies the following conditions:

(i) W (0) = 0;
(ii) {W (t2)�W (t1),W (t3)�W (t2), . . . ,W (tn)�W (tn�1)} are independent

for any collection of points, 0  t1 < t2 · · · < tn, and integer n > 2;
(iii) W (t+�t)�W (t) ⇠ N(0,�t) for �t > 0.

The result for the denominator uses the functional central limit theorem,
which can be found in Billlingsley (1999, §2.8). In particular, if ⇠1, . . . , ⇠n is
a sequence of iid random variables with mean 0 and variance 1, then, for
0  t  1, the continuous time process

Sn(t) =
1p
n

[[nt]]
X

j=1

⇠j
d! W (t), (5.30)

as n ! 1, where [[ ]] is the greatest integer function and W (t) is standard
Brownian motion on [0, 1]. Note the under the null hypothesis, xs = w1 +
· · · + ws ⇠ N(0, s�2

w), and based on (5.30), we have x
s

�
w

p
n

!d W (s). From

this fact, we can show that (n ! 1)

n
X

t=1

⇣ xt�1

�w
p
n

⌘2 1

n
d!
Z 1

0
W 2(t) dt . (5.31)
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The denominator in (5.28) is o↵ from the left side of (5.31) by a factor of n�1,
and we adjust accordingly to finally obtain (n ! 1),

n(b�� 1) =

1
n�2

w

Pn
t=1 wtxt�1

1
n2�2

w

Pn
t=1 x

2
t�1

d!
1
2

�

�2
1 � 1

�

R 1
0 W 2(t) dt

. (5.32)

The test statistic n(b��1) is known as the unit root or Dickey-Fuller (DF)
statistic (see Fuller, 1996), although the actual DF test statistic is normalized
a little di↵erently. Because the distribution of the test statistic does not have
a closed form, quantiles of the distribution must be computed by numerical
approximation or by simulation. The R package tseries provides this test
along with more general tests that we mention briefly.

Toward a more general model, we note that the DF test was established
by noting that if xt = �xt�1+wt, then rxt = (��1)xt�1+wt = �xt�1+wt,
and one could test H0 : � = 0 by regressing rxt on xt�1. They formed a
Wald statistic and derived its limiting distribution [the previous derivation
based on Brownian motion is due to Phillips (1987)]. The test was extended
to accommodate AR(p) models, xt =

Pp
j=1 �jxt�j + wt, as follows. Subtract

xt�1 from the model to obtain

rxt = �xt�1 +
p�1
X

j=1

 jrxt�j + wt, (5.33)

where � =
Pp

j=1 �j�1 and  j = �Pp
j=i �i for j = 2, . . . , p. For a quick check

of (5.33) when p = 2, note that xt = (�1 + �2)xt�1 � �2(xt�1 � xt�2) + wt;
now subtract xt�1 from both sides. To test the hypothesis that the pro-
cess has a unit root at 1 (i.e., the AR polynoimial �(z) = 0 when z = 1),
we can test H0 : � = 0 by estimating � in the regression of rxt on
xt�1,rxt�1, . . . ,rxt�p+1, and forming a Wald test based on t� = b�/se(b�).
This test leads to the so-called augmented Dickey-Fuller test (ADF). While the
calculations for obtaining the asymptotic null distribution change, the basic
ideas and machinery remain the same as in the simple case. The choice of p is
crucial, and we will discuss some suggestions in the example. For ARMA(p, q)
models, the ADF test can be used by assuming p is large enough to capture the
essential correlation structure; another alternative is the Phillips-Perron (PP)
test, which di↵ers from the ADF tests mainly in how they deal with serial
correlation and heteroskedasticity in the errors.

One can extend the model to include a constant, or even non-stochastic
trend. For example, consider the model

xt = �0 + �1t+ �xt�1 + wt.

If we assume �1 = 0, then under the null hypothesis, � = 1, the process is a
random walk with drift �0. Under the alternate hypothesis, the process is a
causal AR(1) with mean µx = �0(1��). If we cannot assume �1 = 0, then the
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interest here is testing the null that (�1,�) = (0, 1), simultaneously, versus the
alternative that �1 6= 0 and |�| < 1. In this case, the null hypothesis is that the
process is a random walk with drift, versus the alternative hypothesis that the
process is stationary around a global trend (consider the global temperature
series examined in Example 2.1).

