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4 1 Characteristics of Time Series
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Fig. 1.1. Johnson & Johnson quarterly earnings per share, 84 quarters, 1960-I to
1980-IV.

from di↵erent subject areas. The following cases illustrate some of the com-
mon kinds of experimental time series data as well as some of the statistical
questions that might be asked about such data.

Example 1.1 Johnson & Johnson Quarterly Earnings
Figure 1.1 shows quarterly earnings per share for the U.S. company Johnson
& Johnson, furnished by Professor Paul Gri�n (personal communication) of
the Graduate School of Management, University of California, Davis. There
are 84 quarters (21 years) measured from the first quarter of 1960 to the
last quarter of 1980. Modeling such series begins by observing the primary
patterns in the time history. In this case, note the gradually increasing un-
derlying trend and the rather regular variation superimposed on the trend
that seems to repeat over quarters. Methods for analyzing data such as these
are explored in Chapter 2 (see Problem 2.1) using regression techniques and
in Chapter 6, §6.5, using structural equation modeling.

To plot the data using the R statistical package, type the following:1

require(astsa) # SEE THE FOOTNOTE
plot(jj, type="o", ylab="Quarterly Earnings per Share")

Example 1.2 Global Warming
Consider the global temperature series record shown in Figure 1.2. The data
are the global mean land–ocean temperature index from 1880 to 2009, with
the base period 1951-1980. In particular, the data are deviations, measured

1 Throughout the text, we assume that the R package for the book, astsa, has
been installed and loaded. See §R.1.1 for further details.
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Fig. 1.2. Yearly average global temperature deviations (1880–2009) in degrees centi-
grade.

in degrees centigrade, from the 1951-1980 average, and are an update of
Hansen et al. (2006). We note an apparent upward trend in the series during
the latter part of the twentieth century that has been used as an argument
for the global warming hypothesis. Note also the leveling o↵ at about 1935
and then another rather sharp upward trend at about 1970. The question of
interest for global warming proponents and opponents is whether the overall
trend is natural or whether it is caused by some human-induced interface.
Problem 2.8 examines 634 years of glacial sediment data that might be taken
as a long-term temperature proxy. Such percentage changes in temperature
do not seem to be unusual over a time period of 100 years. Again, the question
of trend is of more interest than particular periodicities.

The R code for this example is similar to the code in Example 1.1:
plot(gtemp, type="o", ylab="Global Temperature Deviations")

Example 1.3 Speech Data
More involved questions develop in applications to the physical sciences. Fig-
ure 1.3 shows a small .1 second (1000 point) sample of recorded speech for
the phrase aaa · · ·hhh, and we note the repetitive nature of the signal and
the rather regular periodicities. One current problem of great interest is com-
puter recognition of speech, which would require converting this particular
signal into the recorded phrase aaa · · ·hhh. Spectral analysis can be used in
this context to produce a signature of this phrase that can be compared with
signatures of various library syllables to look for a match. One can immedi-
ately notice the rather regular repetition of small wavelets. The separation
between the packets is known as the pitch period and represents the response
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Fig. 1.3. Speech recording of the syllable aaa · · ·hhh sampled at 10,000 points per
second with n = 1020 points.

of the vocal tract filter to a periodic sequence of pulses stimulated by the
opening and closing of the glottis.

In R, you can reproduce Figure 1.3 as follows:
plot(speech)

Example 1.4 New York Stock Exchange
As an example of financial time series data, Figure 1.4 shows the daily re-
turns (or percent change) of the New York Stock Exchange (NYSE) from
February 2, 1984 to December 31, 1991. It is easy to spot the crash of Octo-
ber 19, 1987 in the figure. The data shown in Figure 1.4 are typical of return
data. The mean of the series appears to be stable with an average return of
approximately zero, however, the volatility (or variability) of data changes
over time. In fact, the data show volatility clustering; that is, highly volatile
periods tend to be clustered together. A problem in the analysis of these type
of financial data is to forecast the volatility of future returns. Models such as
ARCH and GARCH models (Engle, 1982; Bollerslev, 1986) and stochastic
volatility models (Harvey, Ruiz and Shephard, 1994) have been developed
to handle these problems. We will discuss these models and the analysis of
financial data in Chapters 5 and 6. The R code for this example is similar to
the previous examples:
plot(nyse, ylab="NYSE Returns")
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Fig. 1.4. Returns of the NYSE. The data are daily value weighted market returns
from February 2, 1984 to December 31, 1991 (2000 trading days). The crash of
October 19, 1987 occurs at t = 938.

