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Fig. 1.8. Gaussian white noise series (top) and three-point moving average of the
Gaussian white noise series (bottom).

w = rnorm(500,0,1) # 500 N(0,1) variates
v = filter(w, sides=2, rep(1/3,3)) # moving average
par(mfrow=c(2,1))
plot.ts(w, main="white noise")
plot.ts(v, main="moving average")

The speech series in Figure 1.3 and the Recruitment series in Figure 1.5,
as well as some of the MRI series in Figure 1.6, di↵er from the moving average
series because one particular kind of oscillatory behavior seems to predom-
inate, producing a sinusoidal type of behavior. A number of methods exist
for generating series with this quasi-periodic behavior; we illustrate a popular
one based on the autoregressive model considered in Chapter 3.

Example 1.10 Autoregressions
Suppose we consider the white noise series wt of Example 1.8 as input and
calculate the output using the second-order equation

xt = xt�1 � .9xt�2 + wt (1.2)

successively for t = 1, 2, . . . , 500. Equation (1.2) represents a regression or
prediction of the current value xt of a time series as a function of the past
two values of the series, and, hence, the term autoregression is suggested
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Fig. 1.9. Autoregressive series generated from model (1.2).

for this model. A problem with startup values exists here because (1.2) also
depends on the initial conditions x0 and x�1, but, for now, we assume that
we are given these values and generate the succeeding values by substituting
into (1.2). The resulting output series is shown in Figure 1.9, and we note
the periodic behavior of the series, which is similar to that displayed by the
speech series in Figure 1.3. The autoregressive model above and its general-
izations can be used as an underlying model for many observed series and
will be studied in detail in Chapter 3.

One way to simulate and plot data from the model (1.2) in R is to use the
following commands (another way is to use arima.sim).
w = rnorm(550,0,1) # 50 extra to avoid startup problems
x = filter(w, filter=c(1,-.9), method="recursive")[-(1:50)]
plot.ts(x, main="autoregression")

Example 1.11 Random Walk with Drift
A model for analyzing trend such as seen in the global temperature data in
Figure 1.2, is the random walk with drift model given by

xt = � + xt�1 + wt (1.3)

for t = 1, 2, . . ., with initial condition x0 = 0, and where wt is white noise.
The constant � is called the drift, and when � = 0, (1.3) is called simply a
random walk. The term random walk comes from the fact that, when � = 0,
the value of the time series at time t is the value of the series at time t � 1
plus a completely random movement determined by wt. Note that we may
rewrite (1.3) as a cumulative sum of white noise variates. That is,

xt = � t+
t
X

j=1

wj (1.4)
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Fig. 1.10. Random walk, �
w

= 1, with drift � = .2 (upper jagged line), without
drift, � = 0 (lower jagged line), and a straight line with slope .2 (dashed line).

for t = 1, 2, . . .; either use induction, or plug (1.4) into (1.3) to verify this
statement. Figure 1.10 shows 200 observations generated from the model
with � = 0 and .2, and with �w = 1. For comparison, we also superimposed
the straight line .2t on the graph.

To reproduce Figure 1.10 in R use the following code (notice the use of
multiple commands per line using a semicolon).
set.seed(154) # so you can reproduce the results
w = rnorm(200,0,1); x = cumsum(w) # two commands in one line
wd = w +.2; xd = cumsum(wd)
plot.ts(xd, ylim=c(-5,55), main="random walk")
lines(x); lines(.2*(1:200), lty="dashed")

Example 1.12 Signal in Noise
Many realistic models for generating time series assume an underlying signal
with some consistent periodic variation, contaminated by adding a random
noise. For example, it is easy to detect the regular cycle fMRI series displayed
on the top of Figure 1.6. Consider the model

xt = 2 cos(2⇡t/50 + .6⇡) + wt (1.5)

for t = 1, 2, . . . , 500, where the first term is regarded as the signal, shown in
the upper panel of Figure 1.11. We note that a sinusoidal waveform can be
written as

A cos(2⇡!t+ �), (1.6)

where A is the amplitude, ! is the frequency of oscillation, and � is a phase
shift. In (1.5), A = 2, ! = 1/50 (one cycle every 50 time points), and � = .6⇡.
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Fig. 1.11. Cosine wave with period 50 points (top panel) compared with the cosine
wave contaminated with additive white Gaussian noise, �

w

= 1 (middle panel) and
�

w

= 5 (bottom panel); see (1.5).