Example 5.3 Testing Unit Roots in the Glacial Varve Series
In this example we use the R package tseries to test the null hypothesis
that the log of the glacial varve series has a unit root, versus the alternate
hypothesis that the process is stationary. We test the null hypothesis using
the available DF, ADF and PP tests; note that in each case, the general
regression equation incorporates a constant and a linear trend. In the ADF
test, the default number of AR components included in the model, say k, is
[[(n� 1)

1
3 ]], which corresponds to the suggested upper bound on the rate at

which the number of lags, k, should be made to grow with the sample size
for the general ARMA(p, q) setup. For the PP test, the default value of k is
[[.04n

1
4 ]].

library(tseries)
adf.test(log(varve), k=0) # DF test

Dickey-Fuller = -12.8572, Lag order = 0, p-value < 0.01
alternative hypothesis: stationary

adf.test(log(varve)) # ADF test

Dickey-Fuller = -3.5166, Lag order = 8, p-value = 0.04071
alternative hypothesis: stationary

pp.test(log(varve)) # PP test

Dickey-Fuller Z(alpha) = -304.5376,
Truncation lag parameter = 6, p-value < 0.01
alternative hypothesis: stationary

In each test, we reject the null hypothesis that the logged varve series has
a unit root. The conclusion of these tests supports the conclusion of the
previous section that the logged varve series is long memory rather than
integrated.

5.4 GARCH Models

Recent problems in finance have motivated the study of the volatility, or vari-
ability, of a time series. Although ARMA models assume a constant variance,
models such as the autoregressive conditionally heteroscedastic or ARCH
model, first introduced by Engle (1982), were developed to model changes in
volatility. These models were later extended to generalized ARCH, or GARCH
models by Bollerslev (1986).

In §3.8, we discussed the return or growth rate of a series. For example, if
xt is the value of a stock at time t, then the return or relative gain, yt, of the
stock at time t is
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yt =
xt � xt�1

xt�1
. (5.34)

Definition (5.34) implies that xt = (1+yt)xt�1. Thus, based on the discussion
in §3.8, if the return represents a small (in magnitude) percentage change then

r[log(xt)] ⇡ yt. (5.35)

Either value, r[log(xt)] or (xt�xt�1)/xt�1, will be called the return, and will
be denoted by yt. It is the study of yt that is the focus of ARCH, GARCH,
and other volatility models. Recently there has been interest in stochastic
volatility models and we will discuss these models in Chapter 6 because they
are state-space models.

Typically, for financial series, the return yt, does not have a constant con-
ditional variance, and highly volatile periods tend to be clustered together.
In other words, there is a strong dependence of sudden bursts of variability
in a return on the series own past. For example, Figure 1.4 shows the daily
returns of the New York Stock Exchange (NYSE) from February 2, 1984 to
December 31, 1991. In this case, as is typical, the return yt is fairly stable,
except for short-term bursts of high volatility.

The simplest ARCH model, the ARCH(1), models the return as

yt = �t✏t (5.36)

�2
t = ↵0 + ↵1y

2
t�1, (5.37)

where ✏t is standard Gaussian white noise; that is, ✏t ⇠ iid N(0, 1). As with
ARMA models, we must impose some constraints on the model parameters
to obtain desirable properties. One obvious constraint is that ↵1 must not be
negative, or else �2

t may be negative.
As we shall see, the ARCH(1) models return as a white noise process with

nonconstant conditional variance, and that conditional variance depends on
the previous return. First, notice that the conditional distribution of yt given
yt�1 is Gaussian:

yt
�

� yt�1 ⇠ N(0,↵0 + ↵1y
2
t�1). (5.38)

In addition, it is possible to write the ARCH(1) model as a non-Gaussian
AR(1) model in the square of the returns y2t . First, rewrite (5.36)-(5.37) as

y2t = �2
t ✏

2
t

↵0 + ↵1y
2
t�1 = �2

t ,

and subtract the two equations to obtain

y2t � (↵0 + ↵1y
2
t�1) = �2

t ✏
2
t � �2

t .

Now, write this equation as

y2t = ↵0 + ↵1y
2
t�1 + vt, (5.39)
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where vt = �2
t (✏

2
t � 1). Because ✏2t is the square of a N(0, 1) random variable,

✏2t � 1 is a shifted (to have mean-zero), �2
1 random variable.