Example 1.5 El Niño and Fish Population
We may also be interested in analyzing several time series at once. Figure 1.5
shows monthly values of an environmental series called the Southern Oscilla-
tion Index (SOI) and associated Recruitment (number of new fish) furnished
by Dr. Roy Mendelssohn of the Pacific Environmental Fisheries Group (per-
sonal communication). Both series are for a period of 453 months ranging
over the years 1950–1987. The SOI measures changes in air pressure, related
to sea surface temperatures in the central Pacific Ocean. The central Pacific
warms every three to seven years due to the El Niño e↵ect, which has been
blamed, in particular, for the 1997 floods in the midwestern portions of the
United States. Both series in Figure 1.5 tend to exhibit repetitive behavior,
with regularly repeating cycles that are easily visible. This periodic behavior
is of interest because underlying processes of interest may be regular and the
rate or frequency of oscillation characterizing the behavior of the underlying
series would help to identify them. One can also remark that the cycles of
the SOI are repeating at a faster rate than those of the Recruitment series.
The Recruitment series also shows several kinds of oscillations, a faster fre-
quency that seems to repeat about every 12 months and a slower frequency
that seems to repeat about every 50 months. The study of the kinds of cycles
and their strengths is the subject of Chapter 4. The two series also tend to
be somewhat related; it is easy to imagine that somehow the fish population
is dependent on the SOI. Perhaps even a lagged relation exists, with the
SOI signaling changes in the fish population. This possibility suggests trying
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Fig. 1.5. Monthly SOI and Recruitment (estimated new fish), 1950-1987.

some version of regression analysis as a procedure for relating the two series.
Transfer function modeling, as considered in Chapter 5, can be applied in
this case to obtain a model relating Recruitment to its own past and the
past values of the SOI.

The following R code will reproduce Figure 1.5:
par(mfrow = c(2,1)) # set up the graphics
plot(soi, ylab="", xlab="", main="Southern Oscillation Index")
plot(rec, ylab="", xlab="", main="Recruitment")

Example 1.6 fMRI Imaging
A fundamental problem in classical statistics occurs when we are given a
collection of independent series or vectors of series, generated under varying
experimental conditions or treatment configurations. Such a set of series is
shown in Figure 1.6, where we observe data collected from various locations
in the brain via functional magnetic resonance imaging (fMRI). In this ex-
ample, five subjects were given periodic brushing on the hand. The stimulus
was applied for 32 seconds and then stopped for 32 seconds; thus, the signal
period is 64 seconds. The sampling rate was one observation every 2 seconds
for 256 seconds (n = 128). For this example, we averaged the results over
subjects (these were evoked responses, and all subjects were in phase). The
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Fig. 1.6. fMRI data from various locations in the cortex, thalamus, and cerebellum;
n = 128 points, one observation taken every 2 seconds.

series shown in Figure 1.6 are consecutive measures of blood oxygenation-
level dependent (bold) signal intensity, which measures areas of activation
in the brain. Notice that the periodicities appear strongly in the motor cor-
tex series and less strongly in the thalamus and cerebellum. The fact that
one has series from di↵erent areas of the brain suggests testing whether the
areas are responding di↵erently to the brush stimulus. Analysis of variance
techniques accomplish this in classical statistics, and we show in Chapter 7
how these classical techniques extend to the time series case, leading to a
spectral analysis of variance.