An additive noise term was taken to be white noise with �w = 1 (mid-
dle panel) and �w = 5 (bottom panel), drawn from a normal distribution.
Adding the two together obscures the signal, as shown in the lower panels of
Figure 1.11. Of course, the degree to which the signal is obscured depends
on the amplitude of the signal and the size of �w. The ratio of the amplitude
of the signal to �w (or some function of the ratio) is sometimes called the
signal-to-noise ratio (SNR); the larger the SNR, the easier it is to detect
the signal. Note that the signal is easily discernible in the middle panel of
Figure 1.11, whereas the signal is obscured in the bottom panel. Typically,
we will not observe the signal but the signal obscured by noise.

To reproduce Figure 1.11 in R, use the following commands:
cs = 2*cos(2*pi*1:500/50 + .6*pi)
w = rnorm(500,0,1)
par(mfrow=c(3,1), mar=c(3,2,2,1), cex.main=1.5)
plot.ts(cs, main=expression(2*cos(2*pi*t/50+.6*pi)))
plot.ts(cs+w, main=expression(2*cos(2*pi*t/50+.6*pi) + N(0,1)))
plot.ts(cs+5*w, main=expression(2*cos(2*pi*t/50+.6*pi) + N(0,25)))

In Chapter 4, we will study the use of spectral analysis as a possible
technique for detecting regular or periodic signals, such as the one described
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in Example 1.12. In general, we would emphasize the importance of simple
additive models such as given above in the form

xt = st + vt, (1.7)

where st denotes some unknown signal and vt denotes a time series that may
be white or correlated over time. The problems of detecting a signal and then
in estimating or extracting the waveform of st are of great interest in many
areas of engineering and the physical and biological sciences. In economics,
the underlying signal may be a trend or it may be a seasonal component of a
series. Models such as (1.7), where the signal has an autoregressive structure,
form the motivation for the state-space model of Chapter 6.

In the above examples, we have tried to motivate the use of various com-
binations of random variables emulating real time series data. Smoothness
characteristics of observed time series were introduced by combining the ran-
dom variables in various ways. Averaging independent random variables over
adjacent time points, as in Example 1.9, or looking at the output of di↵er-
ence equations that respond to white noise inputs, as in Example 1.10, are
common ways of generating correlated data. In the next section, we introduce
various theoretical measures used for describing how time series behave. As
is usual in statistics, the complete description involves the multivariate dis-
tribution function of the jointly sampled values x1, x2, . . . , xn, whereas more
economical descriptions can be had in terms of the mean and autocorrelation
functions. Because correlation is an essential feature of time series analysis, the
most useful descriptive measures are those expressed in terms of covariance
and correlation functions.

1.4 Measures of Dependence: Autocorrelation and
Cross-Correlation

A complete description of a time series, observed as a collection of n random
variables at arbitrary integer time points t1, t2, . . . , tn, for any positive integer
n, is provided by the joint distribution function, evaluated as the probability
that the values of the series are jointly less than the n constants, c1, c2, . . . , cn;
i.e.,

F (c1, c2, . . . , cn) = P
�

xt1  c1, xt2  c2, . . . , xt
n

 cn
�

. (1.8)

Unfortunately, the multidimensional distribution function cannot usually be
written easily unless the random variables are jointly normal, in which case
the joint density has the well-known form displayed in (1.31).