To explore the properties of ARCH, we define Ys = {ys, ys�1, ...}. Then,
using (5.38), we immediately see that yt has a zero mean:

E(yt) = EE(yt
�

� Yt�1) = EE(yt
�

� yt�1) = 0. (5.40)

Because E(yt
�

� Yt�1) = 0, the process yt is said to be a martingale di↵erence.
Because yt is a martingale di↵erence, it is also an uncorrelated sequence.

For example, with h > 0,

cov(yt+h, yt) = E(ytyt+h) = EE(ytyt+h |Yt+h�1)

= E {ytE(yt+h |Yt+h�1)} = 0. (5.41)

The last line of (5.41) follows because yt belongs to the information set Yt+h�1

for h > 0, and, E(yt+h |Yt+h�1) = 0, as determined in (5.40).
An argument similar to (5.40) and (5.41) will establish the fact that the

error process vt in (5.39) is also a martingale di↵erence and, consequently, an
uncorrelated sequence. If the variance of vt is finite and constant with respect
to time, and 0  ↵1 < 1, then based on Property 3.1, (5.39) specifies a causal
AR(1) process for y2t . Therefore, E(y2t ) and var(y2t ) must be constant with
respect to time t. This, implies that

E(y2t ) = var(yt) =
↵0

1� ↵1
(5.42)

and, after some manipulations,

E(y4t ) =
3↵2

0

(1� ↵1)2
1� ↵2

1

1� 3↵2
1

, (5.43)

provided 3↵2
1 < 1. These results imply that the kurtosis, , of yt is

 =
E(y4t )

[E(y2t )]
2
= 3

1� ↵2
1

1� 3↵2
1

, (5.44)

which is always larger than 3 (unless ↵1 = 0), the kurtosis of the normal
distribution. Thus, the marginal distribution of the returns, yt, is leptokurtic,
or has “fat tails.”

In summary, an ARCH(1) process, yt, as given by (5.36)-(5.37), or equiv-
alently (5.38), is characterized by the following properties.

• If 0  ↵1 < 1, the process yt itself is white noise and its unconditional
distribution is symmetrically distributed around zero; this distribution is
leptokurtic.

• If, in addition, 3↵2
1 < 1, the square of the process, y2t , follows a causal

AR(1) model with ACF given by ⇢y2(h) = ↵h
1 � 0, for all h > 0. If

3↵1 � 1, but ↵1 < 1, then y2t is strictly stationary with infinite variance.
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Estimation of the parameters ↵0 and ↵1 of the ARCH(1) model is typi-
cally accomplished by conditional MLE. The conditional likelihood of the data
y2, ...., yn given y1, is given by

L(↵0,↵1

�

� y1) =
n
Y

t=2

f↵0,↵1(yt
�

� yt�1), (5.45)

where the density f↵0,↵1(yt
�

� yt�1) is the normal density specified in (5.38).
Hence, the criterion function to be minimized, l(↵0,↵1) / � lnL(↵0,↵1

�

� y1)
is given by

l(↵0,↵1) =
1

2

n
X

t=2

ln(↵0 + ↵1y
2
t�1) +

1

2

n
X

t=2

✓

y2t
↵0 + ↵1y2t�1

◆

. (5.46)

Estimation is accomplished by numerical methods, as described in §3.6. In
this case, analytic expressions for the gradient vector, l(1)(↵0,↵1), and Hessian
matrix, l(2)(↵0,↵1), as described in Example 3.29, can be obtained by straight-
forward calculations. For example, the 2 ⇥ 1 gradient vector, l(1)(↵0,↵1), is
given by

✓

@l/@↵0

@l/@↵1

◆

=
n
X

t=2

✓

1
y2t�1

◆

⇥ ↵0 + ↵1y2t�1 � y2t

2
�

↵0 + ↵1y2t�1

�2 .

The calculation of the Hessian matrix is left as an exercise (Problem Prob-
lem 5.9). The likelihood of the ARCH model tends to be flat unless n is very
large. A discussion of this problem can be found in Shephard (1996).

It is also possible to combine a regression or an ARMA model for the mean
with an ARCH model for the errors. For example, a regression with ARCH(1)
errors model would have the observations xt as linear function of p regressors,
zzzt = (zt1, ..., ztp)0, and ARCH(1) noise yt, say,

xt = ���0zzzt + yt,

where yt satisfies (5.36)-(5.37), but, in this case, is unobserved. Similarly, for
example, an AR(1) model for data xt exhibiting ARCH(1) errors would be

xt = �0 + �1xt�1 + yt.