The following R commands were used to plot the data:
par(mfrow=c(2,1), mar=c(3,2,1,0)+.5, mgp=c(1.6,.6,0))
ts.plot(fmri1[,2:5], lty=c(1,2,4,5), ylab="BOLD", xlab="",

main="Cortex")
ts.plot(fmri1[,6:9], lty=c(1,2,4,5), ylab="BOLD", xlab="",

main="Thalamus & Cerebellum")
mtext("Time (1 pt = 2 sec)", side=1, line=2)

Example 1.7 Earthquakes and Explosions
As a final example, the series in Figure 1.7 represent two phases or arrivals
along the surface, denoted by P (t = 1, . . . , 1024) and S (t = 1025, . . . , 2048),
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Fig. 1.7. Arrival phases from an earthquake (top) and explosion (bottom) at 40
points per second.

at a seismic recording station. The recording instruments in Scandinavia are
observing earthquakes and mining explosions with one of each shown in Fig-
ure 1.7. The general problem of interest is in distinguishing or discriminating
between waveforms generated by earthquakes and those generated by explo-
sions. Features that may be important are the rough amplitude ratios of the
first phase P to the second phase S, which tend to be smaller for earthquakes
than for explosions. In the case of the two events in Figure 1.7, the ratio of
maximum amplitudes appears to be somewhat less than .5 for the earthquake
and about 1 for the explosion. Otherwise, note a subtle di↵erence exists in
the periodic nature of the S phase for the earthquake. We can again think
about spectral analysis of variance for testing the equality of the periodic
components of earthquakes and explosions. We would also like to be able to
classify future P and S components from events of unknown origin, leading
to the time series discriminant analysis developed in Chapter 7.

To plot the data as in this example, use the following commands in R:
par(mfrow=c(2,1))
plot(EQ5, main="Earthquake")
plot(EXP6, main="Explosion")
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1.3 Time Series Statistical Models

The primary objective of time series analysis is to develop mathematical mod-
els that provide plausible descriptions for sample data, like that encountered
in the previous section. In order to provide a statistical setting for describing
the character of data that seemingly fluctuate in a random fashion over time,
we assume a time series can be defined as a collection of random variables in-
dexed according to the order they are obtained in time. For example, we may
consider a time series as a sequence of random variables, x1, x2, x3, . . . , where
the random variable x1 denotes the value taken by the series at the first time
point, the variable x2 denotes the value for the second time period, x3 denotes
the value for the third time period, and so on. In general, a collection of ran-
dom variables, {xt}, indexed by t is referred to as a stochastic process. In this
text, t will typically be discrete and vary over the integers t = 0,±1,±2, ...,
or some subset of the integers. The observed values of a stochastic process are
referred to as a realization of the stochastic process. Because it will be clear
from the context of our discussions, we use the term time series whether we
are referring generically to the process or to a particular realization and make
no notational distinction between the two concepts.

It is conventional to display a sample time series graphically by plotting
the values of the random variables on the vertical axis, or ordinate, with
the time scale as the abscissa. It is usually convenient to connect the values
at adjacent time periods to reconstruct visually some original hypothetical
continuous time series that might have produced these values as a discrete
sample. Many of the series discussed in the previous section, for example,
could have been observed at any continuous point in time and are conceptually
more properly treated as continuous time series. The approximation of these
series by discrete time parameter series sampled at equally spaced points
in time is simply an acknowledgment that sampled data will, for the most
part, be discrete because of restrictions inherent in the method of collection.
Furthermore, the analysis techniques are then feasible using computers, which
are limited to digital computations. Theoretical developments also rest on the
idea that a continuous parameter time series should be specified in terms of
finite-dimensional distribution functions defined over a finite number of points
in time. This is not to say that the selection of the sampling interval or rate
is not an extremely important consideration. The appearance of data can be
changed completely by adopting an insu�cient sampling rate. We have all
seen wagon wheels in movies appear to be turning backwards because of the
insu�cient number of frames sampled by the camera. This phenomenon leads
to a distortion called aliasing (see §4.2).