Although the joint distribution function describes the data completely, it
is an unwieldy tool for displaying and analyzing time series data. The dis-
tribution function (1.8) must be evaluated as a function of n arguments, so
any plotting of the corresponding multivariate density functions is virtually
impossible. The marginal distribution functions
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Ft(x) = P{xt  x}

or the corresponding marginal density functions

ft(x) =
@Ft(x)

@x
,

when they exist, are often informative for examining the marginal behavior
of a series.2 Another informative marginal descriptive measure is the mean
function.

Definition 1.1 The mean function is defined as

µxt = E(xt) =

Z 1

�1
xft(x) dx, (1.9)

provided it exists, where E denotes the usual expected value operator. When
no confusion exists about which time series we are referring to, we will drop
a subscript and write µxt as µt.

Example 1.13 Mean Function of a Moving Average Series
If wt denotes a white noise series, then µwt = E(wt) = 0 for all t. The top
series in Figure 1.8 reflects this, as the series clearly fluctuates around a mean
value of zero. Smoothing the series as in Example 1.9 does not change the
mean because we can write

µvt = E(vt) =
1
3 [E(wt�1) + E(wt) + E(wt+1)] = 0.

Example 1.14 Mean Function of a Random Walk with Drift

Consider the random walk with drift model given in (1.4),

xt = � t+
t
X

j=1

wj , t = 1, 2, . . . .

Because E(wt) = 0 for all t, and � is a constant, we have

µxt = E(xt) = � t+
t
X

j=1

E(wj) = � t

which is a straight line with slope �. A realization of a random walk with
drift can be compared to its mean function in Figure 1.10.

2 If x
t

is Gaussian with mean µ

t

and variance �

2
t

, abbreviated as x

t

⇠ N(µ
t

,�

2
t

),

the marginal density is given by f

t

(x) =
1

�

t

p

2⇡
exp

n

�

1
2�2

t

(x� µ

t

)2
o

.
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Example 1.15 Mean Function of Signal Plus Noise
A great many practical applications depend on assuming the observed data
have been generated by a fixed signal waveform superimposed on a zero-
mean noise process, leading to an additive signal model of the form (1.5). It
is clear, because the signal in (1.5) is a fixed function of time, we will have

µxt = E(xt) = E
⇥

2 cos(2⇡t/50 + .6⇡) + wt

⇤

= 2 cos(2⇡t/50 + .6⇡) + E(wt)

= 2 cos(2⇡t/50 + .6⇡),

and the mean function is just the cosine wave.

The lack of independence between two adjacent values xs and xt can be
assessed numerically, as in classical statistics, using the notions of covariance
and correlation. Assuming the variance of xt is finite, we have the following
definition.

Definition 1.2 The autocovariance function is defined as the second mo-
ment product

�x(s, t) = cov(xs, xt) = E[(xs � µs)(xt � µt)], (1.10)

for all s and t. When no possible confusion exists about which time series we
are referring to, we will drop the subscript and write �x(s, t) as �(s, t).

Note that �x(s, t) = �x(t, s) for all time points s and t. The autocovariance
measures the linear dependence between two points on the same series ob-
served at di↵erent times. Very smooth series exhibit autocovariance functions
that stay large even when the t and s are far apart, whereas choppy series tend
to have autocovariance functions that are nearly zero for large separations.
The autocovariance (1.10) is the average cross-product relative to the joint
distribution F (xs, xt). Recall from classical statistics that if �x(s, t) = 0, xs

and xt are not linearly related, but there still may be some dependence struc-
ture between them. If, however, xs and xt are bivariate normal, �x(s, t) = 0
ensures their independence. It is clear that, for s = t, the autocovariance
reduces to the (assumed finite) variance, because

�x(t, t) = E[(xt � µt)
2] = var(xt). (1.11)

Example 1.16 Autocovariance of White Noise
The white noise series wt has E(wt) = 0 and

�w(s, t) = cov(ws, wt) =

(

�2
w s = t,

0 s 6= t.
(1.12)

A realization of white noise with �2
w = 1 is shown in the top panel of Fig-

ure 1.8.
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Example 1.17 Autocovariance of a Moving Average
Consider applying a three-point moving average to the white noise series wt

of the previous example as in Example 1.9. In this case,

�v(s, t) = cov(vs, vt) = cov
�

1
3 (ws�1 + ws + ws+1) ,

1
3 (wt�1 + wt + wt+1)

 

.

