
On	1.9,	you	will	need	to	use	the	facts	that,	for	any	x	and	y,			
sin(x+y) = sin(x) cos(y) + cos(x) sin(y). 
cos(x+y) = cos(x) cos(y) - sin(x) sin(y). 
(sin(x))2 + (cos(x))2 = 1. 
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f(xxx) = (2⇡)�n/2|� |�1/2 exp

⇢

�1

2
(xxx� µµµ)0��1(xxx� µµµ)

�

, (1.31)

where |·| denotes the determinant. This distribution forms the basis for solving
problems involving statistical inference for time series. If a Gaussian time
series, {xt}, is weakly stationary, then µt = µ and �(ti, tj) = �(|ti � tj |),
so that the vector µµµ and the matrix � are independent of time. These facts
imply that all the finite distributions, (1.31), of the series {xt} depend only
on time lag and not on the actual times, and hence the series must be strictly
stationary.

1.6 Estimation of Correlation

Although the theoretical autocorrelation and cross-correlation functions are
useful for describing the properties of certain hypothesized models, most of
the analyses must be performed using sampled data. This limitation means
the sampled points x1, x2, . . . , xn only are available for estimating the mean,
autocovariance, and autocorrelation functions. From the point of view of clas-
sical statistics, this poses a problem because we will typically not have iid
copies of xt that are available for estimating the covariance and correlation
functions. In the usual situation with only one realization, however, the as-
sumption of stationarity becomes critical. Somehow, we must use averages
over this single realization to estimate the population means and covariance
functions.

Accordingly, if a time series is stationary, the mean function (1.21) µt = µ
is constant so that we can estimate it by the sample mean,

x̄ =
1

n

n
X

t=1

xt. (1.32)

The standard error of the estimate is the square root of var(x̄), which can be
computed using first principles (recall footnote 3 on page 20), and is given by

var(x̄) = var

 

1

n

n
X

t=1

xt

!

=
1

n2
cov

 

n
X

t=1

xt,
n
X

s=1

xs

!

=
1

n2

⇣

n�x(0) + (n� 1)�x(1) + (n� 2)�x(2) + · · ·+ �x(n� 1)

+ (n� 1)�x(�1) + (n� 2)�x(�2) + · · ·+ �x(1� n)
⌘

=
1

n

n
X

h=�n

⇣

1� |h|
n

⌘

�x(h). (1.33)

If the process is white noise, (1.33) reduces to the familiar �2
x/n recalling that

�x(0) = �2
x. Note that, in the case of dependence, the standard error of x̄ may
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be smaller or larger than the white noise case depending on the nature of the
correlation structure (see Problem 1.19)

The theoretical autocovariance function, (1.22), is estimated by the sample
autocovariance function defined as follows.

Definition 1.14 The sample autocovariance function is defined as

b�(h) = n�1
n�h
X

t=1

(xt+h � x̄)(xt � x̄), (1.34)

with b�(�h) = b�(h) for h = 0, 1, . . . , n� 1.

The sum in (1.34) runs over a restricted range because xt+h is not available
for t + h > n. The estimator in (1.34) is preferred to the one that would be
obtained by dividing by n�h because (1.34) is a non-negative definite function.
The autocovariance function, �(h), of a stationary process is non-negative
definite (see Problem 1.25) ensuring that variances of linear combinations of
the variates xt will never be negative. And, because var(a1xt1 + · · ·+ anxt

n

)
is never negative, the estimate of that variance should also be non-negative.
The estimator in (1.34) guarantees this result, but no such guarantee exists if
we divide by n�h; this is explored further in Problem 1.25. Note that neither
dividing by n nor n� h in (1.34) yields an unbiased estimator of �(h).

Definition 1.15 The sample autocorrelation function is defined, analo-
gously to (1.23), as

b⇢(h) =
b�(h)

b�(0)
. (1.35)

The sample autocorrelation function has a sampling distribution that al-
lows us to assess whether the data comes from a completely random or white
series or whether correlations are statistically significant at some lags.