These types of models were explored by Weiss (1984).

Example 5.4 Analysis of U.S. GNP

In Example 3.38, we fit an MA(2) model and an AR(1) model to the
U.S. GNP series and we concluded that the residuals from both fits ap-
peared to behave like a white noise process. In Example 3.42 we concluded
that the AR(1) is probably the better model in this case. It has been sug-
gested that the U.S. GNP series has ARCH errors, and in this example, we
will investigate this claim. If the GNP noise term is ARCH, the squares of
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Fig. 5.5. ACF and PACF of the squares of the residuals from the AR(1) fit on
U.S. GNP.

the residuals from the fit should behave like a non-Gaussian AR(1) process,
as pointed out in (5.39). Figure 5.5 shows the ACF and PACF of the squared
residuals it appears that there may be some dependence, albeit small, left in
the residuals. The figure was generated in R as follows.
gnpgr = diff(log(gnp)) # get the growth rate
sarima(gnpgr, 1, 0, 0) # fit an AR(1)
acf2(innov^2, 24) # get (p)acf of the squared residuals

We used the R package fGarch to fit an AR(1)-ARCH(1) model to the
U.S. GNP returns with the following results. A partial output is shown; we
note that garch(1,0) specifies an arch(1) in the code below (details later).
library(fGarch)
summary(garchFit(~arma(1,0)+garch(1,0), gnpgr))

Estimate Std. Error t value Pr(>|t|)
mu 5.278e-03 8.996e-04 5.867 4.44e-09
ar1 3.666e-01 7.514e-02 4.878 1.07e-06
omega 7.331e-05 9.011e-06 8.135 4.44e-16
alpha1 1.945e-01 9.554e-02 2.035 0.0418
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Standardised Residuals Tests: Statistic p-Value
Jarque-Bera Test R Chi^2 9.118036 0.01047234
Shapiro-Wilk Test R W 0.9842407 0.01433690
Ljung-Box Test R Q(10) 9.874326 0.4515875
Ljung-Box Test R Q(15) 17.55855 0.2865844
Ljung-Box Test R Q(20) 23.41363 0.2689437
Ljung-Box Test R^2 Q(10) 19.2821 0.03682246
Ljung-Box Test R^2 Q(15) 33.23648 0.004352736
Ljung-Box Test R^2 Q(20) 37.74259 0.009518992
LM Arch Test R TR^2 25.41625 0.01296901

In this example, we obtain b�0 = .005 (called mu in the output) and b�1 =
.367 (called ar1) for the AR(1) parameter estimates; in Example 3.38 the
values were .005 and .347, respectively. The ARCH(1) parameter estimates
are b↵0 = 0 (called omega) for the constant and b↵1 = .195, which is significant
with a p-value of about .04. There are a number of tests that are performed
on the residuals [R] or the squared residuals [R^2]. For example, the Jarque–
Bera statistic tests the residuals of the fit for normality based on the observed
skewness and kurtosis, and it appears that the residuals have some non-
normal skewness and kurtosis. The Shapiro–Wilk statistic tests the residuals
of the fit for normality based on the empirical order statistics. The other
tests, primarily based on the Q-statistic, are used on the residuals and their
squares.

The ARCH(1) model can be extended to the general ARCH(m) model in
an obvious way. That is, (5.36), yt = �t✏t, is retained, but (5.37) is extended
to

�2
t = ↵0 + ↵1y

2
t�1 + · · ·+ ↵my2t�m. (5.47)

Estimation for ARCH(m) also follows in an obvious way from the discussion
of estimation for ARCH(1) models. That is, the conditional likelihood of the
data ym+1, ...., yn given y1, . . . , ym, is given by

L(↵↵↵
�

� y1, . . . , ym) =
n
Y

t=m+1

f↵↵↵(yt
�

� yt�1, . . . , yt�m), (5.48)

where ↵↵↵ = (↵0,↵1, . . . ,↵m) and the conditional densities f↵↵↵(·|·) in (5.48) are
normal densities; that is, for t > m,

yt
�

� yt�1, . . . , yt�m ⇠ N(0,↵0 + ↵1y
2
t�1 + · · ·+ ↵my2t�m).