When s = t we have3

�v(t, t) =
1
9cov{(wt�1 + wt + wt+1), (wt�1 + wt + wt+1)}

= 1
9 [cov(wt�1, wt�1) + cov(wt, wt) + cov(wt+1, wt+1)]

= 3
9�

2
w.

When s = t+ 1,

�v(t+ 1, t) = 1
9cov{(wt + wt+1 + wt+2), (wt�1 + wt + wt+1)}

= 1
9 [cov(wt, wt) + cov(wt+1, wt+1)]

= 2
9�

2
w,

using (1.12). Similar computations give �v(t � 1, t) = 2�2
w/9, �v(t + 2, t) =

�v(t� 2, t) = �2
w/9, and 0 when |t� s| > 2. We summarize the values for all

s and t as

�v(s, t) =

8

>

>

>

>

<

>

>

>

>

:

3
9�

2
w s = t,

2
9�

2
w |s� t| = 1,

1
9�

2
w |s� t| = 2,

0 |s� t| > 2.

(1.13)

Example 1.17 shows clearly that the smoothing operation introduces a
covariance function that decreases as the separation between the two time
points increases and disappears completely when the time points are separated
by three or more time points. This particular autocovariance is interesting
because it only depends on the time separation or lag and not on the absolute
location of the points along the series. We shall see later that this dependence
suggests a mathematical model for the concept of weak stationarity.

Example 1.18 Autocovariance of a Random Walk
For the random walk model, xt =

Pt
j=1 wj , we have

�x(s, t) = cov(xs, xt) = cov

0

@

s
X

j=1

wj ,
t
X

k=1

wk

1

A = min{s, t}�2
w,

because the wt are uncorrelated random variables. Note that, as opposed
to the previous examples, the autocovariance function of a random walk

3 If the random variables U =
P

m

j=1 aj

X

j

and V =
P

r

k=1 bkYk

are linear com-
binations of random variables {X

j

} and {Y

k

}, respectively, then cov(U, V ) =
P

m

j=1

P

r

k=1 aj

b

k

cov(X
j

, Y

k

). Furthermore, var(U) = cov(U,U).
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depends on the particular time values s and t, and not on the time separation
or lag. Also, notice that the variance of the random walk, var(xt) = �x(t, t) =
t�2

w, increases without bound as time t increases. The e↵ect of this variance
increase can be seen in Figure 1.10 where the processes start to move away
from their mean functions � t (note that � = 0 and .2 in that example).

As in classical statistics, it is more convenient to deal with a measure of
association between �1 and 1, and this leads to the following definition.

Definition 1.3 The autocorrelation function (ACF) is defined as

⇢(s, t) =
�(s, t)

p

�(s, s)�(t, t)
. (1.14)

The ACF measures the linear predictability of the series at time t, say xt,
using only the value xs. We can show easily that �1  ⇢(s, t)  1 using the
Cauchy–Schwarz inequality.4 If we can predict xt perfectly from xs through
a linear relationship, xt = �0 + �1xs, then the correlation will be +1 when
�1 > 0, and �1 when �1 < 0. Hence, we have a rough measure of the ability
to forecast the series at time t from the value at time s.

Often, we would like to measure the predictability of another series yt from
the series xs. Assuming both series have finite variances, we have the following
definition.

Definition 1.4 The cross-covariance function between two series, xt and
yt, is

�xy(s, t) = cov(xs, yt) = E[(xs � µxs)(yt � µyt)]. (1.15)

There is also a scaled version of the cross-covariance function.