The fundamental visual characteristic distinguishing the di↵erent series
shown in Example 1.1–Example 1.7 is their di↵ering degrees of smoothness.
One possible explanation for this smoothness is that it is being induced by
the supposition that adjacent points in time are correlated, so the value of the
series at time t, say, xt, depends in some way on the past values xt�1, xt�2, . . ..
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This model expresses a fundamental way in which we might think about gen-
erating realistic-looking time series. To begin to develop an approach to using
collections of random variables to model time series, consider Example 1.8.

Example 1.8 White Noise
A simple kind of generated series might be a collection of uncorrelated ran-
dom variables, wt, with mean 0 and finite variance �2

w. The time series gen-
erated from uncorrelated variables is used as a model for noise in engineering
applications, where it is called white noise; we shall sometimes denote this
process as wt ⇠ wn(0,�2

w). The designation white originates from the anal-
ogy with white light and indicates that all possible periodic oscillations are
present with equal strength.

We will, at times, also require the noise to be independent and identically
distributed (iid) random variables with mean 0 and variance �2

w. We shall
distinguish this case by saying white independent noise, or by writing wt ⇠
iid(0,�2

w). A particularly useful white noise series is Gaussian white noise,
wherein the wt are independent normal random variables, with mean 0 and
variance �2

w; or more succinctly, wt ⇠ iid N(0,�2
w). Figure 1.8 shows in the

upper panel a collection of 500 such random variables, with �2
w = 1, plotted

in the order in which they were drawn. The resulting series bears a slight
resemblance to the explosion in Figure 1.7 but is not smooth enough to serve
as a plausible model for any of the other experimental series. The plot tends
to show visually a mixture of many di↵erent kinds of oscillations in the white
noise series.

If the stochastic behavior of all time series could be explained in terms of
the white noise model, classical statistical methods would su�ce. Two ways
of introducing serial correlation and more smoothness into time series models
are given in (1.9) and (1.10).

Example 1.9 Moving Averages
We might replace the white noise series wt by a moving average that smooths
the series. For example, consider replacing wt in Example 1.8 by an average
of its current value and its immediate neighbors in the past and future. That
is, let

vt =
1
3

�

wt�1 + wt + wt+1

�

, (1.1)

which leads to the series shown in the lower panel of Figure 1.8. Inspecting
the series shows a smoother version of the first series, reflecting the fact that
the slower oscillations are more apparent and some of the faster oscillations
are taken out. We begin to notice a similarity to the SOI in Figure 1.5, or
perhaps, to some of the fMRI series in Figure 1.6.

To reproduce Figure 1.8 in R use the following commands. A linear com-
bination of values in a time series such as in (1.1) is referred to, generically,
as a filtered series; hence the command filter.
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Fig. 1.8. Gaussian white noise series (top) and three-point moving average of the
Gaussian white noise series (bottom).

w = rnorm(500,0,1) # 500 N(0,1) variates
v = filter(w, sides=2, rep(1/3,3)) # moving average
par(mfrow=c(2,1))
plot.ts(w, main="white noise")
plot.ts(v, main="moving average")

The speech series in Figure 1.3 and the Recruitment series in Figure 1.5,
as well as some of the MRI series in Figure 1.6, di↵er from the moving average
series because one particular kind of oscillatory behavior seems to predom-
inate, producing a sinusoidal type of behavior. A number of methods exist
for generating series with this quasi-periodic behavior; we illustrate a popular
one based on the autoregressive model considered in Chapter 3.

Example 1.10 Autoregressions
Suppose we consider the white noise series wt of Example 1.8 as input and
calculate the output using the second-order equation

xt = xt�1 � .9xt�2 + wt (1.2)

successively for t = 1, 2, . . . , 500. Equation (1.2) represents a regression or
prediction of the current value xt of a time series as a function of the past
two values of the series, and, hence, the term autoregression is suggested