Property 1.1 Large-Sample Distribution of the ACF
Under general conditions,5 if xt is white noise, then for n large, the sample

ACF, b⇢x(h), for h = 1, 2, . . . , H, where H is fixed but arbitrary, is approxi-
mately normally distributed with zero mean and standard deviation given by

�⇢̂
x

(h) =
1p
n
. (1.36)

Based on the previous result, we obtain a rough method of assessing
whether peaks in b⇢(h) are significant by determining whether the observed
peak is outside the interval ±2/

p
n (or plus/minus two standard errors); for

a white noise sequence, approximately 95% of the sample ACFs should be

5 The general conditions are that x

t

is iid with finite fourth moment. A su�cient
condition for this to hold is that x

t

is white Gaussian noise. Precise details are
given in Theorem A.7 in Appendix A.
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within these limits. The applications of this property develop because many
statistical modeling procedures depend on reducing a time series to a white
noise series using various kinds of transformations. After such a procedure is
applied, the plotted ACFs of the residuals should then lie roughly within the
limits given above.

Definition 1.16 The estimators for the cross-covariance function, �xy(h), as
given in (1.26) and the cross-correlation, ⇢xy(h), in (1.11) are given, respec-
tively, by the sample cross-covariance function

b�xy(h) = n�1
n�h
X

t=1

(xt+h � x̄)(yt � ȳ), (1.37)

where b�xy(�h) = b�yx(h) determines the function for negative lags, and the
sample cross-correlation function

b⇢xy(h) =
b�xy(h)

p

b�x(0)b�y(0)
. (1.38)

The sample cross-correlation function can be examined graphically as a
function of lag h to search for leading or lagging relations in the data using
the property mentioned in Example 1.22 for the theoretical cross-covariance
function. Because �1  b⇢xy(h)  1, the practical importance of peaks can
be assessed by comparing their magnitudes with their theoretical maximum
values. Furthermore, for xt and yt independent linear processes of the form
(1.29), we have the following property.

Property 1.2 Large-Sample Distribution of Cross-Correlation
Under Independence

The large sample distribution of b⇢xy(h) is normal with mean zero and

�⇢̂
xy

=
1p
n

(1.39)

if at least one of the processes is independent white noise (see Theorem A.8
in Appendix A).

Example 1.23 A Simulated Time Series
To give an example of the procedure for calculating numerically the auto-
covariance and cross-covariance functions, consider a contrived set of data
generated by tossing a fair coin, letting xt = 1 when a head is obtained and
xt = �1 when a tail is obtained. Construct yt as

yt = 5 + xt � .7xt�1. (1.40)
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Table 1.1. Sample Realization of the Contrived Series y
t

t 1 2 3 4 5 6 7 8 9 10

Coin H H T H T T T H T H
x

t

1 1 �1 1 �1 �1 �1 1 �1 1
y

t

6.7 5.3 3.3 6.7 3.3 4.7 4.7 6.7 3.3 6.7
y

t

� ȳ 1.56 .16 �1.84 1.56 �1.84 �.44 �.44 1.56 �1.84 1.56

Table 1.1 shows sample realizations of the appropriate processes with x0 =
�1 and n = 10.

The sample autocorrelation for the series yt can be calculated using (1.34)
and (1.35) for h = 0, 1, 2, . . .. It is not necessary to calculate for negative
values because of the symmetry. For example, for h = 3, the autocorrelation
becomes the ratio of

b�y(3) =
1
10

7
X

t=1

(yt+3 � ȳ)(yt � ȳ)

= 1
10

h

(1.56)(1.56) + (�1.84)(.16) + (�.44)(�1.84) + (�.44)(1.56)

+ (1.56)(�1.84) + (�1.84)(�.44) + (1.56)(�.44)
i

= �.048

to
b�y(0) =

1
10 [(1.56)

2 + (.16)2 + · · ·+ (1.56)2] = 2.030

so that

b⇢y(3) =
�.048

2.030
= �.024.

The theoretical ACF can be obtained from the model (1.40) using the fact
that the mean of xt is zero and the variance of xt is one. It can be shown
that

⇢y(1) =
�.7

1 + .72
= �.47

and ⇢y(h) = 0 for |h| > 1 (Problem 1.24). Table 1.2 compares the theoretical
ACF with sample ACFs for a realization where n = 10 and another real-
ization where n = 100; we note the increased variability in the smaller size
sample.