Definition 1.5 The cross-correlation function (CCF) is given by

⇢xy(s, t) =
�xy(s, t)

p

�x(s, s)�y(t, t)
. (1.16)

We may easily extend the above ideas to the case of more than two series,
say, xt1, xt2, . . . , xtr; that is, multivariate time series with r components. For
example, the extension of (1.10) in this case is

�jk(s, t) = E[(xsj � µsj)(xtk � µtk)] j, k = 1, 2, . . . , r. (1.17)

In the definitions above, the autocovariance and cross-covariance functions
may change as one moves along the series because the values depend on both s

4 The Cauchy–Schwarz inequality implies |�(s, t)|2  �(s, s)�(t, t).
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and t, the locations of the points in time. In Example 1.17, the autocovariance
function depends on the separation of xs and xt, say, h = |s� t|, and not on
where the points are located in time. As long as the points are separated by
h units, the location of the two points does not matter. This notion, called
weak stationarity, when the mean is constant, is fundamental in allowing us
to analyze sample time series data when only a single series is available.

1.5 Stationary Time Series

The preceding definitions of the mean and autocovariance functions are com-
pletely general. Although we have not made any special assumptions about
the behavior of the time series, many of the preceding examples have hinted
that a sort of regularity may exist over time in the behavior of a time series.
We introduce the notion of regularity using a concept called stationarity.

Definition 1.6 A strictly stationary time series is one for which the prob-
abilistic behavior of every collection of values

{xt1 , xt2 , . . . , xt
k

}

is identical to that of the time shifted set

{xt1+h, xt2+h, . . . , xt
k

+h}.

That is,

P{xt1  c1, . . . , xt
k

 ck} = P{xt1+h  c1, . . . , xt
k

+h  ck} (1.18)

for all k = 1, 2, ..., all time points t1, t2, . . . , tk, all numbers c1, c2, . . . , ck, and
all time shifts h = 0,±1,±2, ... .

If a time series is strictly stationary, then all of the multivariate distri-
bution functions for subsets of variables must agree with their counterparts
in the shifted set for all values of the shift parameter h. For example, when
k = 1, (1.18) implies that

P{xs  c} = P{xt  c} (1.19)

for any time points s and t. This statement implies, for example, that the
probability that the value of a time series sampled hourly is negative at 1am
is the same as at 10am. In addition, if the mean function, µt, of the series xt

exists, (1.19) implies that µs = µt for all s and t, and hence µt must be con-
stant. Note, for example, that a random walk process with drift is not strictly
stationary because its mean function changes with time; see Example 1.14 on
page 18.

When k = 2, we can write (1.18) as
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P{xs  c1, xt  c2} = P{xs+h  c1, xt+h  c2} (1.20)

for any time points s and t and shift h. Thus, if the variance function of the
process exists, (1.20) implies that the autocovariance function of the series xt

satisfies
�(s, t) = �(s+ h, t+ h)

for all s and t and h. We may interpret this result by saying the autocovariance
function of the process depends only on the time di↵erence between s and t,
and not on the actual times.

The version of stationarity in Definition 1.6 is too strong for most appli-
cations. Moreover, it is di�cult to assess strict stationarity from a single data
set. Rather than imposing conditions on all possible distributions of a time
series, we will use a milder version that imposes conditions only on the first
two moments of the series. We now have the following definition.

Definition 1.7 A weakly stationary time series, xt, is a finite variance
process such that

(i) the mean value function, µt, defined in (1.9) is constant and does not
depend on time t, and

(ii) the autocovariance function, �(s, t), defined in (1.10) depends on s and
t only through their di↵erence |s� t|.

Henceforth, we will use the term stationary to mean weakly stationary; if a
process is stationary in the strict sense, we will use the term strictly stationary.

It should be clear from the discussion of strict stationarity following Defini-
tion 1.6 that a strictly stationary, finite variance, time series is also stationary.
The converse is not true unless there are further conditions. One important
case where stationarity implies strict stationarity is if the time series is Gaus-
sian [meaning all finite distributions, (1.18), of the series are Gaussian]. We
will make this concept more precise at the end of this section.