Another extension of ARCH is the generalized ARCH or GARCH model
developed by Bollerslev (1986). For example, a GARCH(1, 1) model retains
(5.36), yt = �t✏t, but extends (5.37) as follows:

�2
t = ↵0 + ↵1y

2
t�1 + �1�

2
t�1. (5.49)

Under the condition that ↵1 + �1 < 1, using similar manipulations as in
(5.39), the GARCH(1, 1) model, (5.36) and (5.49), admits a non-Gaussian
ARMA(1, 1) model for the squared process
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y2t = ↵0 + (↵1 + �1)y
2
t�1 + vt � �1vt�1, (5.50)

where vt is as defined in (5.39). Representation (5.50) follows by writing (5.36)
as

y2t � �2
t = �2

t (✏
2
t � 1)

�1(y
2
t�1 � �2

t�1) = �1�
2
t�1(✏

2
t�1 � 1),

subtracting the second equation from the first, and using the fact that, from
(5.49), �2

t � �1�2
t�1 = ↵0 + ↵1y2t�1, on the left-hand side of the result. The

GARCH(m, r) model retains (5.36) and extends (5.49) to

�2
t = ↵0 +

m
X

j=1

↵jy
2
t�j +

r
X

j=1

�j�
2
t�j . (5.51)

Conditional maximum likelihood estimation of the GARCH(m, r) model
parameters is similar to the ARCH(m) case, wherein the conditional like-
lihood, (5.48), is the product of N(0,�2

t ) densities with �2
t given by (5.51)

and where the conditioning is on the first max(m, r) observations, with
�2
1 = · · · = �2

r = 0. Once the parameter estimates are obtained, the model can
be used to obtain one-step-ahead forecasts of the volatility, say b�2

t+1, given by

b�2
t+1 = b↵0 +

m
X

j=1

b↵jy
2
t+1�j +

r
X

j=1

b�jb�
2
t+1�j . (5.52)

We explore these concepts in the following example.

Example 5.5 GARCH Analysis of the NYSE Returns
As previously mentioned, the daily returns of the NYSE shown in Fig-
ure 1.4 exhibit classic GARCH features. We used the fGarch package to
fit a GARCH(1, 1) model to the series with an AR(1) conditional mean:
library(fGarch)
nyse = astsa::nyse
summary(nyse.g <- garchFit(~arma(1,0)+garch(1,1), nyse))

Estimate Std. Error t value Pr(>|t|)
mu 6.548e-04 1.770e-04 3.699 0.000217 ***
ar1 1.075e-01 2.516e-02 4.273 1.93e-05 ***
omega 6.218e-06 1.381e-06 4.502 6.72e-06 ***
alpha1 1.093e-01 1.538e-02 7.106 1.19e-12 ***
beta1 8.138e-01 2.856e-02 28.490 < 2e-16 ***

Standardised Residuals Tests:
Statistic p-Value

Jarque-Bera Test R Chi^2 4029.819 0
Shapiro-Wilk Test R W 0.9507688 0
Ljung-Box Test R Q(10) 4.006516 0.9470526
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Fig. 5.6. GARCH predictions of the NYSE volatility, ±2b�
t

, displayed as dashed
lines.

Ljung-Box Test R Q(15) 4.754317 0.9940101
Ljung-Box Test R Q(20) 6.748514 0.997432
Ljung-Box Test R^2 Q(10) 3.439174 0.9691234
Ljung-Box Test R^2 Q(15) 4.528756 0.9954202
Ljung-Box Test R^2 Q(20) 7.352159 0.9953599
LM Arch Test R TR^2 3.936223 0.9845599

To explore the GARCH predictions of volatility, we calculated and plot-
ted the 100 observations from the middle of the data (which includes the
October 19, 1987 crash) along with the one-step-ahead predictions of the
corresponding volatility, �2

t . The results are displayed as the data ±2b�t as a
dashed line surrounding the data in Figure 5.6.
u = nyse.g@sigma.t
plot(window(nyse, start=900, end=1000), ylim=c(-.22,.2), ylab="NYSE

Returns")
lines(window(nyse-2*u, start=900, end=1000), lty=2, col=4)
lines(window(nyse+2*u, start=900, end=1000), lty=2, col=4)

Some key points can be gleaned from the examples of this section. First, it
is apparent that the conditional distribution of the returns is rarely normal.
fGarch allows for various distributions to be fit to the data; see the help file
for information. Some drawbacks of the GARCH model are: (i) the model
assumes positive and negative returns have the same e↵ect because volatility
depends on squared returns; (ii) the model is restrictive because of the tight
constraints on the model parameters (e.g., for an ARCH(1), 0  ↵2

1 < 1
3 ); (iii)