Example 1.24 ACF of a Speech Signal
Computing the sample ACF as in the previous example can be thought of
as matching the time series h units in the future, say, xt+h against itself, xt.
Figure 1.13 shows the ACF of the speech series of Figure 1.3. The original
series appears to contain a sequence of repeating short signals. The ACF
confirms this behavior, showing repeating peaks spaced at about 106-109
points. Autocorrelation functions of the short signals appear, spaced at the
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Table 1.2. Theoretical and Sample ACFs
for n = 10 and n = 100

n = 10 n = 100
h ⇢

y

(h) b⇢

y

(h) b⇢

y

(h)

0 1.00 1.00 1.00
±1 �.47 �.55 �.45
±2 .00 .17 �.12
±3 .00 �.02 .14
±4 .00 .15 .01
±5 .00 �.46 �.01

0 50 100 150 200 250

−0
.5

0.
0

0.
5

1.
0

Lag

AC
F

Fig. 1.13. ACF of the speech series.

intervals mentioned above. The distance between the repeating signals is
known as the pitch period and is a fundamental parameter of interest in
systems that encode and decipher speech. Because the series is sampled at
10,000 points per second, the pitch period appears to be between .0106 and
.0109 seconds.

To put the data into speech as a time series object (if it is not there
already from Example 1.3) and compute the sample ACF in R, use
acf(speech, 250)

Example 1.25 SOI and Recruitment Correlation Analysis
The autocorrelation and cross-correlation functions are also useful for an-
alyzing the joint behavior of two stationary series whose behavior may be
related in some unspecified way. In Example 1.5 (see Figure 1.5), we have
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Fig. 1.14. Sample ACFs of the SOI series (top) and of the Recruitment series
(middle), and the sample CCF of the two series (bottom); negative lags indicate
SOI leads Recruitment. The lag axes are in terms of seasons (12 months).

considered simultaneous monthly readings of the SOI and the number of
new fish (Recruitment) computed from a model. Figure 1.14 shows the au-
tocorrelation and cross-correlation functions (ACFs and CCF) for these two
series. Both of the ACFs exhibit periodicities corresponding to the correla-
tion between values separated by 12 units. Observations 12 months or one
year apart are strongly positively correlated, as are observations at multiples
such as 24, 36, 48, . . . Observations separated by six months are negatively
correlated, showing that positive excursions tend to be associated with nega-
tive excursions six months removed. This appearance is rather characteristic
of the pattern that would be produced by a sinusoidal component with a pe-
riod of 12 months. The cross-correlation function peaks at h = �6, showing
that the SOI measured at time t� 6 months is associated with the Recruit-
ment series at time t. We could say the SOI leads the Recruitment series by
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six months. The sign of the CCF is negative, leading to the conclusion that
the two series move in di↵erent directions; that is, increases in SOI lead to
decreases in Recruitment and vice versa. Again, note the periodicity of 12
months in the CCF. The flat lines shown on the plots indicate ±2/

p
453,

so that upper values would be exceeded about 2.5% of the time if the two
series were uncorrelated and one was white [see (1.36) and (1.39)]; of course,
neither is true.

To reproduce Figure 1.14 in R, use the following commands:
par(mfrow=c(3,1))
acf(soi, 48, main="Southern Oscillation Index")
acf(rec, 48, main="Recruitment")
ccf(soi, rec, 48, main="SOI vs Recruitment", ylab="CCF")

1.7 Vector-Valued and Multidimensional Series

We frequently encounter situations in which the relationships between a num-
ber of jointly measured time series are of interest. For example, in the previous
sections, we considered discovering the relationships between the SOI and Re-
cruitment series. Hence, it will be useful to consider the notion of a vector time
series xxxt = (xt1, xt2, . . . , xtp)0, which contains as its components p univariate
time series. We denote the p ⇥ 1 column vector of the observed series as xxxt.
The row vector xxx0

t is its transpose. For the stationary case, the p ⇥ 1 mean
vector

µµµ = E(xxxt) (1.41)

of the form µµµ = (µt1, µt2, . . . , µtp)0 and the p⇥ p autocovariance matrix

� (h) = E[(xxxt+h � µµµ)(xxxt � µµµ)0] (1.42)

can be defined, where the elements of the matrix � (h) are the cross-covariance
functions

�ij(h) = E[(xt+h,i � µi)(xtj � µj)] (1.43)

for i, j = 1, . . . , p. Because �ij(h) = �ji(�h), it follows that

� (�h) = � 0(h). (1.44)

Now, the sample autocovariance matrix of the vector series xxxt is the p⇥ p
matrix of sample cross-covariances, defined as

b� (h) = n�1
n�h
X

t=1

(xxxt+h � x̄xx)(xxxt � x̄xx)0, (1.45)

where

x̄xx = n�1
n
X

t=1

xxxt (1.46)