Because the mean function, E(xt) = µt, of a stationary time series is
independent of time t, we will write

µt = µ. (1.21)

Also, because the autocovariance function, �(s, t), of a stationary time series,
xt, depends on s and t only through their di↵erence |s � t|, we may simplify
the notation. Let s = t+ h, where h represents the time shift or lag. Then

�(t+ h, t) = cov(xt+h, xt) = cov(xh, x0) = �(h, 0)

because the time di↵erence between times t + h and t is the same as the
time di↵erence between times h and 0. Thus, the autocovariance function of
a stationary time series does not depend on the time argument t. Henceforth,
for convenience, we will drop the second argument of �(h, 0).
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Fig. 1.12. Autocovariance function of a three-point moving average.

Definition 1.8 The autocovariance function of a stationary time se-
ries will be written as

�(h) = cov(xt+h, xt) = E[(xt+h � µ)(xt � µ)]. (1.22)

Definition 1.9 The autocorrelation function (ACF) of a stationary
time series will be written using (1.14) as

⇢(h) =
�(t+ h, t)

p

�(t+ h, t+ h)�(t, t)
=
�(h)

�(0)
. (1.23)

The Cauchy–Schwarz inequality shows again that �1  ⇢(h)  1 for all
h, enabling one to assess the relative importance of a given autocorrelation
value by comparing with the extreme values �1 and 1.

Example 1.19 Stationarity of White Noise
The mean and autocovariance functions of the white noise series discussed
in Example 1.8 and Example 1.16 are easily evaluated as µwt = 0 and

�w(h) = cov(wt+h, wt) =

(

�2
w h = 0,

0 h 6= 0.

Thus, white noise satisfies the conditions of Definition 1.7 and is weakly sta-
tionary or stationary. If the white noise variates are also normally distributed
or Gaussian, the series is also strictly stationary, as can be seen by evaluating
(1.18) using the fact that the noise would also be iid.

Example 1.20 Stationarity of a Moving Average
The three-point moving average process of Example 1.9 is stationary be-
cause, from Example 1.13 and Example 1.17, the mean and autocovariance
functions µvt = 0, and
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�v(h) =

8

>

>

>

<

>

>

>

:

3
9�

2
w h = 0,

2
9�

2
w h = ±1,

1
9�

2
w h = ±2,

0 |h| > 2

are independent of time t, satisfying the conditions of Definition 1.7. Fig-
ure 1.12 shows a plot of the autocovariance as a function of lag h with
�2
w = 1. Interestingly, the autocovariance function is symmetric about lag

zero and decays as a function of lag.

The autocovariance function of a stationary process has several useful
properties (also, see Problem 1.25). First, the value at h = 0, namely

�(0) = E[(xt � µ)2] (1.24)

is the variance of the time series; note that the Cauchy–Schwarz inequality
implies

|�(h)|  �(0).

A final useful property, noted in the previous example, is that the autoco-
variance function of a stationary series is symmetric around the origin; that
is,

�(h) = �(�h) (1.25)

for all h. This property follows because shifting the series by h means that

�(h) = �(t+ h� t)
= E[(xt+h � µ)(xt � µ)]
= E[(xt � µ)(xt+h � µ)]
= �(t� (t+ h))
= �(�h),

which shows how to use the notation as well as proving the result.
When several series are available, a notion of stationarity still applies with

additional conditions.

Definition 1.10 Two time series, say, xt and yt, are said to be jointly sta-
tionary if they are each stationary, and the cross-covariance function

�xy(h) = cov(xt+h, yt) = E[(xt+h � µx)(yt � µy)] (1.26)

is a function only of lag h.

Definition 1.11 The cross-correlation function (CCF) of jointly station-
ary time series xt and yt is defined as

⇢xy(h) =
�xy(h)

p

�x(0)�y(0)
. (1.27)
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Again, we have the result �1  ⇢xy(h)  1 which enables comparison with
the extreme values �1 and 1 when looking at the relation between xt+h and
yt. The cross-correlation function is not generally symmetric about zero [i.e.,
typically ⇢xy(h) 6= ⇢xy(�h)]; however, it is the case that

⇢xy(h) = ⇢yx(�h), (1.28)

which can be shown by manipulations similar to those used to show (1.25).

Example 1.21 Joint Stationarity
Consider the two series, xt and yt, formed from the sum and di↵erence of
two successive values of a white noise process, say,

xt = wt + wt�1

and
yt = wt � wt�1,

where wt are independent random variables with zero means and variance
�2
w. It is easy to show that �x(0) = �y(0) = 2�2

w and �x(1) = �x(�1) =
�2
w, �y(1) = �y(�1) = ��2

w. Also,

�xy(1) = cov(xt+1, yt) = cov(wt+1 + wt, wt � wt�1) = �2
w

because only one term is nonzero (recall footnote 3 on page 20). Similarly,
�xy(0) = 0, �xy(�1) = ��2

w. We obtain, using (1.11),

⇢xy(h) =

8

>

>

>

<

>

>

>

:

0 h = 0,

1/2 h = 1,

�1/2 h = �1,

0 |h| � 2.

Clearly, the autocovariance and cross-covariance functions depend only on
the lag separation, h, so the series are jointly stationary.

Example 1.22 Prediction Using Cross-Correlation
As a simple example of cross-correlation, consider the problem of determining
possible leading or lagging relations between two series xt and yt. If the model

yt = Axt�` + wt

holds, the series xt is said to lead yt for ` > 0 and is said to lag yt for ` < 0.
Hence, the analysis of leading and lagging relations might be important in
predicting the value of yt from xt. Assuming, for convenience, that xt and
yt have zero means, and the noise wt is uncorrelated with the xt series, the
cross-covariance function can be computed as
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�yx(h) = cov(yt+h, xt) = cov(Axt+h�` + wt+h, xt)

= cov(Axt+h�`, xt) = A�x(h� `).

The cross-covariance function will look like the autocovariance of the input
series xt, with a peak on the positive side if xt leads yt and a peak on the
negative side if xt lags yt.

The concept of weak stationarity forms the basis for much of the analysis
performed with time series. The fundamental properties of the mean and
autocovariance functions (1.21) and (1.22) are satisfied by many theoretical
models that appear to generate plausible sample realizations. In Example 1.9
and Example 1.10, two series were generated that produced stationary looking
realizations, and in Example 1.20, we showed that the series in Example 1.9
was, in fact, weakly stationary. Both examples are special cases of the so-called
linear process.

Definition 1.12 A linear process, xt, is defined to be a linear combination
of white noise variates wt, and is given by

xt = µ+
1
X

j=�1
 jwt�j ,

1
X

j=�1
| j | < 1. (1.29)

For the linear process (see Problem 1.11), we may show that the autoco-
variance function is given by

�(h) = �2
w

1
X

j=�1
 j+h j (1.30)

for h � 0; recall that �(�h) = �(h). This method exhibits the autocovariance
function of the process in terms of the lagged products of the coe�cients. Note
that, for Example 1.9, we have  0 =  �1 =  1 = 1/3 and the result in Ex-
ample 1.20 comes out immediately. The autoregressive series in Example 1.10
can also be put in this form, as can the general autoregressive moving average
processes considered in Chapter 3.

Finally, as previously mentioned, an important case in which a weakly
stationary series is also strictly stationary is the normal or Gaussian series.

Definition 1.13 A process, {xt}, is said to be a Gaussian process if the
n-dimensional vectors xxx = (xt1 , xt2 , . . . , xt

n

)0, for every collection of time
points t1, t2, . . . , tn, and every positive integer n, have a multivariate normal
distribution.

Defining the n ⇥ 1 mean vector E(xxx) ⌘ µµµ = (µt1 , µt2 , . . . , µt
n

)0 and the
n⇥ n covariance matrix as var(xxx) ⌘ � = {�(ti, tj); i, j = 1, . . . , n}, which is
assumed to be positive definite, the multivariate normal density function can
be written as


